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Abstract 

In this note, using the property of the twist, we obtain a concise formula 
about the sum of the number of elements of group of rational points on 
some kinds of elliptic curves over the finite field. This formula can be 
generalized to the generic case. Moreover, we give some interesting 
remarks. 

1. Introduction 

Let qF  be a finite field and let E be an elliptic curve over .qF  ( )EH  is defined 

to be the number of elements of group of rational points on the elliptic curve E over 
the finite field .qF  As we know, like the irregularity of Euler function ( )nϕ  for 
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distinct positive integers n, the occurrence of ( )EH  are irregular for distinct elliptic 

curves E over .qF  However, like ( )∑ |
=ϕnd nd ,  we find similarly that for some 

kinds of elliptic curves ( )∑ ∈E
E E EH,  have a concise formula. For details, see the 

following Theorem 1. Furthermore, based on Schoof ’s work on the point counting 
problem, we conjecture similarly that there will be a deterministic polynomial time 
algorithm for counting Euler function. Thus, the RSA modulus can be expected to 
factor completely in a polynomial time. For more details, see Section 3. 

Theorem 1. Denote the number of elements of group of rational points on the 

elliptic curves of the form baxxy ++= 32  over a finite field qF  by ( )., baEH  

Then ( ) ( ) ( )( )∑ ×∈
−+=

qq FFba ba qqqEH, , 11  for ( ) .2≠qFChar  

2. The Proof of Theorem 1 

In order to prove Theorem 1, firstly, we introduce the concept and property of 
twist. For details, see [1]. Let qF  be a finite field and let baE ,  given in short 

Weierstrass form baXXY ++= 32  be an elliptic curve over .qF  A twist of the 

curve baE ,  is given by ,, dcE  where 2avc =  and 3bvd =  for some quadratic non-

residue .qFv ∈  A useful property of twist is ( ) ( ) .22,, +=+ qEHEH dcba  

The proof of Theorem 1. Let qFv ∈  be a quadratic non-residue. Clearly, the 

mapping qqqq FFFFf ×→×:  with ( ) ( )32,, bvavbaf =  is one-to-one. Hence, 

we have 

( ) ( ) ( )
( )( )( )

∑ ∑ ∑
×∈ ×∈ ×∈

+=
qq qq qq

FFba FFba FFbvav
bvavbaba EHEHEH

, , ,
,,,

32
32 .2  

Using the property of the twist which states that ( ) ( ) ,2232,, +=+ qEHEH
bvavba  

we have ( ) ( )( )∑ ×∈
+=

qq FFba ba NqEH, , ,222  where N is the number of the 

elliptic curves of the form baxxy ++= 32  over the finite field .qF  Note that =N  

( ).1−qq  Namely, there are exactly ( )1−qq  pairs ( )ba,  such that the discriminant 
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( ) .027416 23 ≠+−=Δ ba  Therefore, ( )( ) ( ) ( ).11, , −+=∑ ×∈
qqqEH

qq FFba ba  It 

finishes the proof of Theorem 1. 

3. Some Remarks 

Remark 1. In Theorem 1, we do not consider the isomorphism between two 

distinct elliptic curves. Namely, baxxy ++= 32  and dcxxy ++= 32  are 

distinct if ( ) ( ).,, dcba ≠  However, they perhaps are isomorphic and ( ) =baEH ,  

( )., dcEH  

Remark 2. Theorem 1 could be generalized. Denote the number of all elliptic 

curves of the form 64
2

2
3

31
2 axaxaxyaxyay +++=++  over any finite field 

qF  by N, where .qi Fa ∈  Then the sum of the number of elements of group of 

rational points on all elliptic curves of the form 2
2

3
31

2 xaxyaxyay +=++  

64 axa ++  over qF  is ( ) .1 Nq +  Particularly, the sum of the number of elements 

of group of rational points on all elliptic curves of the form 6
2

2
32 axaxy ++=  

over nF
3

 is ( ) ( ),11 2 +− qq  where .3nq =  

Remark 3. As we know, for large positive integer n, there is not an efficient 
algorithm for factoring n. Thus, it is hard to compute ( )nϕ  if n is composite and its 

factorization is not known. However, some elementary estimations have been 

obtained. Sierpiński [6] proved that ( ) nnn −≤ϕ  if n is composite. Kendall and 

Osborn [4] showed that ( ) 3
2

nn >ϕ  for .30>n  Hatalová and Šalát [3] refined it to 

( ) n
nn log2

2log>ϕ  for .3≥n  As a special case, let us consider RSA modulus 

,qpn =  where p and q are distinct odd primes with .2 pqp <<  Clearly, in this 

case, we have ( ) ( ) ( ) .12 22 −<ϕ<− nnn  This implies that [ ] ( )nnn ϕ−+− 13  

.n<  Similarly, we have a classical inequation on ( ).EH  In 1930’s, Hasse [2] 

proved that Artin’s conjecture which states that ( ) .21 qqEH ≤−−  In 1985, 

Schoof [5] published the first deterministic polynomial time algorithm with 
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( )qO 9log  operations for computing ( )EH  for arbitrary elliptic curve E over a large 

finite field .qF  This is a theoretical breakthrough for the point counting problem. By 

two aforementioned similar inequations, we believe that there will also be a 
deterministic polynomial time algorithm for computing Euler function ( ).nϕ  Thus, 

the RSA modulus can be expected to factor completely in a polynomial time. Let us 
try the item to wait. 

Remark 4. Many modern factorization algorithms such as the Elliptic Curve 
Factoring Algorithm and the Number Field Sieve have been showed that there is a 
sub-exponential time algorithm for factoring a large integer n. People conjecture that 
there is a deterministic polynomial time algorithm for factoring n. Thus, there is a 
deterministic polynomial time algorithm for counting Euler function ( ).nϕ  On the 

other hand, if we do not know the factorization of n, but we know ( ),nϕ  can we 

factor n? These two questions maybe are equivalent (especially, when ).pqn =  

Unfortunately, for generic cases, so far it has not been proved or disproved. So, in 
this note, we would like to stress this problem and hope that people are interested in 
it. 

Remark 5. Based on Remark 4, we try to ask another question: for given large 
integer n, how to compute ( )?nϕ  Do we need factor n? If we do not factor n, what 

shall we do? By Schoof’s algorithm, we could get similarly a method as follows: for 
any given small prime p (for example, ),log~ np  count ( ) ( ).mod pnϕ  But is there 

a deterministic polynomial time algorithm for counting ( ) ( )?mod pnϕ  Surely, 

( ) ( ).2mod0≡ϕ n  However, how to solve the cases that p is odd? We will further 

consider these questions. 
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