THREE DIMENSIONAL QUARTIC FUNCTIONAL EQUATION IN FUZZY NORMED SPACES

M. ARUNKUMAR

Department of Mathematics
Sacred Heart College
Tirupattur - 635 601, Tamilnadu, India
e-mail: annarun2002@yahoo.co.in

$$
\begin{align*}
& \qquad \text { Abstract } \\
& \text { In this paper, the author investigates the generalized Hyers-Ulam-Rassias } \\
& \text { stability of a three dimensional quartic functional equation } \\
& \qquad \begin{array}{l}
g(2 x+y+z)+g(2 x+y-z)+g(2 x-y+z) \\
+g(-2 x+y+z)+16 g(y)+16 g(z) \\
=8[g(x+y)+g(x-y)+g(x+z)+g(x-z)] \\
+2[g(y+z)+g(y-z)]+32 g(x)
\end{array}
\end{align*}
$$

in fuzzy normed space.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [28] concerning the stability of group homomorphisms. Hyers [9] gave the first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [2] for additive mappings and by Rassias [23] for 2010 Mathematics Subject Classification: 39B52, 39B82, 26E50, 46S50.

Keywords and phrases: fuzzy normed space, quartic function, generalized Hyers-UlamRassias stability.

Communicated by Themistocles M. Rassias
Received January 30, 2010; Revised March 20, 2010
linear mappings by considering an unbounded Cauchy difference. The paper of Rassias [23] has provided a lot of influences in the development of what we call generalized Hyers-Ulam stability of functional equations. A generalization of the Rassias theorem was obtained by Găvruța [8] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach. In 1982, Rassias [22] followed the innovative approach of the Rassias theorem [23] in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{p}$ for $p, q \in R$ with $p+q=1$.

In 2008, a special case of Găvruța's theorem for the unbounded Cauchy difference was obtained by Ravi et al. [26] by considering the summation of both the sum and the product of two p-norms in the spirit of Rassias approach. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see $[1,6,10,12,13,24,25]$).

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [7, 16, 29]. In particular, Bag and Samanta [3], following Cheng and Mordeson [5], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type [15]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3] and [18-21].
Definition 1.1. Let X be a real linear space. Then a function $N: X \times \mathbb{R}$ $\rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(F1) $N(x, c)=0$ for $c \leq 0$;
(F2) $x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(F3) $N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(F4) $N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\}$;
(F5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(F6) for $x \neq 0, N(x, \cdot)$ is (upper semi) continuous on \mathbb{R}.

The pair (X, N) is called a fuzzy normed linear space. We may regard $N(X, t)$ as the truth-value of the statement 'the norm of x is less than or equal to the real number t^{\prime}.

Example 1.2. Let $(X,\|\cdot\|)$ be a normed linear space. Then

$$
N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0, \\ 0, & t \leq 0, \\ 0, & x \in X\end{cases}
$$

is a fuzzy norm on X.
Example 1.3. Let $(X,\|\cdot\|)$ be a normed linear space. Then

$$
N(x, t)= \begin{cases}0, & t \leq 0 \\ \frac{t}{\|x\|}, & 0<t \leq\|x\| \\ 1, & t>\|x\|\end{cases}
$$

is a fuzzy norm on X.
Definition 1.4. Let (X, N) be a fuzzy normed linear space and x_{n} be a sequence in X. Then x_{n} is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In that case, x is called the limit of the sequence x_{n} and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.5. A sequence x_{n} in X is called Cauchy if for each $\varepsilon>0$ and $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and $p>0$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\varepsilon$.

Definition 1.6. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 1.7. A mapping $f: X \rightarrow Y$ between fuzzy normed spaces X and Y is continuous at a point x_{0} if for each sequence $\left\{x_{n}\right\}$ covering to x_{0} in X, the sequence $f\left\{x_{n}\right\}$ converges to $f\left(x_{0}\right)$. If f is continuous at each point of $x_{0} \in X$, then f is said to be continuous on X.

The stability of various functional equations in fuzzy normed spaces was investigated in [11, 17-21, 27].

In this paper, the author investigates a fuzzy version of the generalized Hyers-Ulam-Rassias stability of a three dimensional quartic functional equation

$$
\begin{align*}
& g(2 x+y+z)+g(2 x+y-z)+g(2 x-y+z) \\
& +g(-2 x+y+z)+16 g(y)+16 g(z) \\
= & 8[g(x+y)+g(x-y)+g(x+z)+g(x-z)] \\
+ & 2[g(y+z)+g(y-z)]+32 g(x) \tag{1.1}
\end{align*}
$$

in the fuzzy normed vector space setting.

2. Fuzzy Stability of the Quartic Functional Equation (1.1)

Throughout this section, assume that $X,\left(Z, N^{\prime}\right)$ and $\left(Y, N^{\prime}\right)$ are linear space, fuzzy normed space and fuzzy Banach space, respectively. Now we use the following notation for a given mapping $f: X \rightarrow Y$:

$$
\begin{aligned}
D g(x, y, z)= & g(2 x+y+z)+g(2 x+y-z) \\
& +g(2 x-y+z)+g(-2 x+y+z)+16 g(y)+16 g(z) \\
& -8[g(x+y)+g(x-y)+g(x+z)+g(x-z)] \\
& -2[g(y+z)+g(y-z)]-32 g(x)
\end{aligned}
$$

for all $x, y, z \in X$.
Now the author investigates the generalized Hyers-Ulam-Rassias stability of the functional equation (1.1).

Theorem 2.1. Let $\beta \in\{-1,1\}$ be fixed and $\alpha: X^{3} \rightarrow Z$ be a mapping such that for some a with $0<\left(\frac{a}{16}\right)^{\beta}<1$,

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(2^{\beta} x, 0,0\right), r\right) \geq N^{\prime}\left(a^{\beta} \alpha(x, 0,0), r\right) \tag{2.1}
\end{equation*}
$$

for all $x \in X$ and $a>0$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N^{\prime}\left(\alpha\left(2^{\beta n} x, 2^{\beta n} y, 2^{\beta n} z\right), 16^{\beta n} r\right)=1 \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $r>0$. Suppose that a function $g: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D g(x, y, z), r) \geq N^{\prime}(\alpha(x, y, z), r) \tag{2.3}
\end{equation*}
$$

for all $r>0$ and $x, y \in X$. Then the limit

$$
\begin{equation*}
Q(x)=N-\lim _{n \rightarrow \infty} \frac{g\left(2^{\beta n} x\right)}{16^{\beta n}} \tag{2.4}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $Q: X \rightarrow Y$ is a unique quartic mapping such that

$$
\begin{equation*}
N(g(x)-Q(x), r) \geq N^{\prime}(\alpha(x, 0,0), r|16-a|) \tag{2.5}
\end{equation*}
$$

for all $x \in X$ and $r>0$.
Proof. First assume $\beta=1$. Replacing (x, y, z) by $(x, 0,0)$ in (2.3), we get

$$
\begin{equation*}
N(g(2 x)-16 g(x), r) \geq N^{\prime}(\alpha(x, 0,0), r) \tag{2.6}
\end{equation*}
$$

for all $x \in X$ and $r>0$. Replacing x by $2^{n} x$ in (2.6), we obtain

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+1} x\right)}{16}-g\left(2^{n} x\right), \frac{r}{16}\right) \geq N^{\prime}\left(\alpha\left(2^{n} x, 0,0\right), r\right) \tag{2.7}
\end{equation*}
$$

for all $x \in X$ and $r>0$. Using (2.1), (F3) in (2.7), we arrive

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+1} x\right)}{16}-g\left(2^{n} x\right), \frac{r}{16}\right) \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r}{a^{n}}\right) \tag{2.8}
\end{equation*}
$$

for all $x \in X$ and $r>0$. It is easy to verify from (2.8) that

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+1} x\right)}{16^{n+1}}-\frac{g\left(2^{n} x\right)}{16^{n}}, \frac{r}{16 \cdot 16^{n}}\right) \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r}{a^{n}}\right) \tag{2.9}
\end{equation*}
$$

holds for all $x \in X$ and $r>0$. Replacing r by $a^{n} r$ in (2.9), we get

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+1} x\right)}{16^{n+1}}-\frac{g\left(2^{n} x\right)}{16^{n}}, \frac{a^{n} r}{16 \cdot 16^{n}}\right) \geq N^{\prime}(\alpha(x, 0,0), r) \tag{2.10}
\end{equation*}
$$

for all $x \in X$ and $r>0$. It is easy to see that

$$
\begin{equation*}
\frac{g\left(2^{n} x\right)}{16^{n}}-g(x)=\sum_{i=0}^{n-1} \frac{g\left(2^{i+1} x\right)}{16^{i+1}}-\frac{g\left(2^{i} x\right)}{16^{i}} \tag{2.11}
\end{equation*}
$$

for all $x \in X$. From equations (2.10) and (2.11), we have

$$
\begin{align*}
N\left(\frac{g\left(2^{n} x\right)}{16^{n}}-g(x), \sum_{i=0}^{n-1} \frac{a^{i} r}{16 \cdot 16^{i}}\right) & \geq \min \bigcup_{i=0}^{n-1}\left\{\frac{g\left(2^{i+1} x\right)}{16^{i+1}}-\frac{g\left(2^{i} x\right)}{16^{i}}, \frac{a^{i} r}{16 \cdot 16^{i}}\right\} \\
& \geq \min \bigcup_{i=0}^{n-1}\left\{N^{\prime}(\alpha(x, 0,0), r)\right\} \\
& \geq N^{\prime}(\alpha(x, 0,0), r) \tag{2.12}
\end{align*}
$$

for all $x \in X$ and $r>0$. Replacing x by $2^{m} x$ in (2.12) and using (2.1), (F3), we obtain

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+m} x\right)}{16^{n+m}}-\frac{g\left(2^{m} x\right)}{16^{m}}, \sum_{i=0}^{n-1} \frac{a^{i} r}{16 \cdot 16^{i}}\right) \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r}{a^{m}}\right) \tag{2.13}
\end{equation*}
$$

for all $x \in X, r>0$ and $m, n \geq 0$. Replacing r by $a^{m} r$ in (2.13), we get

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+m} x\right)}{16^{n+m}}-\frac{g\left(2^{m} x\right)}{16^{m}}, \sum_{i=m}^{m+n-1} \frac{a^{i} r}{16 \cdot 16^{i}}\right) \geq N^{\prime}(\alpha(x, 0,0), r) \tag{2.14}
\end{equation*}
$$

for all $x \in X, r>0$ and $m, n \geq 0$. Using (F3) in (2.14), we obtain

$$
\begin{equation*}
N\left(\frac{g\left(2^{n+m} x\right)}{16^{n+m}}-\frac{g\left(2^{m} x\right)}{16^{m}}, r\right) \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r}{\sum_{i=m}^{m+n-1} \frac{a^{i}}{16 \cdot 16^{i}}}\right) \tag{2.15}
\end{equation*}
$$

for all $x \in X, r>0$ and $m, n \geq 0$. Since $0<a<16$ and $\sum_{i=0}^{n}\left(\frac{a}{16}\right)^{i}<\infty$, the

Cauchy criterion for convergence and (F5) imply that $\left\{\frac{g\left(2^{n} x\right)}{16^{n}}\right\}$ is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x)=N-\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{16^{n}}
$$

for all $x \in X$. Letting $m=0$ in (2.15), we get

$$
\begin{equation*}
N\left(\frac{g\left(2^{n} x\right)}{16^{n}}-g(x), r\right) \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r}{\sum_{i=0}^{n-1} \frac{a^{i}}{16 \cdot 16^{i}}}\right) \tag{2.16}
\end{equation*}
$$

for all $x \in X$ and $r>0$. Letting $n \rightarrow \infty$ in (2.16) and using (F6), we arrive

$$
N(g(x)-Q(x), r) \geq N^{\prime}(\alpha(x, 0,0), r(16-a))
$$

for all $x \in X$ and $r>0$. To prove that Q satisfies (1.1), replacing (x, y, z) by $\left(2^{n} x, 2^{n} y, 2^{n} z\right)$ in (2.3), respectively, we obtain

$$
\begin{equation*}
N\left(\frac{1}{16^{n}} D g\left(2^{n} x, 2^{n} y, 2^{n} z\right), r\right) \geq N^{\prime}\left(\alpha\left(2^{n} x, 2^{n} y, 2^{n} z\right), 16^{n} r\right) \tag{2.17}
\end{equation*}
$$

for all $r>0$ and $x, y, z \in X$. Now

$$
\begin{aligned}
& N(Q(2 x+y+z)+Q(2 x+y-z)+Q(2 x-y+z)+Q(-2 x+y+z) \\
& +16 Q(y)+16 Q(z)-8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)] \\
& -2[Q(y+z)+Q(y-z)]-32 Q(x)) \\
\geq & \min \left\{N\left(Q(2 x+y+z)-\frac{g\left(2^{n}(2 x+y+z)\right)}{16^{n}}, \frac{r}{14}\right),\right. \\
& N\left(Q(2 x+y-z)-\frac{g\left(2^{n}(2 x+y-z)\right)}{16^{n}}, \frac{r}{14}\right),
\end{aligned}
$$

$$
\begin{align*}
& N\left(Q(2 x-y+z)-\frac{g\left(2^{n}(2 x-y+z)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(Q(-2 x+y+z)-\frac{g\left(2^{n}(-2 x+y+z)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(16 Q(y)-\frac{16 g\left(2^{n}(y)\right)}{16^{n}}, \frac{r}{14}\right), N\left(16 Q(z)-\frac{16 g\left(2^{n}(z)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(-8 Q(x+y)+\frac{8 g\left(2^{n}(x+y)\right)}{16^{n}}, \frac{r}{14}\right), N\left(-8 Q(x-y)+\frac{8 g\left(2^{n}(x-y)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(-8 Q(x+z)+\frac{8 g\left(2^{n}(x+z)\right)}{16^{n}}, \frac{r}{14}\right), N\left(-8 Q(x-z)+\frac{8 g\left(2^{n}(x-z)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(-2 Q(y+z)+\frac{2 g\left(2^{n}(y+z)\right)}{16^{n}}, \frac{r}{14}\right), N\left(-2 Q(y-z)+\frac{2 g\left(2^{n}(y-z)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(-32 Q(x)+\frac{32 g\left(2^{n}(x)\right)}{16^{n}}, \frac{r}{14}\right), \\
& N\left(\frac{g\left(2^{n}(2 x+y+z)\right)}{16^{n}}+\frac{g\left(2^{n}(2 x+y-z)\right)}{16^{n}}+\frac{g\left(2^{n}(2 x-y+z)\right)}{16^{n}}\right. \\
& +\frac{g\left(2^{n}(-2 x+y+z)\right)}{16^{n}}+\frac{16 g\left(2^{n}(y)\right)}{16^{n}}+\frac{16 g\left(2^{n}(z)\right)}{16^{n}} \\
& -\frac{8 g\left(2^{n}(x+y)\right)}{16^{n}}-\frac{8 g\left(2^{n}(x-y)\right)}{16^{n}}-\frac{8 g\left(2^{n}(x+z)\right)}{16^{n}} \\
& -\frac{8 g\left(2^{n}(x-z)\right)}{16^{n}}-\frac{2 g\left(2^{n}(y+z)\right)}{16^{n}}-\frac{2 g\left(2^{n}(y-z)\right)}{16^{n}} \\
& \left.\left.-\frac{32 g\left(2^{n}(x)\right)}{16^{n}}, \frac{r}{14}\right)\right\} \tag{2.18}
\end{align*}
$$

for all $x, y, z \in X$ and $r>0$. Using (F5), (2.17) in (2.18), we arrive

$$
\begin{align*}
& N(Q(2 x+y+z)+Q(2 x+y-z)+Q(2 x-y+z)+Q(-2 x+y+z) \\
& +16 Q(y)+16 Q(z)-8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)] \\
& -2[Q(y+z)+Q(y-z)]-32 Q(x)) \tag{2.19}
\end{align*}
$$

$$
\begin{equation*}
\geq \min \left\{1,1,1,1,1,1,1,1,1,1,1,1,1, N^{\prime}\left(\alpha\left(2^{n} x, 2^{n} y, 2^{n} z\right), 16^{n} r\right)\right\} \tag{2.20}
\end{equation*}
$$

for all $x, y, z \in X$ and $r>0$. Letting $n \rightarrow \infty$ in (2.19) and using (2.2), we see that

$$
\begin{aligned}
& N(Q(2 x+y+z)+Q(2 x+y-z)+Q(2 x-y+z)+Q(-2 x+y+z) \\
& +16 Q(y)+16 Q(z)-8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)] \\
& -2[Q(y+z)+Q(y-z)]-32 Q(x))=1
\end{aligned}
$$

for all $x, y, z \in X$ and $r>0$. Using (F2) in the above inequality gives

$$
\begin{aligned}
& Q(2 x+y+z)+Q(2 x+y-z)+Q(2 x-y+z)+Q(-2 x+y+z)+16 Q(y)+16 Q(z) \\
= & 8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)] \\
& +2[Q(y+z)+Q(y-z)]+32 Q(x)
\end{aligned}
$$

for all $x, y, z \in X$. Hence Q satisfies the quartic functional equation (1.1). In order to prove $Q(x)$ is unique, let $Q^{\prime}(x)$ be another quartic functional equation satisfying (1.1) and (2.5). Hence

$$
\begin{aligned}
N\left(Q(x)-Q^{\prime}(x), r\right) & =N\left(\frac{Q\left(2^{n} x\right)}{16^{n}}-\frac{Q^{\prime}\left(2^{n} x\right)}{16^{n}}, r\right) \\
& \geq \min \left\{N\left(\frac{Q\left(2^{n} x\right)}{16^{n}}-\frac{f\left(2^{n} x\right)}{16^{n}}, \frac{r}{2}\right), N\left(\frac{f\left(2^{n} x\right)}{16^{n}}-\frac{Q^{\prime}\left(2^{n} x\right)}{16^{n}}, \frac{r}{2}\right)\right\} \\
& \geq N^{\prime}\left(\alpha\left(2^{n} x, 0,0\right), \frac{r 16^{n}(16-a)}{2}\right) \\
& \geq N^{\prime}\left(\alpha(x, 0,0), \frac{r 16^{n}(16-a)}{2 a^{n}}\right)
\end{aligned}
$$

for all $x \in X$ and $r>0$. Since

$$
\lim _{n \rightarrow \infty} \frac{r 16^{n}(16-a)}{2 a^{n}}=\infty
$$

we obtain

$$
\lim _{n \rightarrow \infty} N^{\prime}\left(\alpha(x, 0,0), \frac{r 16^{n}(16-a)}{2 a^{n}}\right)=1
$$

Thus

$$
N\left(Q(x)-Q^{\prime}(x), r\right)=1
$$

for all $x \in X$ and $r>0$, hence $Q(x)=Q^{\prime}(x)$. Therefore $Q(x)$ is unique.
For $\beta=-1$, we can prove the result by a similar method. This completes the proof of the theorem.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003), 687-705.
[4] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), 513-547.
[5] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86(5) (1994), 429-436.
[6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
[7] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48(2) (1992), 239-248.
[8] P. Găvruța, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(3) (1994), 431-436.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] Sun-Young Jang, Jung Rye Lee, Choonkil Park and Dong Yun Shin, Fuzzy stability of Jensen-type quadratic functional equations, Abstr. Appl. Anal. 2009, Art. ID 535678, 17 pp .
[12] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
[13] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
[14] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12(2) (1984), 143-154.
[15] I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika (Prague) 11(5) (1975), 336-344.
[16] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63(2) (1994), 207-217.
[17] D. Miheț, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 160(11) (2009), 1663-1667.
[18] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159(6) (2008), 730-738.
[19] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(6) (2008), 720-729.
[20] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178(19) (2008), 3791-3798.
[21] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. 52(1-2) (2008), 161-177.
[22] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46(1) (1982), 126-130.
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(2) (1978), 297-300.
[24] Th. M. Rassias, Functional Equations and Inequalities, Kluwer Academic Publishers, Dordrecht, 2000.
[25] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
[26] K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat. 3 (2008), 36-46.
[27] K. Ravi, M. Arunkumar and P. Narasimman, Fuzzy stability of an additive functional equation, Inter. J. Math. Sci., accepted.
[28] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
[29] J.-Z. Xiao and X.-H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and Systems 133(3) (2003), 389-399.

