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Abstract

With the help of the Zakharov-Shabat eigenvalue problem, a new soliton
hierarchy of evolution equations is obtained. A reduced case of the
hierarchy is presented, which are the well-known AKNS equations, whose
soliton solutions are produced. The approach has extensive applications.

1. Introduction

Researching for new integrable Hamiltonian systems has been a topic for us, for
which some efficient methods have been proposed in [1, 2]. Tu [9] introduced a
straightforward method for generating integrable Hamiltonian systems called the Tu
scheme by Ma [7]. After this, some interesting soliton hierarchies of evolution
equations were obtained [3, 4, 6, 8]. The Tu scheme is presented briefly in the
following.

Let G be a matrix Lie algebra over a field C and GG ® C(n, 7(1) be a resulting

loop algebra, where C(A, 7(1) stands for a set of Laurent polynomials in the
parameter A.
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First, solving the stationary zero curvature equation for V. =V (u, A):
Vg =[U, V] 1)
so that for V(M = (A'v ), +An, we have
VW U, VW] = Cey + - + Cey, @)

where [U,V]=UV -VU, and {g,, ..., ey} is a set of basis of the Lie algebra G,

(AV), = Zn:mG”‘m, Vi = Zp:aimei (0), ajy (i =1, 2, ..., p) represent the smooth
m=0 i=1
functions in x and t.
Second, use of the zero curvature equation
Uy -V +u,viM =, ©)
which is the compatibility condition of the Lax pair

ox =Ug, ¢ =V 4)
deduces an integrable hierarchy
up = K(u). (5)

Third, search for a Hamiltonian operator J and a recurrence operator L from
equation (1) so that the hierarchy (5) can be written as the Hamiltonian form

8Hy _ 5 8Hna

=J
Ut Su Su

(6)

where H,(z € Z) are common conserved densities of equation (5), which can be
deduced by the trace identity [9]

8y Ny 2 grfy YN
8u <V| a}\/> - 7\' a)\‘ 7\' <V| aul>! I _11 2! RS ) pv (7)

where (A, B) represents matrix traces, A, B e G. If we could prove JL = L*J, then

the hierarchy (5) is Liouville integrable.
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In this paper, we want to introduce the famous Zakharov-Shabat eigenvalue
problem and another isospectral problem to constitute an isospectral Lax pair from
their compatibility condition that a generalized zero curvature equation is obtained.
By employing the Tu scheme, we work out a new soliton hierarchy of evolution
equations. A reduced case of the hierarchy is just right coupled AKNS equations,
whose exact solitary solutions are obtained by using logarithm expansion.

2. A New Integrable Hamiltonian Hierarchy

Let [9]

[h,e]=2e, [h, f]=-2f, [e, f]=h.
Then the Lie algebra A, can be expressed by
A = span{h, e, f}.

The resulting loop algebra reads

A = span{h(n), e(n), f(n)}, h(n) = hA", e(n) =er", f(n)= fA". (8)
Introducing a linear operator
L(X)=[U, X]+ X, U, X eA,
we consider the Lax pair
¢x =Uo, ¢ = L(N)o, ©)
where

U =h(1)+qge(0)+rf(0), N = Z(amh(—m) + bpe(=m) + ¢, f(—=m)).

m>0
The compatibility condition of equation (9) presents that

U = Ly(N)+[U, L(N)] = 0. (10)
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The stationary form of equation (10) admits the following recurrence relations
for N:

(@m + dCm = ), = 20Cm . = 2D — (b — 208y ) — 4(2ray +cp),
20 1x + (b — 203, )x = 2(bp+1 — 20am41) — 2d(ay + qcy — by ) + 4bpy, 2, (11)
(2rag +Cy — 2Cm41)y = —2(2ram g + Cmyg) + 4Cmio + 2r(ay + qcy — rby).
Set ag =by =¢cg = =¢; =0, 3 = a = const., then from (11), we infer that
a, =0, by =00, Cc, =ar, ag =—%qr, b3 =c3=a4=0 by :—%q2r+
@

o o o o
qu Cq = —qu’z + 2 ry, bs :§(QXX ~0y), Cs :§(_rxx +Iy), e

Denote by LM =[u, NWI+NM, N = Zn:(amh(—m)+ bne(-m) +
m=0
cm f(=m))A", adirect calculation reads that
~L0) + U, L] = (4gap,q — 2by1 + 20,15 — 4Dy 2)e(0)
+ (drap,q + 2Ch41 — 2Cn41x — 4Chy0) F(0)
+(29¢,41 — 2rby41)h(0) — 4b,1e(2) — 3c,41 F (D).
Note Ap = 2by,16(0) — 2¢,1 F(0), LMW(N) = LM(N), + A,, we infer that
LN+ U, LY(N)]
= (40ap 41 — 2bn4g — 4y, 2)€(0) + (4ran g + 2¢q,1 — 4cny2) F(0).
Hence, the generalized zero curvature equation
U= LN+ U, LY(N)] =0 (12)

gives rise to the integrable hierarchy

()

{_4qan+1 +2bpyq + 4bn+2j

—4rap ) — 2Cpq +4Ch,p
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[ 0 2] {_20n+2 +Ch t 2qan+1]
-2 0)\ 2bp o +Dbpyy — 2085,
B ‘{_ZCMZ tCnhpr 2qan+1j

2bns2 + by — 2080,

(13)

0
where J :(

2\ . o .
Oj is a Hamiltonian operator obviously.

However, the trace identity fails to deduce the Hamiltonian structure of (13). As
for how to solve it, it is an open problem.

Taking o = 2, n =3 in (13), we obtain

= —20%r + Gy,
Ot q Oxx (14)
L= 2qr2 — Iy
Taking oo = 2, n =4 in (13), we obtain
0t = 690y" — Ayxx,
(15)
L = 60qrry — Ny

Equations (14) and (15) are exactly the coupled equations for the case n =1 and
n = 2 in AKNS hierarchy.

3. Soliton Solutions

In what follows, we shall deduce the exact soliton solutions of equations (14) by
using a logarithm expansion.
Set gq=q(x,t)=q(§), r=r(x,t)=r(), &=x-ct and substituting into
equations (14), we have the ordinary differential equations in the variable &
{—cq’ =-20°r +q",

) (16)
—cr' =2qr° —r".

Set

M 2
q=Zam(Inf)g‘, r=me(Inf)g‘.
m=0 m=0



150 GUO XIURONG

By balancing the nonlinear terms and the highest derivative terms, we may take
m = n, = 1. Hence, we have

g=ag+ay(Inf)., r=by+by(lnf), (17)
where

fe) f
(In 1), :%:T'

Assume that f (&) satisfies the equation [5]
f" = af +pf, (18)
where a, B are all constants.
Substituting (17), (18) into (16) and comparing the coefficients of (In f)ig
(i =0,1, 2, 3), we infer that
—Cayf} = —2a§b0 + ayap,
—caqo = —2(a§b1 + 2agaghg) + al(oc2 - 2B),

cay = —2(2agayhy + afby) — 3ay0,

2
—-a;b +a =0,
b +a (19)
—chyB = 2agb — apby,
—abyc = 4aghghy + 2a;b¢ — o’by + 2pby,
chy = 2agb? + 4aybghy + 3oy,
abf —lby = 0.
A solution of (19) is obtained by using Maple
d = aO( 4B+(X, 30!,) s boz—ﬂ, C:'\I4B+(X2,
V4 + a2a + a2 — 2B %
(20)

by = V4B + 020® — /4B + 02Ba’ + 4B + 0B + oS + pa’ — 3up?
20(03/4B + 0% — 20B/4p + 0® + ot + 28?)

where ag is a nonzero constant.
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Inserting (20) into (17), the soliton solutions of equations (14) are given by

Lo fapro?
apCye? ks )E"(S\/4[3+a2cx—cx2—4[3)
[ 2 Loodagio?ye |
(\/4B+oc a+al -2B)(ce (OH v )é+czez( 4prot)E

)
e%(ocﬂ/ 4[3-%—(12 )E

(21)
(ax/4ﬁ+a2(3a2—332+a4)+3a4g+433+a6_3g2a2)

1 2 !
g0 4+ (a?—2B)+o* +2B2)(ci6 2 planfapea?)e ¢ sglaapa %)

where ¢, ¢, are arbitrary constants, & = x — ct = X — /4B + ot

Then let us consider the property of the exact solution (21) of equations (14)
with the case of o = =ag =1=C; =1 C, = -1, respectively.

Similarly, we can find the soliton solutions of the second AKNS coupled
equations (15) as follows:

01(2a0+a1(0c+v4[3+a ))e z(wm)é+02(2a0+a1(a—\/4[3+a 2))e 2(a ‘/M)é
(W\/M)é rope (a—m)g

2(cee

01(2a0+a1(oc—\/4[3+oc ))e 2(%\/467)5“ +Cy(2a9 +ay (o +y4p+a?))e 2(“ ‘/M)é
“+m)§ oy —((x—\/zl[ST)g

2a2(
(22)
where ag, a; # 0, ¢, C, are arbitrary constants, & = x + Lz(oczal2 + 6agao +
&
6a3 — 2aZp).
The property of the exact solution (22) of equations (15) with the case of
o=pf=a =1=C; =g =1 C, =-3 can be seen from the following graph.

4. Conclusion

We have derived a new soliton hierarchy of evolution equations by using the
Zakharov-Shabat eigenvalue problem. A reduced case of the hierarchy is exactly the
well-known AKNS equations. Also some soliton solutions are obtained. The
approach can be applied into other extensive equations.
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