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Abstract

An infinite crack terminates at the side of a central crack-breaker hole and
another one of finite length originates at the other side of the hole thereby
forming interfacial cracks in an infinite elastic bimaterial body. Mode 111
fields near the crack tip, which may be of theoretical and engineering
importance, are obtained in terms of the elliptic integral of the first kind
and shown to depend on known fields for a tunnel crack of the same
radius as the hole with similar load sites.

1. Introduction

The central circular hole containing finite cracks in a homogeneous material has
been studied by many authors; see for example [4-6]. The non-homogeneous case, in
the form studied here, appears new. The bimaterial investigated is an infinite body
containing a central crack-breaker hole of radius r = a into which an infinite crack

located along 6 = £w, r > a, terminated. A crack of length b — a originates on the
other side of the hole along © = 0. The matrix firmly bounded along its interface
anti-plane tractions are prescribed so that Q; actson r =a, 0 <6 < m and Q, on
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r=a, —n<0<0 (Figure 1). The subscript 1 refers to material 1 while 2 refers to

material 2.
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Figure 1. A sketch of the problem.

2. Basic Equations

The only non-vanishing components of displacement, Wj(r, 0), j =1, 2 satisfy
the boundary value problem:

{i 10 1 &°

ar2+?ar+r—269—2jo(r,e):O, r>a, —T[SeSTC, j:1,2, (1)

Owiae)=U 0<o<n(j=1), —n<0<0 (j=2) @)
or J “J

O Wm0 W ; ;
i j(r,£m) =0, r>a; 5 (r,0)=0, a<r<h. (3)

Polar stresses are related to displacements through
AL P W;
oz (r, 0) = Tw(r, 0) o (r, 0) = pj 7(", 0). 4)

Continuity conditions satisfied by the fields are:

Wl(r, 0) ZWz(r, 0), r=> b, Glez(r, 0) = Gzez(r, O), r >b. (5)
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3. Transformation of the Problem

The problem is transformed by using the holomorphic mapping function

f(Z)=%(§+E)—6, z=re', (6)
where
5:%(9+%) (7)
Let
f(z)=Ref +ilmf = pe',

where Re and Im denote the real and imaginary parts, respectively.

Along the boundary

o0 . o _ —sin®
%(r,ie)io, ﬁ(a, 6)—m (8)

Since b > a for § > 1, we see that p(a, 6) = & — cos0 and so, for j =1, 2,

(a ¢) ( 1)J—V1(p6)
ap

The conformality property W;(r, 8) = W;(p, ¢) yields

, 0-1<p<d+]l —-nm<O<m

WJ J
(a, 6)— (p,_n) (a 0), -m<0<m
The mapping therefore reformulates the task to a search for W (p, ¢) in the problem:

[az 10 1 82

—+=——+—=—|Wi(p, 9) =0, 20, —r<¢<m j=12 (9
o? F o7 p28¢2j i 9) P ¢ i ©)

Wi(p, 0) =W, (p, 0), p > OLH%WM M% (.0) p=0,  (10)

My oyt s a5
o ”J \/1 (p - 5)?

=0 otherwise. (11b)



156 JAMES N. NNADI

The behaviours of the stresses are
Sipz(P 9) = oy (P, ¢) = 0(p~2) as p—0
= O(pfl/z) as p — o.

The Mellin transformation applied to (9)-(11) yields

d? o)~ ~ 1 1.
(?JFSJWJ(S'(I))_O’ —§<Res<§, ]=1 2,

(s, 0) =Wa(s, O) 1y ‘gt (5, 0) = i 2 (5, 0),
W i1y _ (_1yi aQ :
& (0 = (0 i),

where

S o0+1 dep
h(a, b; s) = J‘a_l——l o 6)2 )

and the Mellin transformation is defined by
W — OOW S—ld 1 R 1
i(s )= . i(p, 0)p°dp, -5 <Res<o.

The displacement is then given by the inversion formula defined by

Wi(p ¢)=L.[°+i Wi(s, §)p5ds, —+<c<=i.
iwo)=55) Wil C T3 2

4, Solution of the Reformulated Problem

Consider the solution of (12) given as
Wj(s, §) = Aj(s)sins¢ + Bj(s)cossp, j=1,2.

Application of (13) and (14) to (17) gives

By(s) = By(s) and Ay(s) = %Al(s},

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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A= g 0 10 - - 10y T, (19)
B; =%{(l+y) + (- )Qz}hs(io—sbnz). (20)

In view of (19), (20) and (16), we have

Wiler )= %j{(“ N - y)Ql}(ZLTciJ.H-iooh(a: b; 5)p> SN0 dsj

C—io SCOS S

+%{(1+y)%+(1 ) QZ}( e b by e St dsj. (21)

ssin ms
Series technique and the method of residues are applied to evaluate (21). The order
of singularities of h(a, b; s) is incorporated through term-by-term integration of a
series of the form

(2K)
22k (k!)2 ’

- = bk, [t]<1 by =
k=0
The appropriate formfor 8 -1 <p <3 +1 is
poHL—p+8)a+p -8 V7 = p* Y21 np) V20— ep V2,
where A = (5§ +1) Y and ¢ = § - 1.

Therefore

1
s+k7m+1/2 o+

h(a, b;s)= (3 +1)7Y Zzb b mm

k=0 m=0
To apply Jordan’s Lemma [1] the poles of h(a, b; s) are separated into those in the

right half plane Re s > 0 for which k < m and those in the left half plane Res < 0
for which k > m:

The separation is attained by writing

k-m+1/2
I S k
M (t; s)_ b by AKe™ mbkb \
y k- m+1/2
Z Z bcbm?"e s+k s+k-m+1/2’ (22)

=0 m=k+1
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S0 that
h(a, b;s)= (G +1) Y2 MG +1 5)(8+1)° —~ MG -1 5)(5-1)°).  (23)
The integrals to be evaluated are as follows:

C+ioo
M(6+1;5)( P ) SINSO go o541 k=m,
o+1 S COS TS

C—ioo

1
|g(51J21(P1 ¢) = o

O’)
o

-1 S COS TS

1 C+ioo
1, 0) = 5= LG s)(
coss¢

p<d+1 k=m,
ssmns

) sin s¢ ds, p>d6-1 k<m,

1 C+ioo
Iéi)l(pv ¢)=m M@ +L 5)( il

C—loo

Ction ~5 cossh

M(S - 15)(6 1) ssinnsds’ p>8-1 k<m

C—ioo

The solution for 6 —1 < p < & +1 is therefore

W;(p, ¢) = (3+1) %E (@+1Q - @-1Q 1L 6)+ 1&(p. )

+ {<1+ v)% +(- y)f—g}{léﬂ(p, 0+ 13 (o, ¢>}}.

For j=1, 2, let

) _ P in[n_L
0= (- L)

i 1
+(-1)1 cos(n - %)d) + 2(—1)12:n_(2 ~ 5) 0

1
(2)(p 0) = (=1)) In {chos(n—g}b

+ ¢sin(n —%)4) + ﬁcos(n - %jq)
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We have

2 e ()" _ _
Iz(slzl(P, ¢) = T ZZ (2n)_ 1 bn—1+mbm7‘n 1+m8mq1(1)(p’ ¢)Pn 1/21
m=0n=1

2 P =X _1 n-1 B
Ié(Sl—)l(p’ ) = ;ZZ (ZH)—l bmbm+n>‘n8m+anl)(Pv ¢)P]/2 "

2 o0 o0 _1 n_l . ~
120, 0)= 233 O b b B Memg 2o, 4)p" Y2,
n=1

2 o 00 i) n-1 ~
|§2_)1(P: ) = EZZ (Zn)—l bmbm+n7“m8m+HQg2)(P, ¢)P]/2 "

5. Crack Tip Equations

The characteristics fracture parameters at the crack tip are obtained
asymptotically when 0 < p <1 from (21) as p — 0. That is

a 1 .
Wi(p, ) = 521+ 1) ~ (L= )Quh(a bi =5 Jo¥2sind a5 p > 0. ()
i
From (15) and entry 3. 131 6 [2],
W2 fmo |2
h(a, b; 2) a (1+5)1/2 F(Z’ 1+8j’
where F(% pj is the elliptic integral of the first kind; since

2 geometric mean of a and b
1+  arithmetic mean of a and b

Let (R, y) be polar coordinates at the crack tip (Figure 1). In view of

rcos6 =b+ Rcosy and rsin® = Rsiny,

. 2 H 2
pe? = 2_111[1_2_2j Re'V + 0{(%) } b>a.

(6) leads to
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Hence

Y2
p/2i(0/2) {2—1&1[1—2—2}} RY26i(v/2) a5 R 5 0.

The implication of these on (24) is

1/2 2\/2
Wj(R, v) = {(1+7)Q —(1- V)Ql}uij(ij (1—6‘—}

T b2

L 1) (RV2 v
xh(a, b’_E)(Fj smE as R—0. (25)

The corresponding stress intensity factor is

K (b -a Qn, Q) = (b—a)Y2{1+7)Q% - (1 - 1)y}

« {%%(1 + %)}]/2 h(a, b: — %) (26)

The energy release rate is

G = %(uil+%jl<'2”(b_a; Q1 Qa: )

6. Conclusion

The crack tip displacement fields are derived in terms of the elliptic integral of
the first kind and the stress intensity factor is obtained in the standard form [3]

Kinb - & Qu, Qi 1) = K[ |22+ Q2 - - 1)1,

where

ol @

((2)- 22 (b= (2} ez, 1o

a
1 il
b

Let Q, = BQ;. Then

Kinlb - Qu Qi 1) = B+ )+ 1-BK(f K@ ). @)
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where K9, (a, Q) = (rca)l/2 Qy is the known stress intensity factor for a tunnel crack

of width a in an infinite homogeneous material under anti-plane shear [5]. The case
B = —1 leads to self equilibrated tractions.
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