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Abstract 

With the help of the Zakharov-Shabat eigenvalue problem, a new soliton 
hierarchy of evolution equations is obtained. A reduced case of the 
hierarchy is presented, which are the well-known AKNS equations, whose 
soliton solutions are produced. The approach has extensive applications. 

1. Introduction 

Researching for new integrable Hamiltonian systems has been a topic for us, for 
which some efficient methods have been proposed in [1, 2]. Tu [9] introduced a 
straightforward method for generating integrable Hamiltonian systems called the Tu 
scheme by Ma [7]. After this, some interesting soliton hierarchies of evolution 
equations were obtained [3, 4, 6, 8]. The Tu scheme is presented briefly in the 
following. 

Let G be a matrix Lie algebra over a field C and ( )1,~ −λλ⊗ CGG  be a resulting 

loop algebra, where ( )1, −λλC  stands for a set of Laurent polynomials in the 
parameter λ. 
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First, solving the stationary zero curvature equation for ( ):, λ= uVV  

 [ ]VUVx ,=  (1) 

so that for ( ) ( ) ,n
nn VV Δ+λ= +  we have 

 ( ) [ ( ) ] ,, 1 p
nn

x CeCeVUV ++=−  (2) 

where [ ] ,, VUUVVU −=  and { }pee ...,,1  is a set of basis of the Lie algebra G, 
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=

−
+ λ=λ
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imiimm piaeaV

1
...,,2,1,0  represent the smooth 

functions in x and t. 

Second, use of the zero curvature equation 

 ( ) [ ( ) ] ,0, =+− nn
xt VUVU  (3) 

which is the compatibility condition of the Lax pair 

 ( )ϕ=ϕϕ=ϕ n
tx VU ,  (4) 

deduces an integrable hierarchy 

 ( ).uKut =  (5) 

Third, search for a Hamiltonian operator J and a recurrence operator L from 
equation (1) so that the hierarchy (5) can be written as the Hamiltonian form 

 ,1
u

H
JL

u
H

Ju nn
t δ

δ
=

δ
δ

= −  (6) 

where ( )ZzHn ∈  are common conserved densities of equation (5), which can be 

deduced by the trace identity [9] 

 ,...,,2,1,,, pi
u
UVUV

u i
=

∂
∂λ

λ∂
∂λ=

λ∂
∂

δ
δ γγ−  (7) 

where BA,  represents matrix traces, .~, GBA ∈  If we could prove ,JLJL ∗=  then 

the hierarchy (5) is Liouville integrable. 
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In this paper, we want to introduce the famous Zakharov-Shabat eigenvalue 
problem and another isospectral problem to constitute an isospectral Lax pair from 
their compatibility condition that a generalized zero curvature equation is obtained. 
By employing the Tu scheme, we work out a new soliton hierarchy of evolution 
equations. A reduced case of the hierarchy is just right coupled AKNS equations, 
whose exact solitary solutions are obtained by using logarithm expansion. 

2. A New Integrable Hamiltonian Hierarchy 

Let [9] 

,
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−
= feh  

[ ] ,2, eeh =     [ ] ,2, ffh −=      [ ] ., hfe =  

Then the Lie algebra 1A  can be expressed by 

{ }.,,span1 fehA =  

The resulting loop algebra reads 

 ( ) ( ) ( ){ },,,span~
1 nfnenhA =  ( ) ,nhnh λ=  ( ) ,nene λ=  ( ) .nfnf λ=  (8) 

Introducing a linear operator 

( ) [ ] ,~,,, 1AXUXXUXL ∈+=  

we consider the Lax pair 

 ( ) ,, ϕ=ϕϕ=ϕ NLU tx  (9) 

where 

( ) ( ) ( ),001 rfqehU ++=  ( ) ( ) ( )( )∑
≥

−+−+−=
0

.
m

mmm mfcmebmhaN  

The compatibility condition of equation (9) presents that 

 ( ) ( )[ ] .0, =+− NLUNLU xt  (10) 
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The stationary form of equation (10) admits the following recurrence relations 
for N: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )⎪
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 (11) 

Set ,011000 ===== cbcba  .,const1 =α=a  then from (11), we infer that 

,02 =a  ,2 qb α=  ,2 rc α=  ,
23 qra α−=  ,0433 === acb  +α−= rqb 2

4 2  

,
4 xqα  ,

42
2

4 xrqrc α+α−=  ( ),
85 xxx qqb −α=  ( ) ....,
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Denote by ( ) [ ( )] ( ),, nnn NNUL +++ +=  ( ) ( ( ) ( )∑
=

+ +−+−=
n

m
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n mebmhaN
0

 

( )) ,n
m mfc λ−   a direct calculation reads that 

( ) [ ( ) ] ( ) ( )04224, 2111 ebbbqaLUL nxnnn
nn

x ++++++ −+−=+−  

( ) ( )04224 2111 fcccra nxnnn ++++ −−++  

( ) ( ) ( ) ( ).1314022 1111 fcebhrbqc nnnn ++++ −−−+  

Note ( ) ( ),0202 11 fceb nnn ++ −=Δ  ( ) ( ) ( )( ) ,n
nn NLNL Δ+= +  we infer that 

( ) ( ) [ ( )( )]NLUNL nn
x ,+−  

( ) ( ) ( ) ( ).04240424 211211 fccraebbqa nnnnnn ++++++ −++−−=  

Hence, the generalized zero curvature equation 

 ( ) ( ) [ ( )( )] 0, =+− NLUNLU nn
xt  (12) 

gives rise to the integrable hierarchy 
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where ⎟
⎠
⎞

⎜
⎝
⎛
−

=
02
20

J  is a Hamiltonian operator obviously. 

However, the trace identity fails to deduce the Hamiltonian structure of (13). As 
for how to solve it, it is an open problem. 

Taking ,2=α  3=n  in (13), we obtain 
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Taking ,2=α  4=n  in (13), we obtain 
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Equations (14) and (15) are exactly the coupled equations for the case 1=n  and 
2=n  in AKNS hierarchy. 

3. Soliton Solutions 

In what follows, we shall deduce the exact soliton solutions of equations (14) by 
using a logarithm expansion. 

Set ( ) ( ),, ξ== qtxqq  ( ) ( ),, ξ== rtxrr  ctx −=ξ  and substituting into 

equations (14), we have the ordinary differential equations in the variable ξ 
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By balancing the nonlinear terms and the highest derivative terms, we may take 
.121 == nn  Hence, we have 

 ( ) ,ln10 ξ+= faaq    ( ) ,ln10 ξ+= fbbr  (17) 

where  

( ) ( )
( ) .ln

f
f

f
ff

′
=

ξ
ξ′

=ξ  

Assume that ( )ξf  satisfies the equation [5] 

,fff β+′α=′′  (18) 

where α, β are all constants. 

Substituting (17), (18) into (16) and comparing the coefficients of ( )if ξln  

( ),3,2,1,0=i  we infer that 
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A solution of (19) is obtained by using Maple 
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where 0a  is a nonzero constant. 
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Inserting (20) into (17), the soliton solutions of equations (14) are given by 
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where ,1c  2c  are arbitrary constants, .4 2 txctx α+β−=−=ξ  

Then let us consider the property of the exact solution (21) of equations (14) 
with the case of ,11 10 ====β=α Ca ,12 −=C  respectively. 

Similarly, we can find the soliton solutions of the second AKNS coupled 
equations (15) as follows: 
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where ,0, 10 ≠aa  ,1c  2c  are arbitrary constants, ( +α+α+=ξ 10
2
1

2
2
1

6 aaa
a
tx  

).26 2
1

2
0 β− aa  

The property of the exact solution (22) of equations (15) with the case of 
==β=α 0a  ,11 11 === aC  32 −=C  can be seen from the following graph. 

4. Conclusion 

We have derived a new soliton hierarchy of evolution equations by using the 
Zakharov-Shabat eigenvalue problem. A reduced case of the hierarchy is exactly the 
well-known AKNS equations. Also some soliton solutions are obtained. The 
approach can be applied into other extensive equations. 
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