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Abstract 

A semigroup S is right weakly regular (r.w.r.) if every right ideal of S is 
idempotent. Various equivalent conditions to S being r.w.r. and basic 
properties of r.w.r. semigroups are given. Constructions and examples of 
r.w.r. semigroups are given. Properties of the class of all r.w.r. semigroups 
are investigated and a radical associated with this class is developed. 
Right weak regularity is investigated for the multiplicative and adjoint 
semigroups of a ring and for simple and 0-simple semigroups. 

1. Introduction 

Here S will always denote a semigroup. We say that S is right weakly regular 
(r.w.r.) if every right ideal of S is idempotent; i.e., if B is a right ideal of S, then 

{ }.,:2 ByxxyBB ∈==  Similarly, define left weakly regular (l.w.r.). We use 

( ),SR  ( ),SL  and ( )SI  for the multiplicative semigroups of all right, left, and two-
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sided ideals, respectively, of S. So S is r.w.r. (l.w.r.) if and only if ( )SR  

( ( ))SLly,respective  is a band. In this paper, we investigate the properties of r.w.r. 

semigroups and of the semigroups ( ).SR  This work was motivated by the previous 

work on the semigroup of right ideals of a ring [8, 9], and by the substantial theory 
that has been developed on right weakly regular rings (for example, see [16, Section 
20]). Right weakly regular rings are also called “fully right idempotent ” [7], “right 
fully idempotent ” [1] and “weakly regular ” [3]. 

This paper is organized as follows: In Section 2, we present basic results on 
r.w.r. semigroups. In Section 3, we give other classes of examples and constructions 
for r.w.r. semigroups. Also in that section, properties of the class of all r.w.r. 
semigroups are investigated and a radical associated with that class is developed. 
Further examples are given to illustrate and delimit the theory. In Section 4, we 
investigate the relationship between a right weakly regular ring, its multiplicative 
semigroup, and its adjoint semigroup. In Section 5, simple and 0-simple monoids are 
considered and their relationships with ( )SR  and ( )SL  are developed. 

2. Preliminaries and Basic Results 

We use rb  and b  for the principal right ideal (respectively, two-sided ideal) 

of S generated by ,Sb ∈  and ( )SE  for the set of all idempotent elements in S. If B 

is a right (two-sided) ideal of S and B is a r.w.r. semigroup, then we call B a r.w.r. 
(two-sided) ideal. 

Observe that every right and every left ideal of a regular semigroup are 
idempotent. So if S is regular, then S is r.w.r. and l.w.r. Also note that if S is a 
monoid, then SAAAS ⊆=  for each right ideal A of S, and LSLSL ⊆=  for each 

left ideal L of S. 

Lemma 2.1. If every principal right ideal of S is idempotent, then xSx r =  

for every ,Sx ∈  and .xSx ∈  

Proof. For any ,Sx ∈  we have ( ) { }( ) ( ) ( )xSxxSxxSxx rr ∪∪ 222 ===  

( ) { } ,22
rxxSxSx ⊆⊆∪∪  so rxxS =  and xSx ∈  for each .Sx ∈  ~ 

Corollary 2.2. If S is r.w.r., then xSx r =  and xSx ∈  for each .Sx ∈  
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Proposition 2.3. The following are equivalent: 

(a) S is r.w.r.; 

(b) every principal right ideal of S is idempotent; 

(c) ( )2xSx ∈  for every ;Sx ∈  

(d) ( )nxSx ∈  for every Sx ∈  and ;1>n  

(e) xxx ∈  for each ;Sx ∈  

(f) if A, B are right ideals of S and ,BA ⊆  then ;AAB =  

(g) every homomorphic image of S is r.w.r.; 

(h) every ideal of S is a r.w.r. semigroup. 

Proof. In the following .Sx ∈  Note that (a) implies (b) is trivial. Assume (b). 

Then ( ) ( ) ,22 xSxx rr ==  and hence ( ) .2xSx ∈  So (b) implies (c). 

Assume (c). Let B be a right ideal of S and .Bb ∈  Then from ( ) ( )22 bSb r =  

{ },22 bSbbSb ∪∪∪  and since ( ) ,2bSb ∈  we have ( ) .2
rbb ∈  Thus .2BB ⊆  

So (c) implies (a), and hence (a), (b) and (c) are equivalent. 

Using S is r.w.r., we have ( ) ( )nxSxSxS == 2  for ,1>n  and hence ( ) .nxSx ∈  

Since ( ) ( )2xSxS n ⊆  for ,1>n  the converse is immediate. Thus (a), (b), (c) and (d) 

are equivalent. 

Using (a) through (c), we have SxxSx ∪=  and ( ) .222 xSSxSxx ∪=  

Since ( ) ,2xSx ∈  we have .Sxxx ∈  But ,xxSxxx ⊆∈  yielding .xxx ∈  

Thus (a) through (c) imply (e). 

Assume (e). Since ,xSxx ⊆  we have ,xSx ∈  and hence SxxSx ∪=  

.SxS∪  So .2 xSxSxSxSxxx ∪∪=  If ,xSxx ∈  then ,xSxSxS ⊆  and hence 

( ) .2xSx ∈  If ,2Sxx ∈  then sxx 2=  for some ,Ss ∈  and hence ( ) ,2 xssxx =  or 

( ) .2xSx ∈  So in any case, ( )2xSx ∈  and thus (c) holds. So (a) through (e) are 

equivalent. 
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Assume (a). Then if A, B are right ideals of S with ,BA ⊆  we have 2AA =  
AAB ⊆⊆  or .AAB =  So (a) implies (f ). The converse is immediate using .BA =  

Observe that (a) implies (g) follows immediately from the basic properties of 
homomorphisms. The converse is trivial. 

Let I be an ideal of S and .Iy ∈  By (c), we have ( ) ,2ySy ∈  and this implies 

that ( ) .4ySy ∈  Since ( ) ( ) ,24 yIySy ⊆∈  we have ( ) ,2yIy ∈  and hence the 

semigroup I satisfies (c). So I is r.w.r. and (c) implies (h). The converse is 
immediate. This completes the logical circuit. ~ 

Proposition 2.4. Let S have a right identity. Then S is r.w.r. if and only if 

( )2xSxS =  for each .Sx ∈  

Proof. If ( )2xSxS =  for each ,Sx ∈  then ( )2xSx ∈  and hence S is r.w.r. The 

converse is immediate. ~ 

The condition that S has a right identity cannot be eliminated in the previous 
proposition. To see this, observe that if S is a semigroup with zero and at least one 

other element and that 0=ab  for each ,, Sba ∈  then ( )2xSxS =  for each ,Sx ∈  

but S is not r.w.r. 

Proposition 2.5. The following are equivalent: 

(a) S is r.w.r.; 

(b) BABA ⊆∩  for each ( );, SBA R∈  

(c) ( ) ( )BAABBA ∩∩ ⊆  for each ( )., SBA R∈  

Proof. If S is r.w.r, then ( ) .2 ABBABA ⊆= ∩∩  Similarly, one gets BA ∩  

.BA⊆  Assuming (b) and letting BA =  gives 2AA ⊆  and hence .2AA =  So (a) 
and (b) are equivalent. Consequently (a) implies (c), and the converse is immediate.  

 ~ 

Corollary 2.6. Let S be r.w.r. 

(a) If B is a right ideal of S and I is an ideal of S, then .BIIB =∩  
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(b) For each Sx ∈  and each ideal I of S, we have ( ) .xIIxS =∩  

(c) If ( ),SEe ∈  then eSe is r.w.r. 

Proof. (a) ;IBBIIB ∩∩ ⊆⊆  so .BIIB =∩  

(b) ( ) ( ) ( ) ( ) ;xISIxIxSIxSIxIxI ⊆⊆=⊆⊆ ∩∩  so ( ) .IxSxI ∩=  

(c) Let T be a right ideal of eSe. Since eTTeT ==  and TeS is a right ideal of 

S, we have ( )2TeSTeSTeT =⊆=  and ( )( ).TeSeTeSTe ⊆  So ( )( )TeSeTeSTeT ⊆=  

( )[ ] ( )[ ] ,2TeSeTeSeT ⊆=  and hence .2TT =  ~ 

Corollary 2.7. Let S be a monoid. Then the following are equivalent: 

(a) S is r.w.r.; 

(b) if B is a right ideal of S and I is an ideal of S, then ;BIIB =∩  

(c) if Sx ∈  and I is an ideal of S, then ( ) ;xIIxS =∩  

(d) if ( ),SEe∈  then eSe is r.w.r. 

Proof. Assume (b). Let A and B be right ideals of S. Then ( )SABAB ∩∩ ⊆  

.BABSA ==  Then by Proposition 2.5, we have that S is r.w.r. This and Corollary 
2.6 yield (a) and (b) are equivalent. 

Assume (c). Let Sx∈  and I be an ideal of S. Then ( ) ( ) ( )SxSxSxSxSxS =⊆ ∩  

( ) ,2xS=  and hence ( ) .2xSxS =  So by Proposition 2.4, (a) and (c) are equivalent. 

Finally, the equivalence of (a) and (d) is immediate using Corollary 2.6 and the 
fact that S has identity. ~ 

For any ideal I of a semigroup S, let IS  be the Rees quotient semigroup 

determined by S and I. Recall that this induces a natural homomorphism of S onto 
IS  and that IS  is a semigroup with zero [12, p. 62]. 

Proposition 2.8. Let S be a semigroup with zero. 

(a) If S is r.w.r., then the only nilpotent ideal of S is ( ).0  

(b) If I is an ideal of S and IS  is r.w.r., then every nilpotent ideal of S is 

contained in I. 
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Proof. (a) Part (a) follows immediately from the definition of the terms. Part (b) 
then follows from part (a) and the fact that IS  is r.w.r. with zero. ~ 

Lemma 2.9. Let S have a partial order relation ≤  such that aab ≤  for each 
., Sba ∈  If S is regular, then S is a band. If S is an inverse semigroup, then S is a 

semilattice. 

Proof. Let .Sb ∈  Then bbbb ′=  for some ,Sb ∈′  and hence ( ) bbbbbb ′≤′=  

;b≤  so .bbb ′=  But bb ′  is an idempotent. ~ 

For results similar to Lemma 2.9 (see [11]). 

Proposition 2.10. If the semigroup ( )SR  is regular, then S is r.w.r. If ( )SR  is 

an inverse semigroup, then ( )SR  is a semilattice, ( ) ( ),SSR I=  and BAAB ∩=  

for each ( )., SBA R∈  

Proof. Set inclusion serves as a partial ordering on ( )SR  with the properties 

required in Lemma 2.9. So if ( )SR  is regular, then ( )SR  is a band and S is r.w.r. 

Consequently, if ( )SR  is an inverse semigroup, then the elements in ( )SR  commute 

pairwise and each is an idempotent; i.e., ( )SR  is a semilattice. Consequently 

( ) ( ).SS IR =  Then Corollary 2.6 (a) gives ,BAAB ∩=  for each ( )., SBA R∈  ~ 

Corollary 2.11. The following are equivalent: 

(a) S is r.w.r; 

(b) if ( ),SB R∈  then there exists ( ) 1>= Bnn  such that ;BBn =  

(c) ( )SR  is regular. 

3. Examples and Constructions 

Let W  be the class of all r.w.r. semigroups and T  be the class of all semigroups 
that contain a r.w.r. ideal. Observe that both W  and the class of all semigroups with 
zero are contained in .T  

Proposition 3.1. Let .T∈S  

(a) There is a unique largest r.w.r. ideal of S, which we denote by ( ).SW  
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(b) If I is an ideal of S, then .T∈I  

(c) Every homomorphic image of S is in .T  

Proof. (a) Let Λ∈λλ ,I  be the set of all ideals of S such that ,W∈λI  and let 

., Λ∈λ= λIT ∪  Then for any ,Tx ∈  we have γ∈ Ix  for some ,Λ∈γ  and hence 

( ) .2
γ∈ xIx  But ( ) ( ) .22 xTxI ⊆γ  Thus ( )2xTx ∈  and hence the ideal T is r.w.r. So 

T is the desired ideal ( ).SW  

(b) Let I be an ideal of S. Then ( )SI W∩  is an ideal of ( ),SW  so it is r.w.r. 

But ( )SI W∩  is also an ideal of the semigroup I. Thus .T∈I  

(c) Let SS →φ :  be a surjective homomorphism. Observe that ( )( )SWφ  is a 

r.w.r. ideal of .S  So .T∈S  ~ 

Proposition 3.2. Let .T∈S  

(a) ( )( ) .0=SS WW  

(b) If ,W∈S  then IS  is in W  for each ideal I of S. 

Proof. (a) Let I  be a r.w.r. ideal of ( ),SS W  where the preimage I under the 

natural homomorphism ( )SS W→η :  is an ideal of S. Using I  is r.w.r., we have 

that for each ( ) ( ) ( ) ( ) ( ),, 21 sxsxxIx ηηηη=η∈  where ., 21 Sss ∈  This implies 

that 21xsxsx =  and hence ( ) ;2xIx ∈  so I is r.w.r. Thus ( )SI W⊆  and hence I  is 

zero. 

(b) This follows from Proposition 3.1 (c). ~ 

A general definition for radicals in semigroups was given by Hoehnke [10]. We 
use the equivalent definition of such a radical as discussed by Clifford [4] and by 
Roĭz and Schein [14]. 

Corollary 3.3. Let ρ be the function defined on ,T  where if ,T∈S  then ( )Sρ  

is the Rees congruence on S induced by the ideal ( ).SW  Then ρ is a Hoehnke type 

radical on the class .T  

Proof. Let T∈S  and SSf →:  be a surjective homomorphism. If Syx ∈,  
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such that yx ≠  and ( ) ( ),, Syx ρ∈  then ( )., Syx W∈  So ( ) ( )( ) ( ),, Syfxf W∈  

and hence ( ) ( )( ) ( )., Syfxf ρ∈  This, together with Proposition 3.2 (a) yields that ρ 

is a Hoehnke radical on the class .T  ~ 

The concept of an Amitsur-Kurosh radical class for semigroups was defined in 
[17, Section 4]. From the previous remarks in this section and in Proposition 2.3 (h), 
we observe that W  is an Amitsur-Kurosh radical class. We use 0S  for the class of 

all semigroups S with zero such that ( ) ;0=SW  i.e., 0S  is the semisimple class, in 

the class of semigroups with 0, associated with the radical class .W  The results 
obtained above on the radical W  are analogous to those found for rings (see [1], 
[15, p. 197]). 

Proposition 3.4. The class 0S  is closed under subdirect products. 

Proof. From [17, Section 4], we have that in the category of semigroups with 
zero any semisimple class of an Amitsur-Kurosh radical class is closed under 
subdirect products. ~ 

Proposition 3.5. The class of all r.w.r. (l.w.r.) semigroups is closed under direct 
products. 

Proof. Let ,, Λ∈λλS  be r.w.r. semigroups and .λΛ∈λΠ= SS  Then for any 

( )…… ,, λ= xx  in S, ( ) ,2
λλλ ∈ Sxx  for each .Λ∈λ  So ( ) ,2xSx ∈  and hence S 

is r.w.r. ~ 

Neither the class W  nor the class 0W  of all r.w.r. semigroups with zero is 

closed under subdirect products. To see this, observe that the ring of integers Z  is 
isomorphic to a subdirect product of fields, and hence the semigroup ( )⋅,Z  is 

isomorphic to a subdirect product of r.w.r. semigroups with zero. But ( )⋅,Z  is not 

r.w.r. 

Let 1S  be the monoid obtained from a semigroup S by adjoining an identity. If 

,Sx ∈  then ( )2xSx ∈  when S is r.w.r., and hence ( ) .21xSx ∈  Trivially ∈1  

( ) .1 21S⋅  So 1S  is r.w.r. whenever S is. Conversely, since S is an ideal of ,1S  

whenever 1S  is r.w.r., S is r.w.r. 

Let 0S  be the semigroup with zero formed by adjoining a zero to the semigroup 
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S. Similar to the paragraph above, we see that if S is r.w.r., then so is .0S  

Conversely, since S is an ideal of ,0S  whenever 0S  is r.w.r., S is r.w.r. 

Let Λ be an infinite index set and λS  be a semigroup with zero for each .Λ∈λ  

Let κ be an infinite cardinal such that .card Λ≤κ  Define κP  to be the set of all 

( )…… ,, jbb =  in λΛ∈λΠ= SP  such that 0=jb  for all j except in some subset 

with cardinality less than κ. (Thus if ,0ℵ=κ  then κP  would be those b with finite 

support.) Observe that each κP  is an ideal of P and that τκ ⊆ PP  if .τ≤κ  

Proposition 3.6. Let κΛ λ ,, S  and κP  be as above. If each ,, Λ∈λλS  is 

r.w.r., then κP  is r.w.r. 

Proof. Use that κP  is an ideal of λΛ∈λΠ= SP  and that P is r.w.r. Then 

Proposition 2.3 yields that each λP  is r.w.r. ~ 

Proposition 3.7. Let I be an ideal of S. If I and IS  are r.w.r., then S is r.w.r. 

Proof. Let ISS =  and use the notation x  to denote the image in S  under the 

natural homomorphism. Then for any ,Sx ∈  ( )2Sxx ∈  and hence ,txsxx =  

where ., Sts ∈  So either Ix ∈  or .xsxtx =  The latter yields ( ) .2xSx ∈  If ,Ix ∈  

then since I is r.w.r., we have ( ) .2xIx ∈  But ( ) ( ) ;22 xSxI ⊆  so ( ) .2xSx ∈  Thus S 

is r.w.r. ~ 

4. Rings and their Multiplicative and Adjoint Semigroups 

Let R denote a ring with identity and ( )⋅,R  be its multiplicative semigroup. 

Every right ideal of R is a right ideal of ( )⋅,R  but not conversely. However, for a 

right ideal B of the ring R, what is meant by 2B  in R is not the same as what is 

meant by 2B  in ( )., ⋅R  This comment makes the next result of interest. For necessary 

background on r.w.r. rings, see [13, 16]. 

Proposition 4.1. A ring R is r.w.r. if and only if the semigroup ( )⋅,R  is r.w.r. 

Proof. For clarity in this proof, we will use XY for the product of the ring right 
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ideals X and Y and ( ) ( )⋅⋅⋅ ,, YX  for the product of the semigroup right ideals ( )⋅,X  

and ( )., ⋅Y  

Let R be r.w.r. and ( )⋅,A  be a right ideal of ( )., ⋅R  Then for each ,Aa ∈  we 

have aRa ∈  and ( ) ( ) ( ).,,2 ⋅⋅⋅⊆= AAaRaR  So ( ) ( ) ( )⋅⋅⋅⊆⋅ ,,, AAA  and hence 

( )⋅,R  is r.w.r. 

Let ( )⋅,R  be r.w.r. Let A be a right ideal of R and let .Aa ∈  Then ( )⋅,aR  is a 

right ideal of ( )⋅,R  and so ( ) ( ) .,, 2AaRaRa ⊆⋅⋅⋅∈  So 2AA =  and R is r.w.r. ~ 

It is well-known that for any ring R, the operation defined by baba +=  
,ab−  for each ,, Rba ∈  yields a semigroup ( ).,R  Furthermore, if R has unity, 

then the function given by ( ) xx −=φ 1  is an isomorphism of the semigroup ( )⋅,R  

onto the semigroup ( ).,R  

Corollary 4.2. If R is a r.w.r. ring, then ( ),R  is a r.w.r. semigroup. 

Proof. Recall that a r.w.r. ring R can be embedded as an ideal in a ring 1R  such 

that 1R  has unity 1, and such that every element has the form ,1 a+α  where Ra ∈  
and ,K∈α  where K is a commutative r.w.r. ring with unity such that R is a                    

K-algebra [2]. In this case, then ( )⋅,1R  is a r.w.r. semigroup and hence so is its 

isomorph ( ).,1R  Observe that R is an ideal of ( );,1R  so ( ),R  is also r.w.r. ~ 

It is worth noting that if R is a ring without unity, then the semigroups ( )⋅,R  and 

( ),R  need not be isomorphic. As an extreme example, take ,02 =R  .0≠R  In this 

case, ( )⋅,R  is not r.w.r., but ( ),,R  being a group, is a r.w.r. semigroup. Of course 

the ring R is not r.w.r. 

5. Simple and 0-simple Monoids and Semigroups 

Let S have a zero. Then ( )SR  has a zero. If no ambiguity arises, then we use 0 

for each of: the zero of S; the zero in ( );SR  and the zero ideal of ( ).SR  Observe 

that the set of all nilpotent right ideals of S is a right ideal of ( ).SR  

Recall that S is a left zero semigroup if aab =  for each ,, Sba ∈  [5, p. 4]. 
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Proposition 5.1. Let S be a semigroup. If ( )SR  is left zero, then S is simple. 

Proof. Let ( )SR  be left zero. Then for any ,Sx ∈  we have ( ) .SxSSSxS ==  

 ~ 

Proposition 5.2. If S is a simple monoid, then: 

(a) ( )SR  is left zero and S is r.w.r; 

(b) ( )SL  is right zero and S is l.w.r. 

Proof. Let ( )., SBA R∈  Then ( ) ( ) .AASSBABASAB ====  So ( )SR  is 

left zero. Thus ( )SR  is a band and S is r.w.r. The left-sided result follows similarly. 

 ~ 

Proposition 5.3. If S is a 0-simple monoid, then S is r.w.r. and l.w.r. 

Proof. Proceed as in the proof of Proposition 5.2 using .0≠= BA  ~ 

Corollary 5.4. Let S be a monoid and I be a maximal ideal of S. If I is r.w.r., 
then S is r.w.r. 

Proof. Since I is maximal, IS  is a 0-simple monoid. So IS  is r.w.r. by 

Proposition 5.3. Since I is r.w.r., we then have that S is r.w.r. by Proposition 3.7. ~ 

By [6, Theorem 8.45], we can embed any semigroup S into a simple monoid 
( ).SC  Moreover, by [6, Theorem 8.48], the monoid ( )SC  is regular if and only if 

S is regular. This gives another method to construct r.w.r. semigroups that are not 
regular. 

There are many regular semigroups that are not simple, and many simple 
monoids that are not regular. If 1S  is a regular semigroup which is not simple and 

2S  is a simple monoid which is not regular, then 21 SS ×  is a r.w.r. (l.w.r.) 

semigroup which is neither simple nor regular. 

Proposition 5.2 does not hold for simple semigroups without identity, as the 
next example illustrates. 

Example 5.5. Let T be a Baer-Levi semigroup as defined in [6, p. 82]. Then T is 
right simple without idempotents; thus, T is the only right ideal of T, so trivially T is 
r.w.r. However, if T is l.w.r., then Ttt ∈  for any Tt ∈  by Corollary 2.2. Therefore, 
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there exists Tx ∈  such that .xtt =  Recall that a right simple semigroup without 
idempotents cannot have the equation bab =  which holds for any two elements a, b 
[6, Lemma 8.3]. Thus T is simple and T is r.w.r. but not l.w.r. 

Example 5.6. Recall that for any semigroup T, using the new operation ba ∗  

,ba=  one gets the opposite semigroup .oppT  If T is a Baer-Levi semigroup, then 
oppTTS ×=  is simple. If S is l.w.r., then every homomorphic image of S is l.w.r. 

However, the projection map TS →π :1  is a homomorphism, and T is not l.w.r. 

Hence S is not l.w.r. Similarly, using the second projection map ,: opp
2 TS →π  we 

have that S is not r.w.r. 

We now characterize ( )SR  for the general case, where S is simple. 

Lemma 5.7. If S is a simple semigroup and A, B are right ideals of S, then 

( ) .22 ASAASAB ===  

Proof. ( ) ( ) ;ABBASSBAAS ⊆==  so .ABAS =  Letting BA =  yields 

.2 ASA =  Finally, ( ) ( ) .2 ASASASAAASAAS ⊆⊆==  ~ 

Lemma 5.8. Let S be simple. Let ( ) { ( )}.2
2 SAAS RR ∈|=  Then 

(a) every element of ( )S2R  is a left zero of ( );SR  

(b) ( )S2R  is a two-sided ideal of ( );SR  

(c) ( )( ) ( );2
2 SS RR =  

(d) ( )S2R  is a homomorphic image of ( ).SR  

Proof. Let ( )SA 2
2 R∈  and ( ).SB R∈  Then ASBBA =2  by Lemma 5.7 and 

( ) ,2AASSBAASB ===  again by Lemma 5.7. This proves (a) and also proves 

that ( )S2R  is a right ideal of ( ).SR  

(b), (c) By Lemma 5.7, we have .2AASAB ==  In particular, if ( ),2 SB R∈  

then ( ).2 SAB R∈  

(d) Define a map ( ) ( )SS 2: RR →φ  by ( ) 2AA =φ  for all ( ).SA R∈  We 
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show that this map is a homomorphism. Then ( ) ( ) ( ) ( ) 2ABABAABABAB ===φ  

by Lemma 5.7. By (a), we have .222 BAA =  But ( ) ( ).22 BABA φφ=  ~ 

Proposition 5.9. Let S be simple. Then the following are equivalent: 

(a) S is r.w.r.; 

(b) xSx ∈  for all ;Sx ∈  

(c) S is a right identity for ( );SR  

(d) ( )SR  is a left zero semigroup. 

Proof. Assume (b) and let .Sx ∈  Then SxSS =  and hence ( );SxSxxS =  so 

( )2xSx ∈  and S is r.w.r. The converse follows immediately from Corollary 2.2. 

Assume S is r.w.r. and let ( ).SA R∈  Since S is simple, Lemma 5.7 gives 

ASA =2  and hence .ASA =  So (a) implies (c) holds. The converse follows using 
Lemma 5.7. Observe that (a) implies (d) follows from Lemma 5.8, and the converse 
is trivial. ~ 

Recall that if S is isomorphic to an ideal S  of a semigroup V and there is a 

homomorphism of V onto S  which leaves the elements of S  fixed, then V is said to 
be a retract extension of S [12, III.4]. The next result then follows from Lemma 5.8. 

Proposition 5.10. Let S be simple and not r.w.r. Then ( )SR  is a retract 

extension of a left zero semigroup by a semigroup with zero multiplication. 
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