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Abstract

An integer t is a twin prime (see [7] or [8] or [11] or [12] or [13]), if tisa
prime number >3 and if t—2 or t+ 2 is also a prime number > 3.
Example: 41 and 43 are twin primes. It is conjectured that there are
infinitely many twin primes. A Fermat prime is a prime of the form

Fs = 225 +1, where s is an integer > 0, and a Fermat composite number

[or a Fermat composite] is a non-prime number of the form Fy = 22 4 1,
where s is an integer > 1; it is conjectured that there are infinitely many
Fermat composite numbers, and it is very hard to decide whether or not
there are infinitely many Fermat primes. A Mersenne prime is a prime of
the form M., = 2™ —1, where m is a prime [it is conjectured that there
are infinitely many Mersenne primes], and the Goldbach conjecture states
that every even integer e > 4 is of the form e = p + ¢, where (p, q) is
a couple of prime(s). Here, we state a simple conjecture (Q.), we

generalize the Fermat induction, and we use it to give a simple and
detailed proof that (Q.) is stronger than the Goldbach conjecture, the twin
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primes conjecture, the Mersenne primes conjecture, the Fermat composite
numbers conjecture and the Fermat primes conjecture [in the sense that
there are infinitely many Fermat primes]; this helps us to explain why it is
natural and not surprising to conjecture that the twin primes conjecture,
the Mersenne primes conjecture, the Fermat composite numbers conjecture
and the Fermat primes conjecture [in the sense that there are infinitely
many Fermat primes] are all special cases of the Goldbach conjecture.

0. Prologue

Briefly, the immediate part of the generalized Fermat induction is based around
the following simple definitions. Let n be an integer > 2. Then we say that ¢(n) is a

cache of n, if c(n) is an integer of the form 0 < c(n) < n [Example 0. If n = 4,
then c(n) is a cache of n if and only if c(n) € {0, 1, 2, 3}]. Now, for every couple of
integers (n, c(n)) such that n > 2 and 0 < c(n) < n [observe that c(n) is a cache
of n], we define c(n, 2) as follows: c(n, 2) =1 if ¢(n) = 1mod[2]; and c(n, 2) = 0
if c(n) #1mod[2]. It is immediate that c(n, 2) exists and is well defined, since
n>2 [Example 1. If n=9, then c(n, 2)=0 if ¢(n)€{0, 2,4, 6,8} and c(n, 2)=1
if c(n) e {1, 3, 5, 7}]. In this paper, induction will be made on n and c(n, 2) [where

nis an integer > 2 and c(n) is a cache of n].

1. Introduction and Non-standard Definitions

The prime numbers are well known. We say that e is Goldbach, if e is an even
integer >4 and is of the form e= p+q, where (p, q) is a couple of prime(s). The
Goldbach conjecture (see [18] or [17] or [7] or [8] or [9] or [10] or [11] or [12] or
[14] or [1] or [15]) states that every even integer e > 4 is Goldbach. We say that e
is Goldbachian, if e is an even integer > 4, and if every even integer v with
4 <v <e is Goldbach [there is no confusion between Goldbach and Goldbachian,
since Goldbachian clearly implies Goldbach]. A Fermat prime is a prime of the

S
form K = 22" +1, where sis an integer > 0, and a Fermat composite number [or a

S
Fermat composite] is a non-prime number of the form Fg = 22 +1, where s is an

integer > 1. It is known (see [4]) that for every j € {0, 1, 2, 3, 4}, F; isa Fermat
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prime, and it is also known (see [4]) that F5 and Fz; are Fermat composites
[[indeed, F5=641x6700417 and Fg=274177x67280421310721 (see [4])]]. It is

conjectured that there are infinitely many Fermat composite numbers, and it is very
hard to decide whether or not there are infinitely many Fermat primes. A Mersenne

prime is a prime of the form M, = 2™ —1, where m is a prime (see [2] or [3] or [4]
or [6] or [5] or [16]). The Mersenne primes are well known and it is conjectured that
there are infinitely many Mersenne primes (see [5]). The twin primes are defined in
Abstract. Now, for every integer n > 2, we define G'(n), gn, 7(n), t,, tyq,
tn,z’ -7:(“)’ fn: fn,l: fn,2: ]—'C(D(n), Ons On1s On, 2, M(n)’ Mp, Mp 1 and

’

m, » as follows: G'(n)={g’;1<g’'<2n,and g'is Goldbachian}, g, = ma>(( )g ,
) g'eG’'(n

T(n)={t; t is a twin prime and 1 <t < 2n} [note 3 € 7(n)],

t
tn = max t’ tn,l = tlEln' tn’Z = tnrjili

te7(n)

Fn)={F}U{f;1< f <2n,and f is a Fermat prime}

4
[we recall that Fy = 22" +1, and F4 is prime], f, = max f, f,q= ffn,
feF(n) '

1.
fn2 = fn,1 ,

FCO(n) ={Fs}U{0;1< 0 < 2n, and o is a Fermat composite}

5
[we recall that F5 = 22" +1 and Fs is not prime], o, = max 0, 0,7 = 0",
0eFCO(n) '

On,2 = Opi".
M(n)={m;1<m< 2n,and mis a Mersenne prime} [note 3 € M(n)],

m - . -
My = ma>(< )m, My1=my" and my , = m, ri'l. Using the previous denotations,
meM(n ' ' '

let us define

Definition 1.0 (Fundamental 1). For every integer n > 2, we put

D(n! 2) = {tn,z} U {fn,z} U {On,z} U {mn,z}-
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From Definition 1.0 and definition of gy, it becomes immediate to see.

Assertion 1.1. Let n be an integer > 2. Then

(1.1.0) gpy1 < 2n+ 2.
(1.1.1) gp1 < 2n+ 2 ifand only if gp,1 = Op-
(1.1.2) gpy1 = 2n+ 2 ifand only if 2n + 2 is Goldbachian.

(1.1.3) 2n + 2 is Goldbachian if and only if 2n is Goldbachian and 2n + 2 is
Goldbach.

Assertion 1.2. Let n be an integer > 3; consider d, , € D(n, 2), and look at
the couple (d,, dp ;) [Example 0. If d,, , = f, ,, then d, = f, and d;, 1 = ;.
Example 1. If d,, =0y, then d, =0, and d,; =o0,7. Example 2. If
dy o =m,,, then dy =m, and d,; =m, . Example 3. If d, , =t, ,, then

dn = tn and dn,l = tn,l]- Then 0 < dn < dn,l < dn‘z and dn_]_’z < dn‘z.

Now, using the previous definitions, let (Q.) be the following statement:

(Q.). For every integer r > 3, one and only one of the following two properties
w(Q.r) and x(Q.r) are satisfied.

w(Q.r). 2r + 2 is not Goldbach.

x(Q.r). Forevery d; , € D(r, 2), we have d; , > gr,1.

Let us remark that if for every integer r > 3, property x(Q.r) of statement (Q.)

is satisfied, then the twin primes conjecture, the Fermat primes conjecture [in the
sense that there are infinitely many Fermat primes], the Fermat composite numbers
conjecture, and the Mersenne primes conjecture are simultaneously special cases of
the Goldbach conjecture. It is easy to see that property x(Q.r) of statement (Q.) is
satisfied for large values of r. In this paper, using only the immediate part of the
generalized Fermat induction, we prove a theorem which immediately implies the
following result (E.):

(E.). Suppose that statement (Q.) holds. Then the twin primes conjecture, the
Fermat primes conjecture [in the sense that there are infinitely many Fermat primes],
the Fermat composite numbers conjecture, the Mersenne primes conjecture and the
Goldbach conjecture simultaneously hold.
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Result (E.) helps us to explain why to conjecture that the twin primes conjecture,
the Fermat primes conjecture [in the sense that there are infinitely many Fermat
primes], the Fermat composite numbers conjecture, and the Mersenne primes
conjecture are simultaneously special cases of the Goldbach conjecture is not
surprising.

2. The Proof of Theorem which Implies Result (E.)

The following theorem immediately implies result (E.) mentioned above.

Theorem 2.1. Let (n, c(n)) be a couple of integers such that n > 3 and c(n)

be a cache of n. Now, suppose that statement (Q.) holds. We have the following:

(0.) If c(n) = 0mod[2], then 2n + 2 — ¢(n) is Goldbachian.

(1.) If ¢(n)=1mod[2], then for every d, , € D(n, 2), we have d, , >1+
g§1+l - C(n)-
To prove Theorem 2.1, we use

Lemma 2.2. Suppose that n = 3. Then Theorem 2.1 is contented.

Proof. Clearly c(n) € {0, 1, 2}, and it suffices to show that Theorem 2.1 is
satisfied for all c(n) € {0, 1, 2}. So, we have to distinguish two cases [namely, case

where c¢(n) € {0, 2} and case where c(n) = 1].

Case 0. c(n) e {0, 2}. Clearly c(n)=0mod[2] and we have to show that
property (0.) of Theorem 2.1 is satisfied by the couple (n, c(n)). Recall n =3, so

2n + 2 =8 [note that 8 is Goldbachian], and clearly 2n + 2 is Goldbachian; in
particular, 2n + 2 — ¢(n) is Goldbachian [use the definition of Goldbachian and note

(by the previous) that 2n+ 2 is Goldbachian, n =3 and c(n) {0, 2}]. So,
property (0.) of Theorem 2.1 is satisfied by the couple (n, c(n)), and Theorem 2.1 is
contented. Case O follows.

Case 1. ¢(n) =1. Clearly c(n)=1mod[2] and we have to show that property
(1.) of Theorem 2.1 is satisfied by the couple (n, c(n)). Since n =3, clearly

’ r t
Oh1=04=8 T(N)=1{235}, ty =5 ty; =5 ty, =t} F(n)=1{5 s}
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4

[where f, =27 +1], fy = f4, oy =4, fop=f " [where f,; = f,%],
5

FCO(n) = {f5} [where fs =22 +1], o, = fs, Op1 = f5f5, Ohp = or?f‘il [where op, 1

= f5f5], M(n)=1{3}, m; =3, m,,= 3% =27 and Mp2 = 2727 clearly D(n, 2) =
{tn.2, Tn.2, 0n 2, M, 2}, and using the previous equalities, it becomes immediate to
see that for every d, , € D(n, 2), we have d , > gp,g; in particular, for every
dn 2 € D(n, 2), we have d, 5, >1+ gp,q —c(n). So, property (1.) of Theorem 2.1
is satisfied by the couple (n, c(n)), and Theorem 2.1 is contented. Case 1 follows,
and Lemma 2.2 immediately follows. 0

Using Lemma 2.2 and the meaning of Theorem 2.1, it becomes easy to see:

Remark 0. If Theorem 2.1 is false, then there exists (n, c(n)) such that

(n, c(n)) is a counter-example with n minimum and c(n, 2) maximum.

Consequence 0 (Application of Remark 0 and Lemma 2.2). Suppose that
Theorem 2.1 is false, and let (n, ¢(n)) be a counter-example with n minimum and

c(n, 2) maximum. Then n > 4.

Proof. Clearly n > 4 [use Lemma 2.2]. [

Remark 1. Suppose that Theorem 2.1 is false, and let (n, c(n)) be a counter-
example with n minimum and c(n, 2) maximum. Then we have the following two
simple properties (R.1.0) and (R.1.1):

(R.1.0) [The use of the minimality of n]. Put u=n-1, then for every

dy,2 € D(u), we have dy » > (1.

Indeed, let u=n-1 and let c(u)= j, where j e {0,1}; now consider the
couple (u, c(u)) [note that u < n, u > 3 (use Consequence 0), c(u) is a cache of u,
and the couple (u, c(u)) clearly exists]. Then by the minimality of n, the couple
(u, c(u)) is not a counter-example of Theorem 2.1. Clearly, c(u) = j mod[2]
[because c(u) = j, where j € {0, 1}], and therefore, property (j.) of Theorem 2.1 is
satisfied by the couple (u, c(u)) [[Example 1.0. If j=0 (ie., if c(u)=j=0),
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then property (0.) of Theorem 2.1 is satisfied by the couple (u, c(u)); so 2u + 2 is
Goldbachian. Example 1.1. If j=1 (i.e., if c(u)= j =1), then property (1.) of
Theorem 2.1 is satisfied by the couple (u, c(u)); so, for every d, , € D(u), we

have dy 5 > 0]l

(R.1.1) [The use of the maximality of c(n, 2): the immediate part of the

generalized Fermat induction]. If c(n) = 0mod([2], then for every d, , € D(n, 2),

we have dp 2 > gpyg-

Indeed, if c(n)=0mod[2], then clearly c(n, 2) =0. Now, let the couple
(n, y(n)) such that y(n) =1. Clearly y(n) is a cache of n such that y(n, 2) =1
[note that n > 4 (use Consequence 0)]. Clearly y(n, 2) > c(n, 2), where y(n) and
c(n) are two caches of n [since c(n, 2) = 0 and y(n, 2) =1, by the previous]; then
by the maximality of c(n, 2), the couple (n, y(n)) is not a counter-example of
Theorem 2.1 [because (n, c(n)) is a counter-example of Theorem 2.1 such that n is
minimum and c(n, 2) is maximum, and the couple (n, y(n)) is of the form
y(n, 2) > ¢(n, 2), where y(n) and c(n) are two caches]. Note that y(n) = 1mod[2]
[since y(n) =1, by the definition of y(n)], and therefore, property (1.) of Theorem
2.1 is satisfied by the couple (n,y(n)); so, for every d,,eD(n,2), we have
dn,2 >1+9p,1 - Y(n), and clearly, for every d, , € D(n, 2), we have d,, , > gpyg
[because y(n) =1].

Consequence 1 (Application of Remark 1). Suppose that Theorem 2.1 is false,
and let (n, c(n)) be a counter-example with n minimum and c(n, 2) maximum. Then

we have the following four properties:

(c.1.0) 2n is Goldbachian [i.e., g, = 2n].

(c.1.1) Forevery d, 3, € D(n -1, 2), we have d,_; , > gp.
(c.1.2) Forevery d, , € D(n, 2), we have d;, , > gp.
(c.1.3) If c(n) = 0mod[2], then 2n + 2 is Goldbach.

Proof. Property (c.1.0) is easy [indeed consider the couple (u, c(u)) such that
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u=n-1and c(u) =0, and apply Example 1.0 of property (R.1.0) of Remark 1];
property (c.1.1) is also easy [consider the couple (u, c(u)) such that u = n-1 and
c(u) =1, and apply Example 1.1 of property (R.1.0) of Remark 1]; and property

(c.1.2) is an immediate consequence of property (c.1.1) via Assertion 1.2 [indeed,
note that d,_; , < dy », by using Assertion 1.2]. Now, to prove Consequence 1, it

suffices to show property (c.1.3). Fact: 2n + 2 is Goldbach. Indeed, observing [by
using property (R.1.1) of Remark 1] that for every d,, e D(n, 2), we have

dy 2 > Opy1, Clearly property x(Q.n) of statement (Q.) is satisfied, and recalling
that statement (Q.) holds, then we immediately deduce that property w(Q.n) of

statement (Q.) is not satisfied; therefore, 2n + 2 is Goldbach. 0

Proof of Theorem 2.1. We reason by reduction to absurd. Suppose that
Theorem 2.1 is false and let (n, c(n)) be a counter-example with n minimum and

c(n, 2) maximum [such a couple exists, by Remark 0]. Then we observe the

following:
Observation 0. c¢(n) # 0 mod[2].
Otherwise,
c(n) = 0mod[2] (0.0
and clearly

2n + 2 —c(n) is not Goldbachian (0.1)

[indeed note c(n) = 0 mod[2] [by congruence (0.0)], and in particular, property (0.)
of Theorem 2.1 is not satisfied by the couple (n, ¢(n)); so 2n+ 2 —c¢(n) is not

Goldbachian]. (0.1) immediately implies that

2n + 2 is not Goldbachian 0.2)

[indeed, recalling that c(n) is a cache of n such that c(n)=0mod[2] [by
congruence (0.0)], clearly c¢(n)>0 and 2n+ 2 —c(n) > 4 [note that n > 4, by

Consequence 0]; now, using the previous and the definition of Goldbachian via
(0.1), we immediately deduce that 2n + 2 is not Goldbachian]. Now, we have the
following two simple Facts:
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Fact 0.0.0. gpn,1 = gn. Indeed, observing [via (0.2)] that 2n+2 is not
Goldbachian, clearly gp,1 < 2n + 2 [use the definition of g4 Vvia the definition of
gn, and observe (by the previous) that 2n + 2 is not Goldbachian] and property
(1.1.1) of Assertion 1.1 implies that gp,1 = 9p-

Fact 0.0.1. 2n + 2 is not Goldbach. Otherwise, observing [via property (c.1.0)
of Consequence 1] that 2n is Goldbachian, then using the previous, it immediately
follows that 2n + 2 is Goldbach and 2n is Goldbachian; consequently, 2n + 2 is
Goldbachian [using the fact that 2n+2 is Goldbach and 2n is Goldbachian and

apply property (1.1.3) of Assertion 1.1], and this contradicts (0.2). The Fact 0.0.1
follows.

These two simple Facts made, observing [by Fact 0.0.1] that 2n + 2 is not
Goldbach, clearly property w(Q.n) of statement (Q.) is satisfied, and recalling that
statement (Q.) holds, then we immediately deduce that property x(Q.n) of statement
(Q.) is not satisfied; therefore,

there exists d, , € D(n, 2) such that d, » < gpyg. (0.0.2)
Now, using Fact 0.0.0, then (0.0.2) immediately implies that there exists
dn2 € D(n, 2) such that d,, < gy, and this contradicts property (c.1.2) of
Consequence 1. Observation 0 follows.
Observation 0 implies that
c(n) = 1mod|[2] (1.0)
and clearly

there exists d, , € D(n, 2) such that d, , < gp4q (1.2)

[indeed note c¢(n) = 1mod[2] (by congruence (1.0)), and, in particular, property (1.)
of Theorem 2.1 is not satisfied by the couple (n, c(n)); so there exists
dn2 € D(n, 2) such that d, , <1+ gp, —c(n), and consequently, there exists
dn 2 € D(n, 2) such that d, , < gp,;, because c¢(n)>1 (since c(n)=1mod[2]
[by congruence (1.0)], and c(n) is a cache of n)]. (1.1) clearly says that property
x(Q.n) of statement (Q.) is not satisfied, and recalling that statement (Q.) holds, then
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we immediately deduce that property w(Q.n) of statement (Q.) is satisfied; therefore,

2n + 2 is not Goldbach. (1.2)

(1.2) immediately implies that gp,q1 < 2n+2; now, using property (1.1.1) of
Assertion 1.1 and the previous inequality, we immediately deduce that

Un+1 = On- (1.3)

Now, using equality (1.3), then (1.1) clearly says that there exists d, ;e

D(n, 2) such that d, , < gp, and this contradicts property (c.1.2) of Consequence

1. Theorem 2.1 follows. 0

Remark 2. Note that to prove Theorem 2.1, we consider a couple (n, c(n))

such that (n, c(n)) is a counter-example with n minimum and c(n, 2) maximum. In

properties (c.1.0), (c.1.1) and (c.1.2) of Consequence 1 (via property (R.1.0) of
Remark 1), the minimality of n is used; and in property (c.1.3) of Consequence 1
(via property (R.1.1) of Remark 1), the maximality of c(n, 2) is used. Consequence

1 helps us to give a simple and detailed proof of Theorem 2.1.

Corollary 2.3. Suppose that statement (Q.) holds. Then we have the following
four properties:

(2.3.0). For every integer n > 1, 2n + 2 is Goldbachian [ie., gp.1 = 2n + 2],

(2.3.1). The Goldbach conjecture holds.

(2.3.2). For every integer n >3, and for every d,, € D(n, 2), we have
dp o >2n+2.

(2.3.3). The twin primes, the Fermat primes, the Fermat composite numbers,
and the Mersenne primes are all infinite.

Proof. (2.3.0). It is immediate if n e {1, 2}. If n > 3, then consider the couple
(n, ¢(n)) with c(n) = 0. The couple (n, c(n)) is of the form 0 < ¢(n) < n, where
n >3, c(n)=0mod[2], and c(n) is a cache of n. Then property (0.) of Theorem 2.1
is satisfied by the couple (n, c(n)). So, 2n + 2 is Goldbachian [because c(n) = 0],
and consequently, gn,1 = 2n+ 2.

(2.3.1). Indeed, the Goldbach conjecture immediately follows, by using property
(2.3.0).
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(2.3.2). Let the couple (n, c(n)) be such that c(n) =1. Then the couple
(n, c(n)) is of the form 0 < ¢(n) < n, where n >3, c¢(n) =1mod[2], and c(n) isa
cache of n. Then property (1.) of Theorem 2.1 is satisfied by the couple (n, c(n)).
So, for every d,,eD(n, 2), we have d,,>gp;; [becausec(n)=1]; now,
observing [by property (2.3.0)] that gn,q = 2n+ 2, then we immediately deduce

that for every d, , € D(n, 2), we have d, , > 2n + 2.

(2.3.3). Indeed, the twin primes, the Fermat primes, the Fermat composite
numbers, and the Mersenne primes are all infinite, by using property (2.3.2) and the
definition of D(n, 2). 0

Using property (2.3.1) and property (2.3.3) of Corollary 2.3, then the following:

Result (E.). Suppose that statement (Q.) holds. Then the Goldbach conjecture
holds, and moreover, the twin primes, the Fermat primes, the Fermat composite
numbers, and the Mersenne primes are all infinite.

Conjecture 0. Statement (Q.) holds.

Epilogue. To conjecture that the twin primes conjecture, the Fermat primes
conjecture [in the sense that there are infinitely many Fermat primes], the Fermat
composite numbers conjecture, and the Mersenne primes conjecture are
consequences of the Goldbach conjecture is not surprising. Indeed, let (Q’.) be the
following statement:

(Q’.). For every integer r > 3, at most one of the following two properties
w(Q’.r) and x(Q’.r) holds.

w(Q’.r). 2r + 2 is not Goldbach.

x(P.r). Forevery d, , € D(n, 2), we have d; 5 > gr,3.

Note that statement (Q’.), somehow, resembles to statement (Q.). More
precisely, statement (Q.) implies statement (Q’.) [Proof. In particular, the Goldbach

conjecture holds [use property (2.3.1) of Corollary 2.3]; consequently, statement
(Q’.) holds [use definition of statement (Q’.) and the previous].

Conjecture 1. Statement (Q.) and statement (Q’.) are equivalent.

Conjecture 1 implies that the twin primes, the Fermat primes conjecture [in the
sense that there are infinitely many Fermat primes], the Fermat composite numbers
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conjecture, and the Mersenne primes conjecture are consequences of the Goldbach
conjecture.

Proof. Suppose that Conjecture 1 holds. If the Goldbach conjecture holds, then
clearly statement (Q’.) holds; observing that statement (Q’.) and statement (Q.) are
equivalent, then (Q.) holds, and, result (E.) implies that the twin primes, the Fermat
primes, the Fermat composite numbers and the Mersenne primes are all infinite. ]

Conjecture 2. Suppose that statement (Q’.) holds. Then the Goldbach
conjecture holds, and moreover, the twin primes, the Fermat primes, the Fermat
composite numbers and the Mersenne primes are all infinite.

Conjecture 2 immediately implies that the twin primes conjecture, the Fermat
primes conjecture [in the sense that there are infinitely many Fermat primes], the
Fermat composite numbers conjecture, and the Mersenne primes conjecture are
consequences of the Goldbach conjecture.

Proof. Suppose that Conjecture 2 holds. If the Goldbach conjecture holds, then
clearly statement (Q’.) holds, and in particular, the twin primes, the Fermat primes,
the Fermat composite numbers, and the Mersenne primes are all infinite. 0

Conjecture 3. For every integer r > 3, property x(Q’.r) of statement (Q’.)
holds [note that property x(Q’.r) of statement (Q’.) is exactly property x(Q.r) of
statement (Q.); moreover, it is immediate to see that property x(Q’.r) of statement
(Q’.) is satisfied for large values of r].

Conjecture 3 also implies that the twin primes conjecture, the Fermat primes
conjecture [in the sense that there are infinitely many Fermat primes], the Fermat
composite numbers conjecture, and the Mersenne primes conjecture are
consequences of the Goldbach conjecture.

Proof. Suppose that Conjecture 3 holds. If the Goldbach conjecture holds, then
clearly, gp,1 = 2n + 2, and so for every d,, , € D(n, 2), we have

dn,2 > g;H—l > 2N. (30)

Observing that (3.0) holds for every integer n > 3, then, in particular, it results
that the twin primes, the Fermat primes, the Fermat composite numbers, and the
Mersenne primes are all infinite. 0



RUNNING WITH THE TWIN PRIMES ... 265

Now, using the previous three conjectures, it becomes natural and not surprising

to the following conjecture:

Conjecture 4. The twin primes conjecture, the Fermat primes conjecture [in the

sense that there are infinitely many Fermat primes], the Fermat composite numbers
conjecture, and the Mersenne primes conjecture are consequences of the Goldbach
conjecture.

0<

From Conjecture 4, the following immediately comes:
Conjecture 5. There are infinitely many Fermat primes.

Conjecture 6. Let (n, b(n)) be a couple of integers such that n >4 and

b(n) < n. Then we have the following:

(0.) If b(n) = 0mod[4]; then 2n + 2 —b(n) is Goldbachian.

(1) If b(n)=1mod[4]; then t, , >1+ gp,y —b(n) and f, 5 >1+gpyg —b(n).
(2.) If b(n) = 2mod[4]; then oy , > 2+ gp,g — b(n).

(3.) If b(n) = 3mod[4]; then m, , >3+ gp,1 —b(n).

It is easy to see that Conjecture 6 simultaneously implies that: not only the

Goldbach conjecture holds, but the twin primes, the Fermat primes, the Fermat
composite numbers, and the Mersenne primes are all infinite, and to attack this
conjecture, we must consider the generalized Fermat induction.
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