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Abstract 

In this paper, we introduce the generalized Cesáro vector-valued sequence 
space ( )nn qpXces ,,  equipped with the Luxemburg norm. Further, we 

show some topological properties of this space with respect to the 
Luxemburg norm. Finally, it is proved that the space ( )nn qpXces ,,  has 

Kadec-Klee ( )H  property and we also give a counterexample concerning 

not rotundity of the vector-valued space ( ).,, nn qpXces  

1. Introduction 

Recently there has been a lot of interest in investigating geometric properties of 
sequence spaces besides topological and some other usual properties. In the 
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literature, there are many papers concerning the geometric properties of different 
sequence spaces. For example, in [11], Mursaleen et al. studied some geometric 
properties of normed Euler sequence space. Karakaya [5] defined a new sequence 
space involving lacunary sequence space equipped with Luxemburg norm and 
studied Kadec-Klee (H), rotund (R) properties of this space. In addition, some 
related papers on this topic can be found in [1], [4], [13], [15] and [19]. 

Especially, some geometric properties of the Cesáro sequence spaces have been 
studied by many authors including Cui and Hudzik [2], Liu et al. [10], Cui et al. [3]. 

Shiue [16] first defined Cesáro sequence space with norm. In a recent paper, 
Suantai [17] generalized the normed Cesáro sequence spaces to the paranormed 
sequence spaces by making use of Köthe sequence spaces. He showed that the 
Cesáro sequence space ( )pces  equipped with Luxemburg norm has rotund ( )R  and 

Kadec-Klee ( )H  properties. Also, in [14], Sanhan and Suantai showed that the 

Cesáro sequence space ( ),pces  where the sum runs over ,22 1+<≤ rr k  equipped 

with Luxemburg norm has property ( )H  but it is not rotund. 

In [6], Khan and Rahman introduced sequence space ( ) ( )[ ]., nn qpces  Afterwards 

Mursaleen and Khan [12] generalized this space to the vector-valued sequence space 
and studied dual of this space. In the space ( ) ( )[ ],, nn qpces  if we specialize 1=nq  

for all ,Nn ∈  then we get ( ) ( )[ ] ( )pcesqpces nn =,  defined in [14]. 

In this work, our purpose is to generalize paranormed sequence space 
( ) ( )[ ]nn qpces ,  to vector-valued space ( )nn qpXces ,,  and to investigate some 

topological properties and geometrical properties as Kadec-Klee (H) and rotund (R) 
according to Luxemburg norm of this space. 

2. Preliminaries and Notations 

Let ( )⋅,X  be a Banach space with a scalar field K and the space of all 

sequences in X be denoted by ( ).Xw  When R=X  or ,C  the corresponding spaces 

are written as w. 

Let ( )⋅,X  be a real Banach space and ( )XB  (resp. ( ))XS  be the closed unit 

ball (resp. unit sphere) of X. 

For any sequence ( )nx  in X such that 1→nx  as ,∞→n  if the weak 
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convergence of ( )nx  to x ( )xx
w

n →write  implies that 0→− xxn  as ,∞→n  

then a point ( )XSx ∈  is said to be an H-point of ( ).XB  If every point of ( )XS  is 

an H-point of ( ),XB  then it is said to have H-property. Briefly, X is said to have the 

H-property, if every weakly convergent sequence on the unit sphere is convergent in 
norm. A point ( )XSz ∈  is an extreme point of ( ),XB  if for any ( ),, XSyx ∈  

2
yxz +

=  implies .yx =  A Banach space X is rotund (R) if every point of ( )XS  

is an extreme point of ( ).XB  

Let ( )nq  and ( )np  with 0inf >rp  be sequences of the positive real numbers. 

Now, we shall define generalized vector-valued sequence spaces ( )nn qpXces ,,  

which is equivalent to the space ( )qpXces ,,  defined in [12] as follows: 

( ) ( ) ( ) ,1:,,
0 2 











∞<









== ∑ ∑

∞

=r

p

r
kknn

r

r
kxq

Q
xxqpXces  

where 
121222 1−+ ++++= rrrr qqqQ  and ∑

r
 denotes summation over the 

range .22 1+<≤ rr k  

It is trivial that the sequence space ( )nn qpXces ,,  may be reduced to some 

new sequence spaces in the special cases of X, ( )np  and ( ),nq  for all .N∈n  For 

instance, the sequence space ( )nn qpXces ,,  corresponds to the sequence space 

( ) ( )[ ]nn qpces ,  introduced by Khan and Rahman [6] in the case C=X  or R  in 

(2.1). Also if ,1=nq  for all ,N∈n  then the space ( )nn qpXces ,,  reduces to 

( )npXces ,  which is equivalent to the space ( )pXces ,  defined by [18]. Besides 

this, if 1=nq  and ,ppn =  for all ,N∈n  then we can write the space ( )Xces p  in 

place of the space ( ),,, nn qpXces  where 

( ) ( ) ( ) .2:
0 











∞<









== ∑ ∑

∞

=

−

r

p

r

r
kp kxxxXces  

The sequence space ( )nn qpXces ,,  has paranorm defined by 
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 ( ) ( ) ,1
1

0 2

M

r

p

r
k

r

r
kxq

Q
xh

























= ∑ ∑

∞

=

 (2.1) 

where ∞<= rr pH sup  and ( ).,1max HM =  By using standard techniques, it is 

easily verified that ( )nn qpXces ,,  is paranormed space with (2.1). 

If the functional σ on ( )Xw  has the following properties, it is called modular 

on ( ):Xw  

  (i) ( ) ;00 =⇔=σ xx  

 (ii) ( ) ( ) F∈α∀σ=ασ ,xx  with ,1=α  for all ( );Xwx ∈  

(iii) ( ) ( ) ( )yxyx σ+σ≤β+ασ  if  α, ,0≥β  ,1=β+α  for all ( ),, Xwyx ∈  if 

the property (iii) is replaced by 

(iv) ( ) ( ) ( ),yxyx βσ+ασ≤β+ασ  for all +∈βα R,  with ;1=β+α  then we 

say that σ is a convex modular. 

We can introduce the modular σ on the vector-valued sequence space 
( )nn qpXces ,,  as follows: 

( ) [ ],,0,,: ∞→σ nn qpXces  

where ( ) ( ) .1

0 2
∑ ∑
∞

=








=σ

r

p

r
k

r

r
kxqQx  For all ( ),,, nn qpXcesx ∈  we define a 

norm as follows: 

.1:0inf




 ≤






τ

σ>τ= xx L  

The L⋅  is called the Luxemburg norm on the sequence space ( ).,, nn qpXces  

Note that Luxemburg norm on the sequence space ( )nn qpXces ,,  is defined as 

follows: 

( ) .11:0inf
0 2 











≤









τ

=





τ

σ>τ= ∑ ∑
∞

=r

p

r
kL

r

r

kxqQ
xx  
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Let us give an inequality that we will require throughout this paper: Let 
( )rpp =  be a bounded sequence of positive real numbers. Then we have 

[ ],rrr p
r

p
r

p
rr baCba +≤+  

where ( ),2,1max 1−= HC  .sup rr pH =  

3. Main Results 

We shall give some propositions which we need in the sequel of this paper. 

Proposition 3.1. The functional σ is a convex modular on ( ).,, nn qpXces  

Proof. Let ( ).,,, nn qpXcesyx ∈  It is obvious that; 

  (i) ( ) 00 =⇔=σ xx  and; 

 (ii) ( ) ( ),xx σ=λσ  for all scalar λ with .1=λ  

( ) ( )∑ ∑
∞

=










λ=λσ

0 2

1

r

p

r
k

r

r
kxq

Q
x  

( )∑ ∑
∞

=










λ=

0 2

1

r

p

r
k

p
r

r
r kxq

Q
 

( )∑ ∑
∞

=










=

0 2

1

r

p

r
k

r

r
kxq

Q
 

( ).xσ=  

(iii) For 0, ≥βλ  with ,1=β+λ  by the convexity ,rptt →  for every 

,N∈r  we have 

( ) ( ) ( )∑ ∑
∞

=










β+λ=β+λσ

0 2

1

r

p

r
k

r

r
xykxq

Q
yx  

( ) ( )∑ ∑∑ ∑
∞

=

∞

=










β+










λ≤

0 20 2

11

r

p

r
k

p

r

p

r
k

p
r

r
r

r

r
r kyqQkxqQ  

( ) ( ).yx βσ+λσ≤  � 
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Proposition 3.2. (i) If  ,1<Lx  then ( ) ;Lxx ≤σ  

(ii) 1=Lx  if and only if ( ) .1=σ x  

Proof. It is provided with standard techniques as [14]. � 

Proposition 3.3. For ( ),,, nn qpXcesx ∈  we have 

 (i) if 10 << a  and ,ax L >  then ( ) ,Hax >σ  where ;sup r
r

pH =  

(ii) if 1≥a  and ,ax L <  then ( ) .Hax <σ  

Proof. It is provided with standard techniques as [14]. � 

Proposition 3.4. Let ( )nx  be a sequence in ( ).,, nn qpXces  

 (i) If ,1lim =
∞→ Lnn

x  then ( ) ;1lim =σ
∞→ nn

x  

(ii) If ( ) ,0lim =σ
∞→ nn

x  then .0lim =
∞→ Lnn

x  

Proof. (i) Suppose that .1lim =
∞→ Lnn

x  Let ( ).1,0∈ε  Then there exists 0n  

such that ,11 ε+<<ε− Lnx  for all .0nn ≥  Since ( ) ( )HLn
H x ε+<<ε− 11  for 

all ,0nn ≥  by Proposition 3.3(i) and (ii), we have ( ) ( )Hnx ε−≥σ 1  and 

( ) ( ) .1 H
nx ε−≤σ  Therefore, ( ) .1lim =σ

∞→ nn
x  

(ii) Suppose that .0Lnx  Then there are an ( )1,0∈ε  and a subsequence 

( )knx  of ( )nx  such that ,ε>Lnkx  for all .N∈k  By Proposition 3.3(i), we 

obtain that ( ) ,H
nkx ε>σ  for all .N∈k  This implies that ( ) 0knxσ  as .∞→n  

Hence ( ) .0nxσ  � 

We now show that the ( )nn qpXces ,,  is a Banach space with respect to 

Luxemburg norm. 

Theorem 3.5. The space ( )nn qpXces ,,  is a Banach space with respect to 

Luxemburg norm defined by 

.1:0inf




 ≤






τ

σ>τ= xx L  
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Proof. We show that every Cauchy sequence in ( )nn qpXces ,,  is convergent 

according to the Luxemburg norm. Let ( ( ))kxn  be a Cauchy sequence in 

( )nn qpXces ,,  and ( ).1,0∈ε  Thus there exists 0n  such that ,M
L

mn xx ε<−  

for all m, .0nn ≥  By Proposition 3.2(i), we obtain 

 ( ) ,M
L

mnmn xxxx ε<−<−σ  (3.1) 

for all n, ,0nm ≥  that is, 

( ) ( )∑ ∑
∞

=

ε<









−

0 2
,1

r

M
p

r

mn
k

r

r
kxkxqQ  

for m, .0nn ≥  For fixed k, we get that 

( ) ( ) .ε<− kxkx mn  

Hence, we obtain that the sequence ( ( ))kxn  is a Cauchy sequence in .R  Since 

R  is complete, ( ) ( )kxkxm →  as .∞→m  Therefore, for fixed k, 

( ) ( ) ,ε<− kxkxn  

for all .0nn ≥  Now, we will show that the sequence ( )( )kx  is the element of 

( ).,, nn qpXces  From inequality (3.1), we can write 

( ) ( ) ,1

0 2
∑ ∑
∞

=

ε<









−

r

p

r

mn
k

r

r
kxkxq

Q
 

for all ., 0nnm ≥  For every ,N∈k  we have ( ) ( ),kxkxm →  so we obtain that 

( ) ( )xxxx nmn −σ→−σ  

as .∞→m  Since for all ,0nn ≥  

( ) ( ) ( ) ( )∑ ∑ ∑∑
∞

=

∞

=










−→










−

0 0 22

11

r r

p

r

n
k

p

r

mn
k

r

r

r

r
kxkxq

Q
kxkxq

Q
 

as ,∞→m  by (3.1), we have ( ) ,ε<−<−σ L
nn xxxx  for all .0nn ≥  This 
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means that xxn →  as .∞→n  So we have ( ) ( ).,,0 nnn qpXcesxx ∈−  Since 

( )nn qpXces ,,  is a linear space, we have ( ) ( ).,,00 nnnn qpXcesxxxx ∈−−=  

Therefore, the vector-valued sequence space ( )nn qpXces ,,  is a Banach space with 

respect to Luxemburg norm. This completes the proof. � 

Proposition 3.6. Let ( )nn qpXcesx ,,∈  and ( ) ( ).,, nnn qpXcesx ⊆  If ( ) →σ nx  

( )xσ  as ∞→n  and ( ) ( )kxkxn →  as ,∞→n  for all ,N∈k  then xxn →  as 

.∞→n  

Proof. Let .0>ε  Since ( ) ( )∑ ∑
∞

=
∞<








=σ

0 2
,1

r

p

r
k

r

r
kxqQx  there exists N∈k  

such that 

 ( )∑ ∑
∞

+=

ε<










1 20

,
2
1

3
1

rr
M

p

r
k

r

r
kxqQ  (3.2) 

where { },2,1max 1−= HM  .sup r
r

pH =  

Since ( ) ( ) ( ) ( )∑ ∑ ∑∑
= =









−σ→








−σ

0 0

0 0 22

11r

r

r

r

p

r
k

p

r
nkn

r

r

r

r
kxq

Q
xkxq

Q
x  

as ∞→n  and ( ) ( )kxkxn →  as ,∞→n  for all ,N∈k  there exists N∈0n  such 

that 

( ) ( ) ,
2
1

3
11

1 1 220 0
M

rr rr

p

r
k

p

r
nk

r

r

r

r
kxq

Q
kxq

Q
ε<










−










∑ ∑ ∑∑
∞

+=

∞

+=

 (3.3) 

for all .0nn ≥  Also, since ( ) ( )kxkxn →  as ,∞→n  for all ,N∈k  we have 

( ) ( )xxn σ→σ  as .∞→n  Hence, for all ,0nn ≥  we have ( ) ( ) .ε<− kxkxn  As 

a result, for all ,0nn ≥  we have 

 ( ) ( )∑ ∑
∞

=

ε<









−

0 2
.

3
1

r

p

r
nk

r

r
kxkxq

Q
 (3.4) 

Then, from (3.2), (3.3) and (3.4) it follows that for ,0nn ≥  
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( ) ( ) ( )∑ ∑
∞

=










−=−σ

0 2

1

r

p

r
nkn

r

r
kxkxq

Q
xx  

( ) ( )∑ ∑
=











−=

0

0 2

1
r

r

p

r
nk

r

r
kxkxq

Q
 

( ) ( )∑ ∑
∞

+=










−+

1 20

1

rr

p

r
nk

r

r
kxkxq

Q
 

( )

















+ε< ∑ ∑

∞

+= 1 20

12
3

rr

p

r
nk

M
r

r
kxq

Q
 

( )

















+ ∑ ∑

∞

+= 1 20

1

rr

p

r
k

r

r
kxq

Q
 

( ) ( )

















−σ+ε= ∑ ∑

=

0

0 2
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3

r

r
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r
nkn
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r
kxq

Q
x  

( )


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

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




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+= 1 20

1

rr

p

r
k

r

r
kxq
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
















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r
kxq

Q
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( )

















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+= 1 20

1
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3
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r
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( )












 ε+









+ε= ∑ ∑

∞

+= 1 20
2
1

3
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3
rr
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M
r

r
kxq
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.
333

ε=ε+ε+ε<  

This shows that ( ) 0→−σ xxn  as .∞→n  Hence, by Proposition 3.4(ii), we have 

0→− Ln xx  as .∞→n  � 

Now, we shall give main results of this paper involving geometric properties of 
the space ( ).,, nn qpXces  

Theorem 3.7. The space ( )nn qpXces ,,  has the property Kadec-Klee (H-

property). 

Proof. Let ( )( )nn qpXcesSx ,,∈  and ( ) ( )( )nnn qpXcesBx ,,⊆  such that 

1=→ LLn xx  and xx
w

n →  as .∞→n  From Proposition 3.2(ii), we have 

( ) ,1=σ x  so it follows from Proposition 3.4(i) that ( ) ( )xxn σ→σ  as .∞→n  Since 

xx
w

n →  and the ith-coordinate mapping ( ) R→π nni qpXces ,,:  defined by 

( ) ( )kxkk →π  is continuous linear function on ( ),,, nn qpXces  it follows that 

( ) ( )kxkxn →  as ,∞→n  for all .N∈k  Thus we obtain by Proposition 3.6 that 

xxn →  as .∞→n  � 

Theorem 3.8. Let ( )kpp =  be a bounded sequence of real numbers such that 

,1>kp  for all .N∈k  Then the space ( )nn qpXces ,,  is not rotund (R). 

Proof. For the proof, we will give a counterexample. 

Let Xz ∈  be such that .1=z  Take ,
4
3=kq  for all ,N∈k  ( ,0,2,0 zx =  

)...,0  and ( )....,0,,,0 zzy =  Then ( ) ( ) 1=σ=σ yx  and .1
2

=





 +

σ
yx  This shows 

that ( )nn qpXces ,,  is not rotund. � 

Remark 3.9. If we take 1=kq  in the space ( ),,, nn qpXces  then we obtain 

the vector-valued sequence space ( )., pXces  Let 1>kp  and .1=kq  We choose 
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( )...,0,0,0,1=kx  and ( )....,0,1,1,0=ky  Then it can be seen that ( ) =





 +

σ=σ 2
yxx  

( ) ,1=σ y  where 

( ) ∑ ∑
∞

=










=σ

0
.

2
1

r

p

r
kr

r

xx  

Therefore, the space ( )pXces ,  is not rotund for .1=kq  Also, if C=X  or R  and 

,1=kq  for all ,N∈k  then we get the sequence space ( )pces  defined by [14]. They 

showed that this space is not rotund. 
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