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Abstract 

We propose various model selection methods that have been designed for 
the case of nonnested models. In contrast to conventional model selection 
criteria like AIC and BIC, which penalize only the number of explanatory 
variables actually included in the model, our methods take also the total 
number of available variables into account. We compare the performance 
of the different methods through simulation studies. 

1. Introduction 

Our methods for discriminating between nonnested models, which will be 
introduced in the next section, are modifications of conventional methods designed 
for nested models. It is, therefore, necessary to first give a short review of these 
conventional methods. For the discussion of popular model selection criteria like 
Mallows’ pC  [8, 15], the final prediction error (FPE; [1, 20]), and Akaike’s 

information criterion (AIC, [2]), which are closely related to each other, we assume 
that all competing models are submodels of a normal regression model 

uXy +β=  

satisfying β==μ XEy  and ( ) .2IyVar σ=  In the case of nested models, each 

submodel is characterized by an kn ×  submatrix kX  containing the first Kk ≤  
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columns kxx ...,,1  of the Kn ×  matrix X. The submatrix kX  is used to estimate 

the mean μ by projecting y onto the subspace of nR  spanned by the columns of 
.kX  To assess the quality of this estimator, ,yPk  we use the mean squared error 

( ) 2μ−= yPEXMSE kk  

( ) 22 μ−+μ−= yPyPE kk  

.22 μ−μ+σ= kPk  (1) 

We want to select that model dimension k which gives the smallest mean squared 
error. The residual sum of squares is a biased estimator of the mean squared error, 
because 

( ) 2yPyEXRSSE kk −=  

( ) ( ) 22 μ−+μ−= kk PIPIE  

( ) .22 μ−μ+σ−= kPkn  (2) 

Model selection by minimization of the unbiased estimator 

 ( ) ( ) ( ) 2ˆ2 Kkkp knXRSSXC σ−−=∗  (3) 

of the mean squared error is equivalent to model selection by minimization of either 

 ( ) ( ) ( )knXRSSXC
K

k
kp 2

ˆ 2 −−
σ

=  (4) 

[8, 15] or 

 ( ) ( ) ,ˆ2 2
Kkk kXRSSXFPE σ+=∗  (5) 

where ( ) ( )KnXRSS kK −=σ2ˆ  is an unbiased estimator of .2σ  The statistic ∗FPE  

is an unbiased estimator of the mean squared prediction error 

( ) 2yPzEXMSPE kk −=  

( ) 222 μ−+μ−μ+μ−= yPEPzE kk  

( ) ,22 μ−μ+σ+= kPkn  (6) 

where z is an independent sample from the same distribution as y. 
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If kX  is correctly specified, i.e., if ,μ=yPE k  then not only 2ˆ Kσ  but also 

( ) ( )knXRSS kk −=σ2ˆ  will be an unbiased estimator of 2σ  and 

 ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
+=σ+=

kn
kXRSSkXRSSXFPE kkkk

21ˆ2 2  (7) 

[1, 20] will be another unbiased estimator of the mean squared prediction error. For 
large n, model selection by minimization of ( )kXFPE  is practically equivalent to 

model selection by minimization of 

 ( ) ( ) ( ),12ˆ,;log2 2 ++σ−= kyPyLXAIC kkk  (8) 

[2], because 

( ) ( )( )
n

kk kn
kXRSSnkn

kXRSSn ⎟
⎠
⎞⎜

⎝
⎛

−
++=⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

−
+ 21log21log  

( )( ) kXRSSn k 2log~ +  (9) 

and 2ˆlog kσ  is the only term in the maximum log likelihood 

( ) 2

2
22

ˆ2
ˆlog

2
2log

2
ˆ,;log

k

k
kkk

yPynnyPyL
σ

−
−σ−π−=σ  

2
ˆlog

2
2log

2
2 nnn
k −σ−π−=  (10) 

which depends on .kX  If kX  is misspecified, i.e., if ,μ≠yEPk  then 

 ( ) ( ) ( ) ,ˆ2ˆ22ˆ,;log2 22
kkkkk

Q QQkyPyLXAIC −++σ−=  (11) 

[21], where ,ˆˆˆ 22
kKkQ σσ=  is more appropriate for the estimation of the mean 

squared prediction error than AIC. A small-sample version of QAIC  is given by 

( ) ( ) ( ) kkkkk
Q
C QQkyPyLXAIC ˆ2ˆ22ˆ,;log2 2 −++σ−=  

,2
ˆ12ˆ32ˆ24ˆ8ˆ14ˆ2 4323222

−−
+−+−+

+ kn
QQQQkQkQk kkkkkk  (12) 



ERHARD RESCHENHOFER 120 

[17]. For ∞→n  this statistic reduces to ,QAIC  for 1ˆ =kQ  to the corrected AIC, 

 ( ) ( ) ( ) ,
2

46212ˆ,;log2
2

2
−−
++

+++σ−=
kn

kkkyPyLXAIC kkkC  (13) 

[26], and for ,∞→n  1ˆ =kQ  to AIC. In case of correct specification, ( )kC XAIC  is 

an unbiased estimator of ( ( )),ˆ,;log2 2
kk yPzLE σ−  because 

( ( )) ( ( ))22 ˆ,;log2ˆ,;log2 kkkk yPzLEyPyLE σ−−σ−  

2

2

ˆ k

k yPzEn
σ

−
−=  

1

2

2

2
2 ˆ

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

σ

σ
−−= k

k
nEnyPzEn  

( ) 2
1

2
2

−−σ
σ+−= kn

nknn  

( ) .2
46212

2

−−
++−+−= kn

kkk  

In the case of nested models, all K potential regressors are arranged in some 
natural order, hence there is only one model for each model dimension .Kk ≤  A 
comparison of two different models is therefore equivalent to a comparison of two 
different model dimensions. For example, AIC prefers the unique model of 
dimension 1k  over the unique model of dimension 12 kk >  when the likelihood 

terms differ by less than ( ).2 12 kk −  In the case of nonnested models, the best 

among all models of dimension 1k  is compared to the best among all models of 

dimension .2k  It seems quite obvious that now possible differences between the 

sizes of the two model classes must also be taken into account. Clearly, the number 
of models of a certain dimension depends on the total number K of potential 
regressors. In the next section, we study model selection criteria whose penalty terms 
depend not only on the number of regressors actually included in the model but also 
on the total number of available regressors. Because it is easier to deal with 
misspecification when we use the residual sum of squared errors rather than the 

maximum log likelihood, we will focus on extensions of ∗FPE  and FPE, 
respectively. The performance of these extensions is examined in Section 3. Section 
4 concludes. 
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2. Comparing Nonnested Models 

In the case of nonnested models, there is more than one model of dimension k if 
.Kk <  Let kX  denote an kn ×  submatrix containing those k columns of X which 

minimize the residual sum of squares and let kβ  denote the corresponding subvector 

of β. Under the additional assumption that the columns of X are orthonormal, i.e., 
,IXX =′  the residual sum of squares, the expected value of the residual sum of 

squares, the mean squared error, and the mean squared prediction error of the 
apparently best model of dimension k are given by 

( ) ( ( ) ) yIyRSS kkkkk XXXXX ′′−′= −1  

yyEyy kk XX ′′−′=  

,ˆˆ
kkββ′−′= Eyy  (14) 

( ) ,ˆˆ2
kkkX ββ′−σ+μμ′= EnRSSE  (15) 

( ) ( ) ( )kkkkk XXX ββ ˆˆ −μ′−μ= EMSE  

kkkk ββββ ˆˆˆˆ2 ′+′−μμ′= EE  

( ( ) ) kkkkk βββββ ˆˆˆˆ2 ′−′−′+μμ′= EE  (16) 

and 

( ) ( ) ( )kkkkk XXX ββ ˆˆ −′−= zzEMSPE  

( ) ,ˆˆˆˆ22
kkkkk βββββ ′−′−′+σ+μμ′= EEn  (17) 

respectively. For the estimation of 

 ( ) ( ) kkkkX βββ ˆˆ ′−′= EV  (18) 

we have to impose further restrictions. Perhaps the simplest possibility is to assume 

that .0=β  Then uXyX ′=′=β̂  has a K-dimensional multivariate normal 

distribution with 0ˆ =βE  and 

 ( ) .ˆ 2IXuuXEVar σ=′′=β  (19) 
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Hence, 

 ( ) ( ),,ˆˆ
1

2 KkEV ζσ=′= kkkX ββ  (20) 

where ( )Kk,1ζ  is the expected value of the sum of the k largest of K independent 

( )12χ -variables. Now the statistic 

 ( )
( )Kkn

RSS
,

ˆ
1

2
ζ−

=σ k
k

X  (21) 

is an unbiased estimator of 2σ  (because 0=μ  if )0=β  and the statistics 

( ) ( ) ( )KkRSSFPEsub ,ˆ2 1
2ζσ+= kkk XX  

( ) ( )
( ) ⎟⎠

⎞
⎜
⎝
⎛

ζ−
ζ

+= Kkn
KkRSS ,

,21
1

1
kX  (22) 

([18]; for related statistics see [7, 27]) and 

 ( ) ( ) ( )KkRSSFPE Ksub ,ˆ2 1
2 ζσ+=∗

kk XX  (23) 

are unbiased estimators of the mean squared prediction error. When we use subFPE  

or ∗
subFPE  for the selection of a subset of regressors, we compare the jth largest 

squared estimate, ( ),
ˆ 2

jβ  to its expected value, ( ).
ˆ 2

jEβ  But when there are 1−k  

dominant regressors which are certain to be included, we actually compare the 

largest of the remaining 1+− kK  values, ( ),
ˆ 2

kβ  to the expected value of the kth 

largest of K independent ( )12χ -variables, which does not seem right. In such a case, 

it might be more appropriate to compare ( )
2ˆ
kβ  to ( )1,11 +−ζ kK  and consequently 

prefer model dimension k over model dimension 1−k  only if the difference 

between the residual sums of squares is greater than ( ).1,1ˆ2 1
2 +−ζσ kKK  Assuming 

that all parameters except the 1−k  very large ones vanish we might estimate 

( )kXV  by ( )( ).1,11ˆ 1
2 +−ζ+−σ kKkK  But the associated criterion 

 ( ) ( ) ( )( )1,11ˆ2 1
2

1 +−ζ+−σ+=∗ kKkRSSFPE Kkk XX  (24) 

is likely to select too large models, because it allows only for a fair comparison 
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between the model dimensions 1−k  and k but not between 1−k  and ,1+k  

,2+k  etc. However, in a stepwise approach, where for each k, the decision between 

1−k  and k is based on the assumption that 1−k  regressors are certain to be 
included, the criterion 

 ( ) ( ) ( )∑
=

∗ +−ζσ+=
k

j
K jKRSSFPE

1
1

2
0 1,1ˆ2kk XX  (25) 

(for related criteria see [6, 19]) would certainly make more sense (although there is 
hardly any situation where it is a meaningful estimator of the mean squared 
prediction error). For the case, where there are not only some large coefficients, but 
possibly also a number of nonvanishing coefficients of minor importance, we 
propose a two-step procedure (FPE2). In the first step, the first 00 ≥k  predictors 

are selected by minimization of ( ).0 kX∗FPE  In the second step, the final model 

dimension 0kk ≥  is selected by minimizing 

( ) ( )001
2 ,ˆ2 kKkkRSS K −−ζσ+kX  

over ,...,,0 Kkk =  where ( ) .0,0 01 =−ζ kK  

The subset selection criteria discussed so far have two shortcomings. The first is 
that they have been derived under the assumption of orthogonality, which is rarely 
satisfied in practice. However, Reschenhofer et al. [19] tailored specific subset-
selection criteria for a typical base set of non-orthogonal macroeconomic variables 
and found that these criteria are practically equivalent to analogous criteria derived 
under the assumption of orthogonality. The second shortcoming is that they involve 

moments of order statistics from a ( )12χ -distribution. Although explicit closed-form 

expressions for such moments have recently been derived by Nadarajah [16], the 
calculation of the required moments is still no easy task, because the closed-form 
expressions are sums of special functions (namely, Lauricella functions) that are not 
contained in standard packages. For convenience, we therefore provide a table of 
values of ( )Kk,1ζ  for 50...,,1=K  and ( )15,min...,,1 Kk =  (see Table 1). Each 

value in this table is based on 100 million random samples of size K from a ( )12χ -

distribution. Next, we propose a reverse subset selection approach which does not 
involve moments of order statistics. Instead of increasing the current model 

dimension k when ( ) ( ) ...,ˆ,ˆ 2
2

2
1 ++ ββ kk  are too large, we decrease the dimension when 
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( ) ( ) ...,ˆ,ˆ 2
1

2
−ββ KK  are too small. If, in addition to k regressors with very large 

parameters, kK −  regressors with vanishing parameters are included in the model, 

the mean squared prediction error will increase by approximately ( ) 2σ− kK  and 

the expected value of the residual sum of squares will decrease by the same value. 
This change can be estimated either by the decrease in the residual sum of squares or 

by ( ) .ˆ 2
KkK σ−  A smaller value of the first estimator is an indication of overfitting. 

According to this reverse approach (RA), the largest k satisfying 

( ) ( ) ( ) 2
1 ˆ1 KkKXRSSRSS σ+−>−−kX  

is selected. 

3. Simulation Studies 

Here we evaluate the finite-sample performance of various model selection 
criteria through simulation studies. We generate the data from the orthonormal 
regression model 

tKK uxxy +β++β= 11  

,
2cos2

12cos2

2cos2

12cos2

t
K u

n
n
K

n

n
K

n
C

n
nn

nn
C +

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ π

ρ++

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ π

ρ=  

where nuu ...,,1  are i.i.d. ( ).1,0N  We use the mean squared error ( ) 2ˆˆ μ−μ kE  

to measure the performance of an estimator 

( ) ( ) ( ) ( ) ( ) tkk uxxk +β++β=μ ˆˆ11
ˆˆˆˆ  

of ,tEy=μ  where ( ) ( )k̂1
ˆ...,,ˆ ββ  are the k̂  apparently most significant coefficients, 

i.e., 

( ) ( ) ( ),
ˆˆˆ 22

ˆ
2
1 Kk

β>>β>>β  

and k̂  is obtained with the help of a model selection criterion. For ,10=K  
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,9.0,7.0=ρ  and 30...,,15,10...,,7,6...,,1,5.0,0=C  we generated 100,000 

samples y of size ,50=n  500 and calculated the value 

( ) ( ) ( )∑ ∑
= =

β+ββ−μμ′
k

j

k

j
jjj

ˆ

1

ˆ

1

2ˆˆ2  

for each sample. The average over all 100,000 values is practically identical to the 

mean squared error of ( ).ˆˆ kμ  For the determination of k̂  we used some of the model 

selection methods discussed in the previous sections, namely, AIC, ,∗
subFPE  ,0

∗FPE  

FPE2; and RA, as well as 

( ) ( ) ( ) ( )nkyPyLXBIC Kkk log1ˆ,;log2 2 ++σ−=  

[22]. Methods that are closely related to one of these six methods were not included 

in our simulation study. For example, FPE, ,pC  ,CAIC  QAIC  and Q
CAIC  often 

select the same model as AIC, particularly when n is large. For the determination of 
the best subset of regressors, we always used the apparently best subset of each 
model dimension k and not just the first k regressors, even in case of AIC and BIC. 
Figure 1 (medium sample size: ,50=n  quickly decaying coefficients: ,)7.0=ρ  

Figure 2 (large sample size: ,500=n  quickly decaying coefficients: ,)7.0=ρ  

Figure 3 (medium sample size: ,50=n  slowly decaying coefficients: ,)9.0=ρ  and 

Figure 4 (large sample size: ,500=n  slowly decaying coefficients: )9.0=ρ  show 

the mean squared errors implied by the six model selection methods. Each figure 
contains two subfigures which display the results in absolute terms (upper subfigure) 
and relative to BIC (lower subfigure), respectively. Not surprisingly, AIC 
outperforms BIC in the case of large coefficients and BIC outperforms AIC in the 
case of small coefficients. RA is somewhere between AIC and BIC, but closer to AIC 
in the case of large coefficients. But what is much more interesting is the behavior of 
the three criteria involving moments of order statistics. Their performance relative to 
BIC is not just a monotonic function of the size of the coefficients. They can 
outperform BIC both in the case of small and large coefficients. A nice example is 

∗
subFPE  which is always among the best criteria except for a “relatively small” 

region of medium-sized coefficients. This does, of course, not mean that this 
criterion is optimal in some sense (see also the discussion in the next section). Our 
goal is only to add additional methods to the base set of model selection criteria, 
which contains just AIC and BIC in most applications. 
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Figure 1. Mean squared errors of the methods AIC (dashed black line), ∗
subFPE  

(dashed gray line), ∗
0FPE  (solid gray line), FPE2 (dotted gray line), RA (dotted black 

line), and BIC (solid black line) used for the selection of the best subset of a base set 
of 10=K  orthonormal regressors in a normal regression setting with ,50=n  

,12 =σ  ,...,,1
K

K CC ρ=βρ=β  7.0=ρ  and .30...,,15,10...,,7,6...,,1,5.0,0=C  

The upper figure displays the results in absolute terms and the lower figure relative 
to BIC. 
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Figure 2. Mean squared errors of the methods AIC (dashed black line), ∗
subFPE  

(dashed gray line), ∗
0FPE  (solid gray line), FPE2 (dotted gray line), RA (dotted black 

line), and BIC (solid black line) used for the selection of the best subset of a base set 
of 10=K  orthonormal regressors in a normal regression setting with ,500=n  

,12 =σ  ,...,,1
K

K CC ρ=βρ=β  7.0=ρ  and .30...,,15,10...,,7,6...,,1,5.0,0=C  

The upper figure displays the results in absolute terms and the lower figure relative 
to BIC. 
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Figure 3. Mean squared errors of the methods AIC (dashed black line), ∗
subFPE  

(dashed gray line), ∗
0FPE  (solid gray line), FPE2 (dotted gray line), RA (dotted black 

line), and BIC (solid black line) used for the selection of the best subset of a base set 
of 10=K  orthonormal regressors in a normal regression setting with ,50=n  

,12 =σ  ,...,,1
K

K CC ρ=βρ=β  9.0=ρ  and .30...,,15,10...,,7,6...,,1,5.0,0=C  

The upper figure displays the results in absolute terms and the lower figure relative 
to BIC. 
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Figure 4. Mean squared errors of the methods AIC (dashed black line), ∗
subFPE  

(dashed gray line), ∗
0FPE (solid gray line), FPE2 (dotted gray line), RA (dotted black 

line), and BIC (solid black line) used for the selection of the best subset of a base set 
of 10=K orthonormal regressors in a normal regression setting with ,500=n  

,12 =σ  ,...,,1
K

K CC ρ=βρ=β  9.0=ρ  and .30...,,15,10...,,7,6...,,1,5.0,0=C  

The upper figure displays the results in absolute terms and the lower figure relative 
to BIC. 

4. Conclusion 

Since Kempthorne [11] has shown that all post-model-selection estimators, 
which first select a model based on a given data set and then fit the selected model to 
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the same data set, are admissible for choosing among least-squares fits of a normal 
linear regression model, there cannot be anything like a universally best model 
selection method. However, there may be methods that are optimal in special 
situations. Shibata [24, 25] and Shao [23] argued that model selection criteria like 
AIC may be particularly useful when there exists no finite-dimensional true model. 
However, Kabaila [10] warned not to overinterpret Shibata’s [24, 25] asymptotic 
results, because they hold only pointwise and may therefore be misleading. 
Moreover, Leeb [12] showed that generalized cross-validation 

 ( ) ( )
2

11
⎟
⎠
⎞

⎜
⎝
⎛

−
+=

kn
kXRSS

n
XGCV kk  (26) 

(see [5]) and Tukey’s 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−−
+⎟

⎠
⎞

⎜
⎝
⎛

−
+=

kn
k

kn
kXRSS

n
XS kkp 1

111  (27) 

(see [4, 9, 28]), which are practically equivalent to AIC if k is of smaller order than 
n, outperform AIC if the number of predictors is large. Yang [29, 30] questioned the 
simple story that AIC is good for infinite-dimensional models and BIC is good for 
finite-dimensional models and showed that no model selection criterion can share 
the main strengths of AIC and BIC simultaneously (see, e.g., also [3, 14]). In the 
light of the above discussion (for a more detailed account of the current state of the 
model selection problem, see [13]) it seems naïve to expect that any criterion could 
on purely theoretical grounds outperform all others. Of course, also simulation 
studies cannot prove the superiority of one criterion over another. Their outcomes 
depend largely on the respective model specifications (small vs. large sample size, 
nested vs. nonnested models, small vs. large dimension, slow vs. fast decay rate, 
deterministic vs. stochastic regressors, etc.) and can therefore easily be manipulated 
in any desired direction. However, in actual applications it is often quite easy to 
determine which criterion out of a base set of criteria is most appropriate for the 
problems at hand, particularly when n is large. So we only have to make sure that the 
base set contains a variety of criteria with diverse statistical properties. The model 

selection methods ,∗
subFPE  ,0

∗FPE  FPE2; and RA proposed in this paper are 

certainly worthy candidates for inclusion in such a base set. 
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Table 1. The value in row K and column k is the expected value of the sum of the k 

largest of K independent and identically ( )12χ -distributed random variables 
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