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Abstract

We propose various model selection methods that have been designed for
the case of nonnested models. In contrast to conventional model selection
criteria like AIC and BIC, which penalize only the number of explanatory
variables actually included in the model, our methods take also the total
number of available variables into account. We compare the performance
of the different methods through simulation studies.

1. Introduction

Our methods for discriminating between nonnested models, which will be
introduced in the next section, are modifications of conventional methods designed
for nested models. It is, therefore, necessary to first give a short review of these
conventional methods. For the discussion of popular model selection criteria like
Mallows” C, [8, 15], the final prediction error (FPE; [1, 20]), and Akaike’s

information criterion (AIC, [2]), which are closely related to each other, we assume
that all competing models are submodels of a normal regression model

y=XB+u
satisfying p = Ey = XB and Var(y) = ?l. In the case of nested models, each

submodel is characterized by an nx k submatrix X, containing the first k < K
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columns X, ..., X, of the nx K matrix X. The submatrix X, is used to estimate

the mean p by projecting y onto the subspace of R" spanned by the columns of
Xk . To assess the quality of this estimator, By, we use the mean squared error

MSE(X) = E[| Ry -1 [P
= El Ry - P+ Ay - n P

= ko? + | n - P % (1)

We want to select that model dimension k which gives the smallest mean squared
error. The residual sum of squares is a biased estimator of the mean squared error,
because

E RSS(Xy)=E| y—PRcy|?
=Bl =R)u [P+ (0 =R)u?

=(n=k)o® + [ n—Ru (2
Model selection by minimization of the unbiased estimator
Cp(Xk) = RSS(Xy) - (n - 2k) &% (3)

of the mean squared error is equivalent to model selection by minimization of either

Cp(xp) = T _ (1) @
Sk
[8, 15] or
FPE*(X,) = RSS(X) + 2k&%, (5)

where 6% = RSS(Xy)/(n — K) is an unbiased estimator of 2. The statistic FPE*

is an unbiased estimator of the mean squared prediction error

MSPE(X) = E| z - Ry [?

Elz—ul? +] 1R |? +El Ry -0 |2

=(n+k)o? +] p— R |2 (6)

where z is an independent sample from the same distribution as y.
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If Xy is correctly specified, i.e., if ERy =u, then not only 62K but also

ok = RSS(Xy)/(n — k) will be an unbiased estimator of o2 and

FPE(X, )= RSS(X )+ 2k6% = RSS(XU(“%) "

[1, 20] will be another unbiased estimator of the mean squared prediction error. For
large n, model selection by minimization of FPE(X,) is practically equivalent to

model selection by minimization of
AIC(X )=—-2log L(y; Py, 62)+2(k +1), (@)

[2], because

2k 2k "
nlog| RSS(Xy )| 1+ =nlog(RSS(Xy))+|1+
n-k n-k
~ nlog(RSS(Xy)) + 2k 9)
and log i is the only term in the maximum log likelihood

. n n,_ . ~-P.y|?
log L(y; Py, ck)=—5l092n—§logcﬁ —M
26k

n N, .2 N
=-—log2n——Ilo -—— 10
5 1092n——logoi -7 (10)
which depends on X,. If X, is misspecified, i.e., if ER y # p, then
AICQ(X )= -2logL(y; Py, 6§ )+ 2(k +2)Qy —2Q7, (12)

[21], where (jk = 6% /85, is more appropriate for the estimation of the mean
squared prediction error than AIC. A small-sample version of AICC is given by

AICQ (X, ) =-2log L(y; By, 68)+2(k +2)Q —2Q

. 2k2Q2 +14kQ7 — 8kQP + 2407 — 3208 +120¢
n-k-2 '

(12)
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[17]. For n — oo this statistic reduces to AICQ, for ék =1 to the corrected AIC,

2
AICc (X )= -2log L(y; Py, a@uwuy%, (13)
n_ —

[26], and for n — o, (jk =1 to AIC. In case of correct specification, AIC:(Xy) is

an unbiased estimator of E(-2logL(z; Py, 52)), because
E(-2logL(y; Ry, ¢))— E(-2log L(z; Ry, 6¢))

o elz-ny]

~2\1
2n _[nc
—n-E|z-Ry| —ZE[—;J
(&) ()

o 2 N 1
=n-(n+k)o Thnok=2
2k? + 6k + 4

In the case of nested models, all K potential regressors are arranged in some
natural order, hence there is only one model for each model dimension k < K. A
comparison of two different models is therefore equivalent to a comparison of two
different model dimensions. For example, AIC prefers the unique model of
dimension k; over the unique model of dimension k, > k; when the likelihood

terms differ by less than 2(k, —k;). In the case of nonnested models, the best
among all models of dimension k; is compared to the best among all models of
dimension k,. It seems quite obvious that now possible differences between the

sizes of the two model classes must also be taken into account. Clearly, the number
of models of a certain dimension depends on the total number K of potential
regressors. In the next section, we study model selection criteria whose penalty terms
depend not only on the number of regressors actually included in the model but also
on the total number of available regressors. Because it is easier to deal with
misspecification when we use the residual sum of squared errors rather than the

maximum log likelihood, we will focus on extensions of FPE* and FPE,
respectively. The performance of these extensions is examined in Section 3. Section
4 concludes.
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2. Comparing Nonnested Models

In the case of nonnested models, there is more than one model of dimension k if
k < K. Let X, denote an nx k submatrix containing those k columns of X which

minimize the residual sum of squares and let B denote the corresponding subvector

of B. Under the additional assumption that the columns of X are orthonormal, i.e.,
X'X =1, the residual sum of squares, the expected value of the residual sum of

squares, the mean squared error, and the mean squared prediction error of the
apparently best model of dimension k are given by

RSS(Xi) = ¥'(1 = Xpe(XicXi ) X))y

=y'y - Ey' X Xiy
= y'y - EBicBy. (14)
E RSS(Xy )= n+nc? — EBBy. (15)

MSE(Xy) = E(u = XycBic V(1 — XBi)
= 1'1 - 2EBi By + EBiBi
= Wi+ 2(E(Bi - Bio)Bx) - EBicBi (16)
and
MSPE(Xy) = E(z — Xy )(z — XyBy)
= w'n+no” + 2E(B —Bi)Bi — EBiBi, (17)
respectively. For the estimation of
V(Xk) = E(Bk — Bi)Bx (18)

we have to impose further restrictions. Perhaps the simplest possibility is to assume

that B=0. Then B:X’yzx’u has a K-dimensional multivariate normal

distribution with E[§ =0 and

Var(B) = EX'uu'X = &?l. (19)
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Hence,
V(Xy) = EBiBy = 2Cy (k, K), (20)

where ¢;(k, K) is the expected value of the sum of the k largest of K independent

%2 (1) -variables. Now the statistic

Sk =k Fjsgsl((ﬁ,krl) 21)
is an unbiased estimator of o2 (because p = 0 if B = 0) and the statistics
FPEg, (X )=RSS(X} ) +26k&;(k, K)
_ RSS(Xk)(1+ %) (22)
([18]; for related statistics see [7, 27]) and
FPEgup (X ) = RSS(X ) )+ 25k 1(k, K) (23)

are unbiased estimators of the mean squared prediction error. When we use FPEg,,
or FPEg,, for the selection of a subset of regressors, we compare the jth largest
squared estimate, B(Zj), to its expected value, Eﬁ(zj). But when there are k -1
dominant regressors which are certain to be included, we actually compare the
largest of the remaining K — k +1 values, ﬁ(zk), to the expected value of the kth
largest of K independent Xz(l) -variables, which does not seem right. In such a case,
it might be more appropriate to compare ﬁ(zk) to ¢1(1, K—k+1) and consequently

prefer model dimension k over model dimension k —1 only if the difference
between the residual sums of squares is greater than 262KC1(1, K -k +1). Assuming
that all parameters except the k —1 very large ones vanish we might estimate

V(Xy) by 6k (k—1+&;(1, K —k +1)). But the associated criterion

FPE; (Xy )= RSS(Xy)+26% (K—1+&1(L K —k +1)) (24)

is likely to select too large models, because it allows only for a fair comparison
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between the model dimensions k —1 and k but not between k —1 and k +1,
k + 2, etc. However, in a stepwise approach, where for each k, the decision between

k —1 and k is based on the assumption that k —1 regressors are certain to be
included, the criterion

k
FPES(Xk):RSS(Xk)+2c}KZQ1(1, K-j+1) (25)

j=1
(for related criteria see [6, 19]) would certainly make more sense (although there is
hardly any situation where it is a meaningful estimator of the mean squared
prediction error). For the case, where there are not only some large coefficients, but
possibly also a number of nonvanishing coefficients of minor importance, we
propose a two-step procedure (FPEZ2). In the first step, the first ky > 0 predictors

are selected by minimization of FPEy(X,). In the second step, the final model

dimension k > kg is selected by minimizing
RSS(X ) +26%C1(k—kg, K —kg)
over k = kg, ..., K, where £;(0, K—kq)=0.

The subset selection criteria discussed so far have two shortcomings. The first is
that they have been derived under the assumption of orthogonality, which is rarely
satisfied in practice. However, Reschenhofer et al. [19] tailored specific subset-
selection criteria for a typical base set of non-orthogonal macroeconomic variables
and found that these criteria are practically equivalent to analogous criteria derived
under the assumption of orthogonality. The second shortcoming is that they involve

moments of order statistics from a Xz(l) -distribution. Although explicit closed-form

expressions for such moments have recently been derived by Nadarajah [16], the
calculation of the required moments is still no easy task, because the closed-form
expressions are sums of special functions (namely, Lauricella functions) that are not
contained in standard packages. For convenience, we therefore provide a table of
values of ;(k, K) for K =1, ..., 50 and k =1, ..., min(K, 15) (see Table 1). Each

value in this table is based on 100 million random samples of size K from a xz(l) -

distribution. Next, we propose a reverse subset selection approach which does not
involve moments of order statistics. Instead of increasing the current model

dimension k when ﬁ(2k+1)’ ﬁ(zk+2), ... are too large, we decrease the dimension when
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ﬁ(zK), B(ZK_l), ... are too small. If, in addition to k regressors with very large

parameters, K —k regressors with vanishing parameters are included in the model,

the mean squared prediction error will increase by approximately (K — k)cs2 and

the expected value of the residual sum of squares will decrease by the same value.
This change can be estimated either by the decrease in the residual sum of squares or

by (K —k)&ZK. A smaller value of the first estimator is an indication of overfitting.
According to this reverse approach (RA), the largest k satisfying

RSS(X_1)—RSS(X)> (K —k +1)6%
is selected.

3. Simulation Studies

Here we evaluate the finite-sample performance of various model selection
criteria through simulation studies. We generate the data from the orthonormal
regression model

Y =PBX + o+ B Xk + U

/2 (275 j /2 (27‘CK j
— cos| — — CO0S 1
n \n n L

=Cp : +-~~+CpK : + Uy,

/2 (271 ) /2 (ZnK j
— COS| —n — COS| n
n n n n

where U, ..., Uy are i.i.d. N(0, 1). We use the mean squared error E|| fi(k) — p |

to measure the performance of an estimator
(k) = Bayxa) + - + ﬁ(g)x(g) + Uy
of u = Ey;, where [3(1), [302) are the k apparently most significant coefficients,
ie.,
ﬁ(Zl) S>> E’(le) S s ﬁ(ZK),

and k is obtained with the help of a model selection criterion. For K =10,
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p=0709 and C=0,051 .. 6,7 ..10,15, .., 30 we generated 100,000
samples y of size n = 50, 500 and calculated the value

K k
' A A2
K =22 B + 2B
j=1 =1
for each sample. The average over all 100,000 values is practically identical to the

mean squared error of Q(IZ). For the determination of K we used some of the model

selection methods discussed in the previous sections, namely, AIC, FPEg,,, FPEg,
FPE2; and RA, as well as

BIC(Xy)=-2logL(y; Py, 6k )+(k+1)log(n)
[22]. Methods that are closely related to one of these six methods were not included

in our simulation study. For example, FPE, C,, AlICc, AICQ and Alcg often

select the same model as AIC, particularly when n is large. For the determination of
the best subset of regressors, we always used the apparently best subset of each
model dimension k and not just the first k regressors, even in case of AIC and BIC.
Figure 1 (medium sample size: n =50, quickly decaying coefficients: p = 0.7),

Figure 2 (large sample size: n =500, quickly decaying coefficients: p = 0.7),
Figure 3 (medium sample size: n = 50, slowly decaying coefficients: p = 0.9), and
Figure 4 (large sample size: n = 500, slowly decaying coefficients: p = 0.9) show

the mean squared errors implied by the six model selection methods. Each figure
contains two subfigures which display the results in absolute terms (upper subfigure)
and relative to BIC (lower subfigure), respectively. Not surprisingly, AIC
outperforms BIC in the case of large coefficients and BIC outperforms AIC in the
case of small coefficients. RA is somewhere between AIC and BIC, but closer to AIC
in the case of large coefficients. But what is much more interesting is the behavior of
the three criteria involving moments of order statistics. Their performance relative to
BIC is not just a monotonic function of the size of the coefficients. They can
outperform BIC both in the case of small and large coefficients. A nice example is

FPEg,, Which is always among the best criteria except for a “relatively small”

region of medium-sized coefficients. This does, of course, not mean that this
criterion is optimal in some sense (see also the discussion in the next section). Our
goal is only to add additional methods to the base set of model selection criteria,
which contains just AIC and BIC in most applications.
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Figure 1. Mean squared errors of the methods AIC (dashed black line), FPEgy,
(dashed gray line), FPEg (solid gray line), FPE2 (dotted gray line), RA (dotted black

line), and BIC (solid black line) used for the selection of the best subset of a base set
of K =10 orthonormal regressors in a normal regression setting with n = 50,

o2 =1 By =Cp,...px =CpX, p=0.7 and C=0,05,1 ..., 6,7, ..,10,15, ..., 30.

The upper figure displays the results in absolute terms and the lower figure relative
to BIC.
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Figure 2. Mean squared errors of the methods AIC (dashed black line), FPEg,,
(dashed gray line), FPE; (solid gray line), FPE2 (dotted gray line), RA (dotted black

line), and BIC (solid black line) used for the selection of the best subset of a base set
of K =10 orthonormal regressors in a normal regression setting with n =500,
62 =1 B =Cp,...Bx =CpX, p=0.7 and C=0,05,1,..., 6,7, ...,10,15, ..., 30.

The upper figure displays the results in absolute terms and the lower figure relative
to BIC.
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Figure 3. Mean squared errors of the methods AIC (dashed black line), FPEg,,

(dashed gray line), FPE; (solid gray line), FPE2 (dotted gray line), RA (dotted black

line), and BIC (solid black line) used for the selection of the best subset of a base set
of K =10 orthonormal regressors in a normal regression setting with n = 50,

62 =1 By =Cp,...Bx =Cp<, p=09 and C=0,05,1,...,6,7,..,10,15, ..., 30.
The upper figure displays the results in absolute terms and the lower figure relative

to BIC.
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Figure 4. Mean squared errors of the methods AIC (dashed black line), FPEg,,

(dashed gray line), FPEg (solid gray line), FPE2 (dotted gray line), RA (dotted black

line), and BIC (solid black line) used for the selection of the best subset of a base set
of K =10 orthonormal regressors in a normal regression setting with n = 500,

6 =1 By =Cp,...Bx =CpX, p=0.9 and C=0,05,1..,6,7,..,10,15, ..., 30.

The upper figure displays the results in absolute terms and the lower figure relative
to BIC.

4. Conclusion

Since Kempthorne [11] has shown that all post-model-selection estimators,
which first select a model based on a given data set and then fit the selected model to
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the same data set, are admissible for choosing among least-squares fits of a normal
linear regression model, there cannot be anything like a universally best model
selection method. However, there may be methods that are optimal in special
situations. Shibata [24, 25] and Shao [23] argued that model selection criteria like
AIC may be particularly useful when there exists no finite-dimensional true model.
However, Kabaila [10] warned not to overinterpret Shibata’s [24, 25] asymptotic
results, because they hold only pointwise and may therefore be misleading.
Moreover, Leeb [12] showed that generalized cross-validation

2
GCV(Xk)z%RSS(Xk)(Hn—:() (26)
(see [5]) and Tukey’s
Sp(Xk)zéRSS(Xk)(H nfk)(n n_';_kj (27)

(see [4, 9, 28]), which are practically equivalent to AIC if k is of smaller order than
n, outperform AIC if the number of predictors is large. Yang [29, 30] questioned the
simple story that AIC is good for infinite-dimensional models and BIC is good for
finite-dimensional models and showed that no model selection criterion can share
the main strengths of AIC and BIC simultaneously (see, e.g., also [3, 14]). In the
light of the above discussion (for a more detailed account of the current state of the
model selection problem, see [13]) it seems naive to expect that any criterion could
on purely theoretical grounds outperform all others. Of course, also simulation
studies cannot prove the superiority of one criterion over another. Their outcomes
depend largely on the respective model specifications (small vs. large sample size,
nested vs. nonnested models, small vs. large dimension, slow vs. fast decay rate,
deterministic vs. stochastic regressors, etc.) and can therefore easily be manipulated
in any desired direction. However, in actual applications it is often quite easy to
determine which criterion out of a base set of criteria is most appropriate for the
problems at hand, particularly when n is large. So we only have to make sure that the
base set contains a variety of criteria with diverse statistical properties. The model

selection methods FPEg,, FPE,, FPE2; and RA proposed in this paper are

certainly worthy candidates for inclusion in such a base set.
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Table 1. The value in row K and column k is the expected value of the sum of the k

largest of K independent and identically xz(l) -distributed random variables

1 2 8 4 5 G 7 £ 9 10 1 12 13 14
1 1
2 164 2
B 2.1 281 E]
4 247 488 4
5 4.08 4.65 4.92 &
[ 208 4.51 532 5.75 X u
T .26 4.94 592 .49 G.51 6.95 7
S £AG G.AG 77 761 788 796 5
b .64 L 698 T8 B34 860 s H.47 9
1 3.8 i T4 B.3T .08 .47 074 9.9 9.95 10
11 2.95 626 X 9.67 1.2 10.56 1078 1082 10,98 1
12 4.09 6.62 H.19 .39 10,24 10.88 11.3% 11.62 11.52 Wi 198 1z
13 4.21 677 H.56 .85 10.52 11.54 12.056 12.84 1294 12.98 13
14 438 T 880 10.29 11.34 1214 1318 135 1372 13.86 13.95 13,09 14
156 4.44 LR 9.2 W68 1184 13839 18,91 1420 14,56 14.76 14.88 14.95 14.99 15
146 4.55 T2 .5 11.0% 1231 13.27 14.02 14.6 15.04 15.37 15462 15.7% 15.59 15.946 15.99
17 4.65 T.681 .78 11.45 12.75 13.79 14.61 15.26 15.76 16.15 168.45 168.66 16.81 16.9 16.96
18 4.74 774 10.05 1179 1338 1518 1689 16.45 16.9 172 17.5 17.69 1783
19 4.53 T.a7 10,3 1202 13.58 14.76 15.72 16.49 1712 17.62 LA 18,532 18.55 1873
20 4.92 LR 10.54 1397 15.22 17.07 17.76 18.31 18.76 19.11 19.39 19.6 19.75
1 & 8.2 W8 1274 14.34 15,65 1768 1837 18,98 19.48 1988 20.2 2068
2 5.08 B.44 11 13.03 4.7 16.07 1817 18.94G 19.62 2007 20,62 20.98 21.49
23 515 B.50 11.21 13.31 15.04 16.47 18.68 19.58 20.24 20.84 21.33 21.74
24 5.22 8.73 11.42 1358 1812 118 2008 2086 21.49 URO¥ URAT DEE4 2E4
256 529 LR 11.61 13.584 18.55 19.646 20.62 1.43 2202 E= 2319 2306 2504
26 536 B.99 11.8 14.09 18.96 20.13 21.13 21.99 22.72 23.35 2388 2438 24.71
27 5.2 w12 1109 1483 1936 20.58 2,54 A2 2309 2486 25056 25446
EE 548 924 1217 1486 1687 18528 19.76 2102 2212 2307 23,89 24.6 26 2574 B9
2] 5.54 0.35 1234 14.79 1685 1861 20135 2144 25 2358 24.45 26,2 2585 2642 26.9
20 b6 .47 12.61 1732 18.93 2804 24.08 25.78 a7
#1 bt EEL) 1267 2849 24.57 26.85 2828
32 571 12.82 17.63 19.54 23.92 25.04 26.9 28.94
38 12.0% 1788 1953 24.34 25.5 26.63 44 2596 20.58
34 581 u.80 1582 1832 201 LEEY 2AT6 27T 2w 2956 3022
a5 586 098 1327 1601 1585 20089 2218 2375 25.15 .48 2086 80014 0.8
a6 501 10.0% 1619 18.58 20.66 24.1 25.54 2808 2989 30.71 #1.44
&7 S96 107 165,87 18,8 20.92 2444 2092 2841 94T BT BL2T w208
a8 L] 10.26 16.55 19.02 21.18 24.78 26.20 28,86 29.95 3093 31.81 326
E 608 10.35 13.81 16.72 21.43 2EHT 25.1 266 26.04 2029 a0.42 3143 d2.34 EEN
an G089 1044 130 16,89 1944 2167 2866 2542 27.01 28.43 29,71 BOET #1092 3287 BRI
41 .14 1052 1406 17.05 1964 2101 2898 2574 2735 2881 3013 85132 B34 FEAE 3426
42 618 10.6 14.18 17.21 19.84 2215 24.2 26.04 27.69 20.19 B0.54 31.76 3287 FEEE 3.8
az G 1068 19.8 1787 20008 2238 2447 2634 2HOE P056 083 B219 33IF 3437 ¥6.32
a4 6.26 10.76 14.42 17.52 22.6 24.72 26.63 28.35 20.91 132 d2.61 3ETE 3485 36.83
A5 X 1084 1458 1767 204 2282 2498 2692 26T 3028 #1.71 8302  84.2% 3538  36.33
a6 6.34 10.91 14.64 17.81 20.58 28.98 30.6 s2.08 EEREY #4.66 #5679
a7 637 10.99 14.75 17.06 20.76 28.25 2547 27.47 26.20 3245 33.83 35.09 36.25
a8 G4l 11.06 14.86 18.1 20.94 2545 25.71 27.74 29.509 281 3422 35.51 36,69
49 645 1113 14.96 18.24 21.11 23.65 25.94 28.01 0.50 31.6 #3a7 4.6 35.92 37138 BH.26

50 648 11.2 15.06 18,37 21.27 23.85 246,17 2H.2T 3018 #3.51 24,98 BH.82 BT.546 a7
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