

Advances in Computer Science and Engineering
Volume 4, Number 2, 2010, Pages 145-163
Published Online: May 26, 2010
This paper is available online at http://pphmj.com/journals/acse.htm
© 2010 Pushpa Publishing House

 :phrases and Keywords alternating time temporal logic, aspect-oriented programming, correct

verification, policy adherence.

This work was supported by the 863 program of China under grant of 2009AA012201, the
joint of NSFC and Microsoft Asia Research under grant of 60970155.

 ∗Corresponding author

Received January 11, 2010

CORRECT VERIFICATION FOR CODE IN
TRUST-BY-POLICY-ADHERENCE

LI LI∗ and GUO-SUN ZENG

Department of Computer Science and Technology
Tongji University
Shanghai 201804, P. R. China
e-mail: snopy-xj@163.com

Key Laboratory of Embedded System and
Service Computing of Ministry of Education

Shanghai 201804, P. R. China

Abstract

This paper proposes and details the notion of trust-by-policy-adherence
(TBPA), meaning that code can be certified on the basis of its security-
related behaviors rather than its origins and integrity. We describe the
overall life cycle of code in this setting, and propose a detailed model
whereby a program’s policy adherence can be verified. We suggest
enforcing security policies over code by means of aspect-oriented
programming (AOP). Based on the characteristics of AOP programs, we
model security policies and a verification process using alternating
temporal logic. This method can be used to verify whether a given
program complies with a wide range of security policies, including both
safety and liveness policies. It can also verify whether the original
program is affected by policy execution. We argue that TBPA provides a

LI LI and GUO-SUN ZENG 146

suitable semantic framework for certifying code, and represents a step
forward from trusted code toward trustworthy code.

1. Introduction

In highly interconnected and distributed network computing environments, it is
becoming more and more necessary to build trust into network entities such as users,
platforms, and especially some programs. The purpose of this movement is to make
certain that programs will not do something harmful.

Trusted computing technologies based on TPMs [22] (trusted platform modules)
try to build trust into applications by supplying an identity certificate and confirming
the integrity of the code. However, identity and integrity only reveal who is
responsible for the code and that the code was not altered by attackers. No additional
security is attached to this information. Essentially, consumers must accept the code
“as-is”, relinquishing the possibility of making decisions based on their security
requirements. For example, in principle one would like to trust code that can prohibit
the send operation after reading secure data, not just code that comes from a famous
software factory. Code producers, on the other hand, cannot declare that their work
will comply with a given security specification. Because the level of security is built
into the TPM hardware, so the decision is out of their hands. As a consequence, they
may find it hard to convince consumers that their code will not do anything harmful.

If a producer could guarantee that its code will comply with certain security
specifications, however, then consumers would be free to choose the code or not
according to their security requirements.

We propose in this paper the notion of trust-by-policy-adherence (TBPA): the
certificate should not just certify the origin of the code, but bind the code to a
specific security policy. Loosely speaking, a security policy is a behavior
specification for the code. It can define rules for access control, memory use, secure
web connections, privacy protection, and so on. In this way, for each program
installed, either the platform or the user could choose among a range of security
policies avouched by the certificate.

This paper describes the overall life cycle of code in a setting of trust-by-policy-
adherence, explains how security policies can be enforced on the code by aspect-
oriented programming [16], and provides a formal method of verifying policy
adherence. We argue that security policies provide the necessary semantics for

CORRECT VERIFICATION FOR CODE ... 147

certifying code, thus representing an important step in the transition from trusted
code to trustworthy code.

In the next section, we briefly introduce the technology of executing a security
policy over code and describe the basics of a TBPA scenario. In Section 3, we
present a concrete programming paradigm for security policy realization. The next
two sections (4 and 5) describe a verification method for policy adherence. A
discussion of related work and some conclusions end the paper.

2. The Trust-By-Policy-Adherence Usage Model

Definition 2.1 (Security policy). A security policy [10, 19] is a formal, complete
specification of acceptable behavior for applications to be executed on the platform,
in matters concerning relevant security actions.

Definition 2.2 (Safety policy). A security policy specifying that “nothing bad
ever happens” is called a safety policy [10, 19].

Definition 2.3 (Liveness policy). A liveness policy [10, 19] states that nothing
irremediably bad happens, or that good things will happen eventually.

One efficient way of enforcing a security policy is by in-lining monitor code [9,
13] to produce a self-monitoring program. At compile time, untrusted code or binary
executable is automatically rewritten to comply with an external security policy,
which can be defined using a policy specification language such as PSLang in SASI
[8] or MEDL/PEDL in Java-MaC [17]. Another language, ConSpec [14], is a
simplification of PSLang. Its denotation semantics are built upon security automata,
so it can describe a safety policy as well as PSLang or MEDL/PEDL. The in-line
monitors execute safety policies by accepting legal actions and rejecting illegal
actions as the program executes. In this situation, the monitors act as invalid
execution recognizers. Sometimes, monitors insert control actions into the program
in order to execute some kind of liveness policy.

Independent of the research on in-line monitoring, aspect-oriented programming
[16] (AOP) has been proposed to deal with the tangled and scattered code that can
result from crosscutting concerns. Numerous authors [2, 5, 6, 11] have observed that
AOP lends itself to the implementation of security enforcement mechanisms such as
in-line monitors. The approach is quite powerful, having been used to enforce a wide
range of important security policies, including some safety and liveness properties
[2, 19].

LI LI and GUO-SUN ZENG 148

Figure 1. Workflow of trust-by-policy-adherence.

In our usage model (see Figure 1), code developers incorporate security policy
enforcement into their programs using AOP. Then, using the verification method
designed in Section 4, their programs can be certified to comply with a security
policy designed by the developer’s own company or any trusted third party.

At deployment time, the user checks whether the certificate is correct. As we
have said already, this certificate can serve as proof that the code complies with
certain security policies. Once the user confirms that the certificate is trustworthy,
he/she can check whether the policies adhered to by the code meet their platform’s
security requirements. If so, the application can be run. As we see in Figure 1, a key
obstacle in the overall workflow of TBPA is verifying the policy adherence of the
code. To address this issue, we design an abstract verification model. This will be
the subject of Section 4.

3. Using AOP to Enforce Policies over Programs

Security policies specify various allowed and prohibited execution steps. Below
we list some types of security policies for programs:

1. Secure connection policies: for example, the program can only use HTTPS.

2. Authorization policies: for example, only user Jones is permitted to access a
file.

3. All files opened by the program need to be closed before the program ends.

4. A policy might prohibit execution of Send operations after a file read
operation.

Examples 1, 2, and 4 are safety policies. Example 3 is a liveness policy.

CORRECT VERIFICATION FOR CODE ... 149

3.1. Developing a program using AOP

AOP enables the modular implementation of crosscutting concerns. This
practice is most often realized in AspectJ [15] languages. The base code of AOP is a
primary program handling the core concerns of the application; an aspect is a code
fragment that modularizes an orthogonal concern. An aspect weaver is a compiler
that integrates the aspects into the base code. Each aspect specifies where and how to
inject its own code into the base code. The basic constructors of an aspect include
three new concepts:

Joinpoints: A joinpoint is a location within a program where the aspect
weaver can integrate a code fragment, called an advice. An advice can be
executed before, after, or even around a join point.

Pointcuts: A pointcut is a set of join points sharing specific static properties.
For instance, in AspectJ, pointcuts are defined using quantified Boolean
formulas over method names, class names, control flow, and/or lexical
scopes. A pointcut can capture specific event occurrences such as method
calls, access to attributes, and exceptions.

Advice: advice is a fragment of code that is executed before, after, or
around the evaluation of the joinpoint.

Aspect weaving technology based on these constructors allows security-related
events to be defined beyond the kernel functions of the AOP program. For example,
one aspect could add code that logs every file operation, while another inserts a
security authorization mechanism before operations that read secret data.

The following example shows how to translate a security policy into an aspect,
and the constraint behaviors present in the base code after aspect weaving.

Example 1. There is a separation of duty policy requiring that the critical()
operation be performed only under the endorsement of both the manager() and
accountant() operations. We develop a program that adheres to this policy using the
AspectJ language. The program is shown in Figure 2.

LI LI and GUO-SUN ZENG 150

Figure 2. Base code and aspect of Example 1.

The base code in block (a) is the primary program. It defines two global
variables, pa and pm, and executes three security-related functions: accountant(),
manager() and critical(). According to the policy, critical() can be executed only
after both accountant() and manager() have been executed. To execute this policy,
we create three aspects. First, aspect Ma defines Pointcut m, which is located at the
function manager(). The type of advice is After. Thus, the action defined by aspect
Ma is that after manager() has finished, the variable pm is set to “true”. Next, aspect
Ac is defined similarly to aspect Ma, but sets pa to true after accountant() has
finished. Finally, aspect Cr defines Pointcut c() at the function critical(). The type of
advice is Before, so the actions defined by aspect Cr take place before the execution
of critical(). The code fragment evaluates pa and pm; if both are true, it executes the
critical() function and sets pa and pm to false. Otherwise, it throws an exception.

At compilation, the aspect weaver incorporates all three aspects into the base
code to produce a policy-adherence program (PA program). Figure 3 displays the
code for the resulting PA program.

CORRECT VERIFICATION FOR CODE ... 151

Figure 3. Policy-adherence program after aspect weaving.

4. A Verification Model for Policy Adherence

By virtue of AOP technology, it is easy to develop clear PA programs. The
existence of non-declarative advice in aspects, however, makes it even hard for
programmers to ensure that programs comply exactly with the intended security
policies, and that aspects will have no side effects on the base code. Taking the
characteristics of PA programs and the composition reasoning used in aspect
verification [7, 18] as starting points, we construct a model to verify that PA
programs have the correct property. In this context, “correct” includes two abstract
properties: coherence and transparency. Coherence means that the program is
guaranteed to adhere to the security policies. Transparency means that any aspects
incorporated do not impair the primary function of the base code.

4.1. Abstract program structure

Alternating-time Temporal Logic (ATL) and Alternating Transition Systems
(ATS) [3, 4] are logical specification tools for an open system. They were proposed
to account for questions such as the following: “On a state machine model which
describes an open system and its environment, can the system resolve its choices in
such a way that the satisfaction of a property is guaranteed no matter how the
environment resolves the external choices?” This satisfaction can be viewed as the
winning condition of a two-player game between the system and the environment.
When the system consists of several components, the question implies a multi-player
game where each component of the program, system, and environment is
represented by a different player. ATL and ATS can be used to specify this more
general setting in addition to the simple example discussed in this paper.

LI LI and GUO-SUN ZENG 152

We will use ATL and ATS to specify alterations of the environment, the base
code, and the aspects, and then analyze the correct property of the program. To
begin with, we abstract a PA program as a Turn-based Alternating Transition System
(Turn-based ATS). The concrete definition is as follows:

Definition 4.1. A PA program structure (PAP structure) can be abstracted as a
Turn-based ATS. Expressed as tuple, the PAP Structure is δσπΠΣ ,,,,, Q with

the following components:

(1) Σ is a set of players: Aspect, the BaseCode, and the Environment.

(2) Q is a finite set of states q.

(3) Π is a finite set of propositions p.

(4) The function Π→π 2: Q is a labeling function which maps each state

Qq ∈ to a set () .Π⊆π q ()qπ is the set of propositions that are true

when the system is in state q.

(5) The function Σ→σ Q: maps a state q to a player .qa It indicates that

when the system is in state q, it is the turn of player qa to choose the next

execution step of the program. The integer () 1≥qda is the number of

moves available to player qa at state q. We identify the moves with the

sequence of numbers ().1 qda" Thus, for each state ,Qq ∈ there is a

vector of possible moves: the tuple kjj "1 such that ()qdj aa ≤≤1

for each player a. For all other players Σ∈b at state q, () .1=qdb (This is

a way of stating that no other players have a choice of actions.)

(6) ()ajq,δ is a transition function. When qa chooses action ,aj state q will

transit to state () ., Qjqq a ∈δ=′

4.2. Definition of formulas specifying the “correct” property

As we have already emphasized, correct implies both coherence and
transparency. A sound PA program complies with the intended security policy.
Transparency indicates that the incorporated aspects do not impair the function of
the primary program. In this section, we interpret the syntax and semantics of
alternating-time temporal logic. We shall then describe the properties of coherence
and transparency as ATL formulas.

CORRECT VERIFICATION FOR CODE ... 153

Definition 4.2 (Strategy). Given a structure ,,,,,, δσπΠΣ= QS a strategy

for player Σ∈a is a function Q
a Qf 2: →+ such that for all +∈λ Q and

,qλ′=λ () ().qdf aa ∈λ

The strategy of player “a” constraints the possible executions, and those
possible executions is path chosen by player a.

Definition 4.3 (Path). Given a state ,Qq ∈ a set Σ⊆A of players, and a set

()AafF aA ∈: of strategies for the players in A, we define the path from q to be

the set out ()AFq; of computations λ that the players in A enforce as they follow

the strategies in .AF That is, a given computation ...,,, 210 qqq=λ is in out

()FAq; if qq =0 and for all positions ,0≥i there is a move aj such that (1)

[]()ifj aa ,0λ= for all players ,Aa ∈ and (2) () ., 1+=δ ia qjq

Definition 4.4 (ATL Syntax). An ATL formula is one of the following:

(1) P, proposition ;Π∈p

(2) ϕ¬ or ,21 ϕ∨ϕ where ϕ, 1ϕ and 2ϕ are all ATL formulas;

(3) ,ϕDA ,ϕA ,ϕ◊A or ,21 ϕϕ ∪A where Σ⊆A is a set

of players and ϕ, 1ϕ and 2ϕ are all ATL formulas.

The operator ⋅  is a path quantifier. The symbols D (“next”), � (“always”), ◊

(“eventually”), and ∪ (“until”) are temporal operators. A represents the path

chosen by the players in set A. The Quantifier ⋅ also has a dual form [][].⋅ While

formally ϕA means that the players in A can cooperate to make ϕ true, [][]ϕA

means that the players in A cannot cooperate to make ϕ false.

Definition 4.5 (Semantics of ATL). The satisfaction relation ”“ is defined as

follows:

(1) pq iff Π∈p and ();qp π∈

(2) ϕ¬q iff ;ϕq

(3) 21 ϕ∨ϕq iff 1ϕq or ;2ϕq

LI LI and GUO-SUN ZENG 154

(4) ϕDAq iff there exists a set of strategies ,AF one for each player in A,

such that for all computations (),,out AFq∈λ we have [] ;1 ϕλ

(5) ϕAq iff there exists a set of strategies ,AF one for each player in

A, such that for all computations ()AFq,out∈λ and all ,0≥i we have [] ;ϕλ i

(6) 21 ϕϕ ∪Aq iff there exists a set of strategies ,AF one for each player

in A, such that for all computations (),,out AFq∈λ there exists a position 0≥i

such that [] ,2ϕλ i and for all positions j, ,1 ij <≤ we have [] .1ϕλ j

Based on the above definitions of ATL logic, we can now formulate the correct
property of a PAP structure.

Definition 4.6 (Coherence). Coherence means that the PA program should
adhere to the intended policy. That is to say, in the framework of ATL all possible
paths decided by the strategies of two players, Aspect and BaseCode should satisfy
each policy requirement ϕ, no matter how the Environment chooses. Expressed as an
ATL formula, one would write .BasecodeAspect, ϕ=ϕs sϕ would be described

differently according to the concrete policy:

(1) For a safety policy, sϕ is a statement that bad things will never happen, or

that some property should always hold. For example, if the policy requires that
action1 and action2 never happen concurrently on the path chose by Aspect and
BaseCode, then one would write: ().action2action1BasecodeAspect, ∧¬

(2) For a liveness policy, sϕ is a statement that something will happen

eventually. For example, if all opened files should be closed before the end of the
program, one would write ().CloseBaseCodeAspect,OpenFiles ◊→

(3) If a policy can be decomposed into several sub-policies, then sϕ includes all

the child formulas.

Definition 4.7 (Transparency). Transparency means that the Aspect player
should not impair the character or behavior of the primary program (its semantics
and functionality). That is to say, within the PAP structure, all paths decided by the
strategy of BaseCode should satisfy the core requirements ϕ of the primary program
no matter how the other players choose. Expressed as an ATL formula, one would
write .BaseCode ϕ=ϕt ϕ would be described differently according to the

CORRECT VERIFICATION FOR CODE ... 155

character of the original program; it might describe a functionality of the base code,
or some desired properties of the base code.

4.3. Verifying the “correct” property by model checking

In the framework of ATL, the model checking problem consists of computing
winning strategies, which also testify to the correctness of the game structure. We
can use the general ATL model-checking algorithm on the coherence and
transparency formulas defined above. That is, given a PAP structure and specific
coherence and transparency ATL formulas, this algorithm can compute winning
strategies. If winning strategies exist for the Aspect and BaseCode players, we
conclude that the PA program is guaranteed to have the correct property. Otherwise,
there exists a winning strategy for the Environment which serves as a
counterexample. In this situation, we can conclude that the PA program does not
have the correct property.

5. An Example

The following example demonstrates the effectiveness of our verification
model.

Example 2. A program module makes use of the point class, which has a
method move, to move a point on canvas. The program interface contains a canvas,
two numeric text fields where the user can fill in x and y coordinates, and press “ok”
button to move the point to the specified location on the canvas. The program only
reads the text fields; it does not write to them. Their values are therefore determined
by the environment alone. We assume that the text fields only accept non-negative
coordinates.

For clarity of display, we add a constraint policy on this program’s executions.
When the point’s location is too close to the origin, e.g., 50 << x and ,50 << y

the base code multiplies the coordinate by a significant factor, in this case 10. This
factor is stored in the variable scaleFactor. Conversely, if 5≥x or ,5≥y the

coordinate is left alone. For the display to continue working properly, scaleFactor
must be reset to 1 at the end of the program. This policy is encoded as an aspect
named adjustscale. The code is shown in Figure 4. Henceforth, the constraints are
written as () 5, <yx and () 5, ≥yx for simplicity.

LI LI and GUO-SUN ZENG 156

Figure 4. Code of Example 2.

5.1. PAP structure

Adopting the method proposed in Section 4, we construct the PAP structure of
the code in Figure 4. There are three players: Environment, BaseCode, and Aspect.
Environment sets the inputs of the program and presses the button. BaseCode
executes the move function. Aspect executes the constraint policy. Henceforth we
use the characters e, b and a to represent the three players. Figure 5 represents our
PAP structure visually using state transition diagrams.

Figure 5. PAP Structure of Example 2.

CORRECT VERIFICATION FOR CODE ... 157

On the left-hand side of Figure 5, we label lines of code with 0, 1, 2, m1 or m2.
On the right-hand side, each circle with label inside describe which propositions
hold in that state, such as, at root state, propositions L¬ and pre hold. Those

propositions are abstractions of the concrete program states, which are defined in
Table 1. The symbol e, b or a beside a circle indicates the active player at that state.
For example, the symbol beside the root state is ,0e meaning that Environment is

the active player at program point 0.

Table 1. Description of proposition variables

Proposition
variable

Meaning Proposition
variable

Meaning

Pre x or 5≥y pre¬ x<0 and 5<y

L scaleFactor 10= L¬ scaleFactor 1=

ok button is pressed move Execute move function 1=

Assume that the program is at point 0, and that both coordinates ()yx, are

currently greater than or equal to 5. The Environment can choose between entering
coordinates () ,5, ≥yx entering coordinates () ,5, <yx or pressing the button.

If the button is pressed, the program will execute the right-hand subtree.
BaseCode gets the values of the coordinates, then attempts to advance the program
counter to point 2. Aspect interrupts the flow, moving the program to point m1.
Since () ,5, ≥yx Aspect does not increase the scaleFactor value and returns control

to BaseCode at point 2. After the move function is finished, Aspect interposes itself
again and sets scaleFactor to 1.

If the Environment enters coordinates in the range () 5,0 << yx and then

presses the button, Aspect would set scaleFactor to 10 at point m1 but change its
value back to 1 after the move function is complete.

5.2. Correct formulas and verification

• coherence formulas

(1) According to the policy, the coefficient scaleFactor should be reset to 1
eventually. This is a liveness policy. Thus, we have the (ba,move →

.L¬◊ Whenever the move function is finished, Aspect and BaseCode should

cooperate to restore scaleFactor to its normal value before the program terminates.

LI LI and GUO-SUN ZENG 158

(2) According to the security policy, program execution should always obey the
following logic: if () ,5, <yx then the move function is executed with scaleFactor

;10= if () ,5, ≥yx then the move function is executed with scaleFactor .1= Thus,

we have formulas:

(a) ()) ()(:move,okpre ∧¬¬→∧¬ Lba whenever () 5, <yx

and the button is pressed, on all the path choose by Aspect and BaseCode, there is no
state satisfy move with scaleFactor .1=

(b) ()) ()(:move,okpre ∧¬→∧ Lba whenever () 5, ≥yx and

the button is pressed, on all the path choose by Aspect and BaseCode, there is no
state satisfy execute move with scaleFactor .10=

(c) ()) [][] ()(:moveokpre ∧◊→∧¬ Le whenever () 5, <yx and the

button is pressed, Environment cannot force the program to execute move with
scaleFactor .1=

(d) ()) [][] ()(:moveokpre ∧¬◊→∧ Le whenever () 5, ≥yx and the

button is pressed, Environment cannot force the program to execute move with
scaleFactor .10=

• transparency formulas

Recall that the original function of BaseCode is to move a point on canvas. This
function should not be stopped by any behavior of Aspect. Thus, we have the
following formula:

(3) () :moveok ◊→ b Whenever the button is pressed, BaseCode

must execute move eventually.

By model-checking the formulas defined above on the program’s PAP structure,
we can verify that Aspect and BaseCode have winning strategies. In other words,
whatever actions the Environment chooses, BaseCode and Aspect will adhere to the
intended policy. Also, Aspect does not alter the original function of BaseCode.
Hence, we conclude that the program in Figure 4 has the correct property.

5.3. Counterexample

Suppose the programmer makes a mistake and leaves out the lines “After 2;
p.scaleFactor ”1= in the aspect (barred text on the right-hand side). The PAP
structure changes accordingly, as shown in Figure 6.

CORRECT VERIFICATION FOR CODE ... 159

Figure 6. Modified PAP structure.

In this new structure, because Aspect and BaseCode have no opportunity to
restore scaleFactor to 1, coherence formula 1 does not hold. Coherence formulas 2.b
and 2.d are also not satisfied. The environment has a winning strategy which serves
as a counterexample to both formulas. For example, Environment can input the
coordinates (1, 3), then press the button, then input (7, 8), then press the button
again. The corresponding execution path is (→→→→→→ 186421 SSSSSS

).753 SSS →→ The first time the button is pressed, the Pre¬ proposition holds,

so the program will execute along the left-hand subtree. During this stage,
scaleFactor is set to 10 (at S6). The program then accepts coordinates (7, 8), which
satisfy the Pre proposition. The program should execute along the right-hand
subtree, but there will be a state that can satisfy both L and move. Therefore,
Formula 2.b does not hold. Environment has succeeded in forcing the program to
execute Move with scaleFactor 10= when the Pre proposition is true. Thus,
formula 2.d also does not hold. We conclude that there must be some problem with
the Aspect, as the program does not adhere to the policies.

6. Related Work and Conclusion

Once a program has been verified to comply with a given security policy, the
software company or a trusted third party will issue a certificate to this effect. Code
consumers can then choose to trust the code or not on this basis.

LI LI and GUO-SUN ZENG 160

Language-based approaches to computer security have employed two major
strategies for enforcing security policies over untrusted code: low-level type systems
and execution monitoring.

Low-level type systems can enforce security policies involving important
program invariants such as memory and control. Proof-carrying code (PCC) [21]
generalizes the type-safety approach by providing explicit proof of safety (code
safety). The PCC approach launched the idea that untrusted code should be
accompanied by information that aids in verifying its safety. The code consumer
uses a specialized application to check that the proofs provided are valid, and hence
the code is safe to execute. Such proofs can be automatically generated by a
certifying compiler [20] based on a static analysis of the producer code. The
traditional approach to PCC based on type theory is problematic in that it usually
enforces fixed-type security policies that are encoded into the type system or proof
logic itself. The security policies therefore cannot be changed without changing the
type system or certifying compiler.

Execution monitoring is an established technique for enforcing a wide range of
policies over programs. For efficiency, execution monitoring is often implemented in
the form of in-lined reference monitors [13]. Researchers have devised many
techniques for proving that a program with in-line monitors obeys the safety
policies.

Mobile [12] is a certifying in-lined reference monitoring system for the
Microsoft .NET framework. It rewrites .NET CLI binaries according to a declarative
security policy specification, producing a proof of policy-adherence in the form of
typing annotations in an effect-based type system. These proofs can be verified by a
type-checker to guarantee policy-adherence of code with in-line monitors.

Aktug et al. [1] designed a two-level class file annotation scheme using Floyd-
style program logic for Java bytecode, characterizing two key properties: (i) that the
program adheres to a given policy, and (ii) that the program has an embedded
monitor for this policy. They sketch a simple in-lining algorithm, and show how the
two-level annotations can be completed to produce a fully annotated program. This
method establishes the mediation property, meaning that in-lined programs are
guaranteed to adhere to the intended policy. Furthermore, the validity of the code
can be efficiently checked using an annotation checker based on the weakest
precondition. This work is preparing the ground for on-device checking of policy
adherence in a proof-carrying code setting.

CORRECT VERIFICATION FOR CODE ... 161

The methods developed by Hamlen and Aktug only certify that a program with
in-lined monitors adheres to certain safety policies. Neither can establish the
transparency property, which would ensure that the monitors have no ill effects on
the original program.

In this paper, we have tried to deal with the verification of policy adherence in a
different way. First, we enforce security policies over a program by means of aspect-
oriented programming (AOP). Second, based on the characteristics of AOP, we
abstract the execution structure of the program using alternating-time temporal logic
(ATL). In this framework we can devise formulas that characterize the coherence
and transparency properties. Finally, by checking the validity of the ATL formulas
within the abstracted structure, we can determine whether the program complies with
the security policies and whether execution of a policy affects the original
functionality. Together, the two conclusions attest to the correctness of the program.
This method can prove that programs comply with a wide range of security policies,
not just safety policies.

This method establishes trust-by-policy-adherence, and provides a semantic
framework for certifying code on this basis. It represents a step forward from trusted
code toward trustworthy code.

References

 [1] Irem Aktug, Mads Dam and Dilian Gurov, Provably correct runtime monitoring, The
J. Algebraic Program. 78 (2009), 304-339.

 [2] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam and
Julian Tibble, Adding trace matching with free variables to AspectJ, Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’5), 2005, pp. 345-364.

 [3] R. Alur, L. de Alfaro, R. Grosu, T. A. Henzinger, M. Kang, C. M. Kirsch, R.
Majumdar, F. Mang and B. Y. Wangetc, JMOCHA: a model checking tool that
exploits design structure, Proceedings of the 23rd International Conference on
Software Engineering (ICSE’01), 2001, pp. 835-836.

 [4] Rajeev Alur, Thomas A. Henzinger and Orna Kupferman, Alternating-time temporal
logic, J. ACM 49(5) (2002), 672-713.

 [5] Lujo Bauer, Jay Ligatti and David Walker, Composing security policies with polymer,
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005, pp. 305-314.

LI LI and GUO-SUN ZENG 162

 [6] A. S. de Oliveira, E. K. Wang, C. Kirchner and H. Kirchner, Weaving rewrite-based
access control policies, 5th ACM Workshop on Formal Methods in Security
Engineering, 2007, pp. 71-80.

 [7] B. Devereux, Compositional reasoning about aspects using alternating-time logic,
Foundations of Aspect-Oriented Lang, 2003.

 [8] Úlfar Erlingsson and Fred B. Schneider, SASI enforcement of security policies: a
retrospective, Proceedings of the New Security Paradigms Workshop, Caledon Hills,
Ontario, Canada, 1999, pp. 87-95.

 [9] Úlfar Erlingsson, The inline reference monitors approach to security policy
enforcement, Ph.D. Thesis, Cornell University, Ithaca, New York, 2004.

 [10] B. Fred, Schneider enforceable security policies, ACM Trans. Inform. Systems
Security 3(1) (2000), 30-50.

 [11] Kevin W. Hamlen and Micah Jones, Aspect-oriented in-lined reference monitors,
Proceedings of the ACM Workshop on Programming Languages and Analysis for
Security, Tucson, Arizona, USA, 2008, pp. 11-20.

 [12] Kevin W. Hamlen, Greg Morrisett and Fred B. Schneider, Certified in-lined reference
monitoring on .NET, Proceedings of the 1st ACM Workshop on Programming
Languages and Analysis for Security, Ottawa, Canada, June 2006, pp. 7-15.

 [13] Kevin W. Hamlen, Greg Morrisett and Fred B. Schneider, Computability classes for
enforcement mechanisms, ACM Trans. Program. Lang. Sys. 28(1) (2006), 175-205.

 [14] Aktug Irem and Naliuka Katsiaryna, ConSpec: a formal language for policy
specification, Proceedings of the 1st International Workshop on Run Time
Enforcement for Mobile and Distributed Systems, Lecture Notes in Theoretical
Computer Science 197(1) (2007), 45-58.

 [15] Gregor Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold, An
overview of AspectJ, Proceedings of the 15th European Conference on Object-
Oriented Programming, 2001, pp. 327-353.

 [16] Gregor Kiczales, J. Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videia
Lopes, Jean_marc Loingtier and John Irwin, Aspect-Oriented Programming,
Proceedings of the 11th European Conference on Object-Oriented Programming,
Finland, Vol. 1241, June 1997, pp. 220-242.

 [17] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee and Oleg
Sokolsky, Java-MaC: a run-time assurance approach for Java programs, Formal
Methods in System Design 24(2) (2004), 129-155.

 [18] Shriram Krishnamurthi and Kathi Fisler, Foundations of incremental aspect model-
checking, ACM Trans. Software Eng. Method. 16(2) (2007), Article 7.

CORRECT VERIFICATION FOR CODE ... 163

 [19] J. Ligatti, L. Bauer and D. Walker, Run-time enforcement of non-safety policies,
ACM Trans. Inform. Systems Security 12(3) (2009), 19.1-19.41.

 [20] G. C. Necula and P. Lee, The design and implementation of a certifying compiler,
SIGPLAN 39(4) (2004), 612-625.

 [21] G. Necula, Proof-carrying code, N. Jones and P. Lee, eds., Proc. of the POPL’97,
ACM Press, New York, 1997, pp. 106-119.

 [22] TCG Specification Architecture Overview, Specification Revision 1.4, 2007.
https://www.trustedcomputinggroup.org/specs/IWG.

