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Abstract 

This paper proposes and details the notion of trust-by-policy-adherence 
(TBPA), meaning that code can be certified on the basis of its security-
related behaviors rather than its origins and integrity. We describe the 
overall life cycle of code in this setting, and propose a detailed model 
whereby a program’s policy adherence can be verified. We suggest 
enforcing security policies over code by means of aspect-oriented 
programming (AOP). Based on the characteristics of AOP programs, we 
model security policies and a verification process using alternating 
temporal logic. This method can be used to verify whether a given 
program complies with a wide range of security policies, including both 
safety and liveness policies. It can also verify whether the original 
program is affected by policy execution. We argue that TBPA provides a 
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suitable semantic framework for certifying code, and represents a step 
forward from trusted code toward trustworthy code. 

1. Introduction 

In highly interconnected and distributed network computing environments, it is 
becoming more and more necessary to build trust into network entities such as users, 
platforms, and especially some programs. The purpose of this movement is to make 
certain that programs will not do something harmful. 

Trusted computing technologies based on TPMs [22] (trusted platform modules) 
try to build trust into applications by supplying an identity certificate and confirming 
the integrity of the code. However, identity and integrity only reveal who is 
responsible for the code and that the code was not altered by attackers. No additional 
security is attached to this information. Essentially, consumers must accept the code 
“as-is”, relinquishing the possibility of making decisions based on their security 
requirements. For example, in principle one would like to trust code that can prohibit 
the send operation after reading secure data, not just code that comes from a famous 
software factory. Code producers, on the other hand, cannot declare that their work 
will comply with a given security specification. Because the level of security is built 
into the TPM hardware, so the decision is out of their hands. As a consequence, they 
may find it hard to convince consumers that their code will not do anything harmful. 

If a producer could guarantee that its code will comply with certain security 
specifications, however, then consumers would be free to choose the code or not 
according to their security requirements. 

We propose in this paper the notion of trust-by-policy-adherence (TBPA): the 
certificate should not just certify the origin of the code, but bind the code to a 
specific security policy. Loosely speaking, a security policy is a behavior 
specification for the code. It can define rules for access control, memory use, secure 
web connections, privacy protection, and so on. In this way, for each program 
installed, either the platform or the user could choose among a range of security 
policies avouched by the certificate. 

This paper describes the overall life cycle of code in a setting of trust-by-policy- 
adherence, explains how security policies can be enforced on the code by aspect-
oriented programming [16], and provides a formal method of verifying policy 
adherence. We argue that security policies provide the necessary semantics for 
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certifying code, thus representing an important step in the transition from trusted 
code to trustworthy code. 

In the next section, we briefly introduce the technology of executing a security 
policy over code and describe the basics of a TBPA scenario. In Section 3, we 
present a concrete programming paradigm for security policy realization. The next 
two sections (4 and 5) describe a verification method for policy adherence. A 
discussion of related work and some conclusions end the paper. 

2. The Trust-By-Policy-Adherence Usage Model 

Definition 2.1 (Security policy). A security policy [10, 19] is a formal, complete 
specification of acceptable behavior for applications to be executed on the platform, 
in matters concerning relevant security actions. 

Definition 2.2 (Safety policy). A security policy specifying that “nothing bad 
ever happens” is called a safety policy [10, 19]. 

Definition 2.3 (Liveness policy). A liveness policy [10, 19] states that nothing 
irremediably bad happens, or that good things will happen eventually. 

One efficient way of enforcing a security policy is by in-lining monitor code [9, 
13] to produce a self-monitoring program. At compile time, untrusted code or binary 
executable is automatically rewritten to comply with an external security policy, 
which can be defined using a policy specification language such as PSLang in SASI 
[8] or MEDL/PEDL in Java-MaC [17]. Another language, ConSpec [14], is a 
simplification of PSLang. Its denotation semantics are built upon security automata, 
so it can describe a safety policy as well as PSLang or MEDL/PEDL. The in-line 
monitors execute safety policies by accepting legal actions and rejecting illegal 
actions as the program executes. In this situation, the monitors act as invalid 
execution recognizers. Sometimes, monitors insert control actions into the program 
in order to execute some kind of liveness policy. 

Independent of the research on in-line monitoring, aspect-oriented programming 
[16] (AOP) has been proposed to deal with the tangled and scattered code that can 
result from crosscutting concerns. Numerous authors [2, 5, 6, 11] have observed that 
AOP lends itself to the implementation of security enforcement mechanisms such as 
in-line monitors. The approach is quite powerful, having been used to enforce a wide 
range of important security policies, including some safety and liveness properties 
[2, 19]. 
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Figure 1. Workflow of trust-by-policy-adherence. 

In our usage model (see Figure 1), code developers incorporate security policy 
enforcement into their programs using AOP. Then, using the verification method 
designed in Section 4, their programs can be certified to comply with a security 
policy designed by the developer’s own company or any trusted third party. 

At deployment time, the user checks whether the certificate is correct. As we 
have said already, this certificate can serve as proof that the code complies with 
certain security policies. Once the user confirms that the certificate is trustworthy, 
he/she can check whether the policies adhered to by the code meet their platform’s 
security requirements. If so, the application can be run. As we see in Figure 1, a key 
obstacle in the overall workflow of TBPA is verifying the policy adherence of the 
code. To address this issue, we design an abstract verification model. This will be 
the subject of Section 4. 

3. Using AOP to Enforce Policies over Programs 

Security policies specify various allowed and prohibited execution steps. Below 
we list some types of security policies for programs: 

1. Secure connection policies: for example, the program can only use HTTPS. 

2. Authorization policies: for example, only user Jones is permitted to access a 
file. 

3. All files opened by the program need to be closed before the program ends. 

4. A policy might prohibit execution of Send operations after a file read 
operation. 

Examples 1, 2, and 4 are safety policies. Example 3 is a liveness policy. 
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3.1. Developing a program using AOP 

AOP enables the modular implementation of crosscutting concerns. This 
practice is most often realized in AspectJ [15] languages. The base code of AOP is a 
primary program handling the core concerns of the application; an aspect is a code 
fragment that modularizes an orthogonal concern. An aspect weaver is a compiler 
that integrates the aspects into the base code. Each aspect specifies where and how to 
inject its own code into the base code. The basic constructors of an aspect include 
three new concepts: 

Joinpoints: A joinpoint is a location within a program where the aspect 
weaver can integrate a code fragment, called an advice. An advice can be 
executed before, after, or even around a join point. 

Pointcuts: A pointcut is a set of join points sharing specific static properties. 
For instance, in AspectJ, pointcuts are defined using quantified Boolean 
formulas over method names, class names, control flow, and/or lexical 
scopes. A pointcut can capture specific event occurrences such as method 
calls, access to attributes, and exceptions. 

Advice: advice is a fragment of code that is executed before, after, or 
around the evaluation of the joinpoint. 

Aspect weaving technology based on these constructors allows security-related 
events to be defined beyond the kernel functions of the AOP program. For example, 
one aspect could add code that logs every file operation, while another inserts a 
security authorization mechanism before operations that read secret data. 

The following example shows how to translate a security policy into an aspect, 
and the constraint behaviors present in the base code after aspect weaving. 

Example 1. There is a separation of duty policy requiring that the critical() 
operation be performed only under the endorsement of both the manager() and 
accountant() operations. We develop a program that adheres to this policy using the 
AspectJ language. The program is shown in Figure 2. 
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Figure 2. Base code and aspect of Example 1. 

The base code in block (a) is the primary program. It defines two global 
variables, pa and pm, and executes three security-related functions: accountant(), 
manager() and critical(). According to the policy, critical() can be executed only 
after both accountant() and manager() have been executed. To execute this policy, 
we create three aspects. First, aspect Ma defines Pointcut m, which is located at the 
function manager(). The type of advice is After. Thus, the action defined by aspect 
Ma is that after manager() has finished, the variable pm is set to “true”. Next, aspect 
Ac is defined similarly to aspect Ma, but sets pa to true after accountant() has 
finished. Finally, aspect Cr defines Pointcut c() at the function critical(). The type of 
advice is Before, so the actions defined by aspect Cr take place before the execution 
of critical(). The code fragment evaluates pa and pm; if both are true, it executes the 
critical() function and sets pa and pm to false. Otherwise, it throws an exception. 

At compilation, the aspect weaver incorporates all three aspects into the base 
code to produce a policy-adherence program (PA program). Figure 3 displays the 
code for the resulting PA program. 
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Figure 3. Policy-adherence program after aspect weaving. 

4. A Verification Model for Policy Adherence 

By virtue of AOP technology, it is easy to develop clear PA programs. The 
existence of non-declarative advice in aspects, however, makes it even hard for 
programmers to ensure that programs comply exactly with the intended security 
policies, and that aspects will have no side effects on the base code. Taking the 
characteristics of PA programs and the composition reasoning used in aspect 
verification [7, 18] as starting points, we construct a model to verify that PA 
programs have the correct property. In this context, “correct” includes two abstract 
properties: coherence and transparency. Coherence means that the program is 
guaranteed to adhere to the security policies. Transparency means that any aspects 
incorporated do not impair the primary function of the base code. 

4.1. Abstract program structure 

Alternating-time Temporal Logic (ATL) and Alternating Transition Systems 
(ATS) [3, 4] are logical specification tools for an open system. They were proposed 
to account for questions such as the following: “On a state machine model which 
describes an open system and its environment, can the system resolve its choices in 
such a way that the satisfaction of a property is guaranteed no matter how the 
environment resolves the external choices?” This satisfaction can be viewed as the 
winning condition of a two-player game between the system and the environment. 
When the system consists of several components, the question implies a multi-player 
game where each component of the program, system, and environment is 
represented by a different player. ATL and ATS can be used to specify this more 
general setting in addition to the simple example discussed in this paper. 
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We will use ATL and ATS to specify alterations of the environment, the base 
code, and the aspects, and then analyze the correct property of the program. To 
begin with, we abstract a PA program as a Turn-based Alternating Transition System 
(Turn-based ATS). The concrete definition is as follows: 

Definition 4.1. A PA program structure (PAP structure) can be abstracted as a 
Turn-based ATS. Expressed as tuple, the PAP Structure is δσπΠΣ ,,,,, Q  with 

the following components: 

(1) Σ is a set of players: Aspect, the BaseCode, and the Environment. 

(2) Q is a finite set of states q. 

(3) Π is a finite set of propositions p. 

(4) The function Π→π 2: Q  is a labeling function which maps each state 

Qq ∈  to a set ( ) .Π⊆π q  ( )qπ  is the set of propositions that are true 

when the system is in state q. 

(5) The function Σ→σ Q:  maps a state q to a player .qa  It indicates that 

when the system is in state q, it is the turn of player qa  to choose the next 

execution step of the program. The integer ( ) 1≥qda  is the number of 

moves available to player qa  at state q. We identify the moves with the 

sequence of numbers ( ).1 qda"  Thus, for each state ,Qq ∈  there is a 

vector of possible moves: the tuple kjj "1  such that ( )qdj aa ≤≤1  

for each player a. For all other players Σ∈b  at state q, ( ) .1=qdb  (This is 

a way of stating that no other players have a choice of actions.) 

(6) ( )ajq,δ  is a transition function. When qa  chooses action ,aj  state q will 

transit to state ( ) ., Qjqq a ∈δ=′  

4.2. Definition of formulas specifying the “correct” property 

As we have already emphasized, correct implies both coherence and 
transparency. A sound PA program complies with the intended security policy. 
Transparency indicates that the incorporated aspects do not impair the function of 
the primary program. In this section, we interpret the syntax and semantics of 
alternating-time temporal logic. We shall then describe the properties of coherence 
and transparency as ATL formulas. 
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Definition 4.2 (Strategy). Given a structure ,,,,,, δσπΠΣ= QS  a strategy 

for player Σ∈a  is a function Q
a Qf 2: →+  such that for all +∈λ Q  and 

,qλ′=λ  ( ) ( ).qdf aa ∈λ  

The strategy of player “a” constraints the possible executions, and those 
possible executions is path chosen by player a. 

Definition 4.3 (Path). Given a state ,Qq ∈  a set Σ⊆A  of players, and a set 

( )AafF aA ∈:  of strategies for the players in A, we define the path from q to be 

the set out ( )AFq;  of computations λ that the players in A enforce as they follow 

the strategies in .AF  That is, a given computation ...,,, 210 qqq=λ  is in out 

( )FAq;  if qq =0  and for all positions ,0≥i  there is a move aj  such that (1) 

[ ]( )ifj aa ,0λ=  for all players ,Aa ∈  and (2) ( ) ., 1+=δ ia qjq  

Definition 4.4 (ATL Syntax). An ATL formula is one of the following: 

(1) P, proposition ;Π∈p  

(2) ϕ¬  or ,21 ϕ∨ϕ  where ϕ, 1ϕ  and 2ϕ  are all ATL formulas; 

(3) ,ϕDA  ,ϕA  ,ϕ◊A  or ,21 ϕϕ ∪A  where Σ⊆A  is a set 

of players and ϕ, 1ϕ  and 2ϕ  are all ATL formulas. 

The operator ⋅  is a path quantifier. The symbols D  (“next”), � (“always”), ◊ 

(“eventually”), and ∪  (“until”) are temporal operators. A  represents the path 

chosen by the players in set A. The Quantifier ⋅  also has a dual form [ ][ ].⋅  While 

formally ϕA  means that the players in A can cooperate to make ϕ true, [ ][ ]ϕA  

means that the players in A cannot cooperate to make ϕ false. 

Definition 4.5 (Semantics of ATL). The satisfaction relation ”“  is defined as 

follows: 

(1) pq  iff Π∈p  and ( );qp π∈  

(2) ϕ¬q  iff ;ϕq  

(3) 21 ϕ∨ϕq  iff 1ϕq  or ;2ϕq  
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(4) ϕDAq  iff there exists a set of strategies ,AF  one for each player in A, 

such that for all computations ( ),,out AFq∈λ  we have [ ] ;1 ϕλ  

(5) ϕAq  iff there exists a set of strategies ,AF  one for each player in 

A, such that for all computations ( )AFq,out∈λ  and all ,0≥i  we have [ ] ;ϕλ i  

(6) 21 ϕϕ ∪Aq  iff there exists a set of strategies ,AF  one for each player 

in A, such that for all computations ( ),,out AFq∈λ  there exists a position 0≥i  

such that [ ] ,2ϕλ i  and for all positions j, ,1 ij <≤  we have [ ] .1ϕλ j  

Based on the above definitions of ATL logic, we can now formulate the correct 
property of a PAP structure. 

Definition 4.6 (Coherence). Coherence means that the PA program should 
adhere to the intended policy. That is to say, in the framework of ATL all possible 
paths decided by the strategies of two players, Aspect and BaseCode should satisfy 
each policy requirement ϕ, no matter how the Environment chooses. Expressed as an 
ATL formula, one would write .BasecodeAspect, ϕ=ϕs  sϕ  would be described 

differently according to the concrete policy: 

(1) For a safety policy, sϕ  is a statement that bad things will never happen, or 

that some property should always hold. For example, if the policy requires that 
action1 and action2 never happen concurrently on the path chose by Aspect and 
BaseCode, then one would write: ( ).action2action1BasecodeAspect, ∧¬  

(2) For a liveness policy, sϕ  is a statement that something will happen 

eventually. For example, if all opened files should be closed before the end of the 
program, one would write ( ).CloseBaseCodeAspect,OpenFiles ◊→  

(3) If a policy can be decomposed into several sub-policies, then sϕ  includes all 

the child formulas. 

Definition 4.7 (Transparency). Transparency means that the Aspect player 
should not impair the character or behavior of the primary program (its semantics 
and functionality). That is to say, within the PAP structure, all paths decided by the 
strategy of BaseCode should satisfy the core requirements ϕ of the primary program 
no matter how the other players choose. Expressed as an ATL formula, one would 
write .BaseCode ϕ=ϕt  ϕ would be described differently according to the 
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character of the original program; it might describe a functionality of the base code, 
or some desired properties of the base code. 

4.3. Verifying the “correct” property by model checking 

In the framework of ATL, the model checking problem consists of computing 
winning strategies, which also testify to the correctness of the game structure. We 
can use the general ATL model-checking algorithm on the coherence and 
transparency formulas defined above. That is, given a PAP structure and specific 
coherence and transparency ATL formulas, this algorithm can compute winning 
strategies. If winning strategies exist for the Aspect and BaseCode players, we 
conclude that the PA program is guaranteed to have the correct property. Otherwise, 
there exists a winning strategy for the Environment which serves as a 
counterexample. In this situation, we can conclude that the PA program does not 
have the correct property. 

5. An Example 

The following example demonstrates the effectiveness of our verification 
model. 

Example 2. A program module makes use of the point class, which has a 
method move, to move a point on canvas. The program interface contains a canvas, 
two numeric text fields where the user can fill in x and y coordinates, and press “ok” 
button to move the point to the specified location on the canvas. The program only 
reads the text fields; it does not write to them. Their values are therefore determined 
by the environment alone. We assume that the text fields only accept non-negative 
coordinates. 

For clarity of display, we add a constraint policy on this program’s executions. 
When the point’s location is too close to the origin, e.g., 50 << x  and ,50 << y  

the base code multiplies the coordinate by a significant factor, in this case 10. This 
factor is stored in the variable scaleFactor. Conversely, if 5≥x  or ,5≥y  the 

coordinate is left alone. For the display to continue working properly, scaleFactor 
must be reset to 1 at the end of the program. This policy is encoded as an aspect 
named adjustscale. The code is shown in Figure 4. Henceforth, the constraints are 
written as ( ) 5, <yx  and ( ) 5, ≥yx  for simplicity. 
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Figure 4. Code of Example 2. 

5.1. PAP structure 

Adopting the method proposed in Section 4, we construct the PAP structure of 
the code in Figure 4. There are three players: Environment, BaseCode, and Aspect. 
Environment sets the inputs of the program and presses the button. BaseCode 
executes the move function. Aspect executes the constraint policy. Henceforth we 
use the characters e, b and a to represent the three players. Figure 5 represents our 
PAP structure visually using state transition diagrams. 

 

Figure 5. PAP Structure of Example 2. 
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On the left-hand side of Figure 5, we label lines of code with 0, 1, 2, m1 or m2. 
On the right-hand side, each circle with label inside describe which propositions 
hold in that state, such as, at root state, propositions L¬  and pre hold. Those 

propositions are abstractions of the concrete program states, which are defined in 
Table 1. The symbol e, b or a beside a circle indicates the active player at that state. 
For example, the symbol beside the root state is ,0e  meaning that Environment is 

the active player at program point 0. 

Table 1. Description of proposition variables 

Proposition 
variable 

Meaning Proposition 
variable 

Meaning 

Pre x or 5≥y  pre¬  x<0  and 5<y  

L scaleFactor 10=  L¬  scaleFactor 1=  

ok button is pressed move Execute move function 1=  

Assume that the program is at point 0, and that both coordinates ( )yx,  are 

currently greater than or equal to 5. The Environment can choose between entering 
coordinates ( ) ,5, ≥yx  entering coordinates ( ) ,5, <yx  or pressing the button. 

If the button is pressed, the program will execute the right-hand subtree. 
BaseCode gets the values of the coordinates, then attempts to advance the program 
counter to point 2. Aspect interrupts the flow, moving the program to point m1. 
Since ( ) ,5, ≥yx  Aspect does not increase the scaleFactor value and returns control 

to BaseCode at point 2. After the move function is finished, Aspect interposes itself 
again and sets scaleFactor to 1. 

If the Environment enters coordinates in the range ( ) 5,0 << yx  and then 

presses the button, Aspect would set scaleFactor to 10 at point m1 but change its 
value back to 1 after the move function is complete. 

5.2. Correct formulas and verification 

• coherence formulas 

(1) According to the policy, the coefficient scaleFactor should be reset to 1 
eventually. This is a liveness policy. Thus, we have the ( ba,move →  

.L¬◊  Whenever the move function is finished, Aspect and BaseCode should 

cooperate to restore scaleFactor to its normal value before the program terminates. 
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(2) According to the security policy, program execution should always obey the 
following logic: if ( ) ,5, <yx  then the move function is executed with scaleFactor 

;10=  if ( ) ,5, ≥yx  then the move function is executed with scaleFactor .1=  Thus, 

we have formulas: 

(a) ( )) ( )( :move,okpre ∧¬¬→∧¬ Lba  whenever ( ) 5, <yx  

and the button is pressed, on all the path choose by Aspect and BaseCode, there is no 
state satisfy move with scaleFactor .1=  

(b) ( )) ( )( :move,okpre ∧¬→∧ Lba  whenever ( ) 5, ≥yx  and 

the button is pressed, on all the path choose by Aspect and BaseCode, there is no 
state satisfy execute move with scaleFactor .10=  

(c) ( )) [ ][ ] ( )( :moveokpre ∧◊→∧¬ Le  whenever ( ) 5, <yx  and the 

button is pressed, Environment cannot force the program to execute move with 
scaleFactor .1=  

(d) ( )) [ ][ ] ( )( :moveokpre ∧¬◊→∧ Le  whenever ( ) 5, ≥yx  and the 

button is pressed, Environment cannot force the program to execute move with 
scaleFactor .10=  

• transparency formulas 

Recall that the original function of BaseCode is to move a point on canvas. This 
function should not be stopped by any behavior of Aspect. Thus, we have the 
following formula: 

(3) ( ) :moveok ◊→ b  Whenever the button is pressed, BaseCode 

must execute move eventually. 

By model-checking the formulas defined above on the program’s PAP structure, 
we can verify that Aspect and BaseCode have winning strategies. In other words, 
whatever actions the Environment chooses, BaseCode and Aspect will adhere to the 
intended policy. Also, Aspect does not alter the original function of BaseCode. 
Hence, we conclude that the program in Figure 4 has the correct property. 

5.3. Counterexample 

Suppose the programmer makes a mistake and leaves out the lines “After 2;  
p.scaleFactor ”1=  in the aspect (barred text on the right-hand side). The PAP 
structure changes accordingly, as shown in Figure 6. 



CORRECT VERIFICATION FOR CODE ... 159 

 

Figure 6. Modified PAP structure. 

In this new structure, because Aspect and BaseCode have no opportunity to 
restore scaleFactor to 1, coherence formula 1 does not hold. Coherence formulas 2.b 
and 2.d are also not satisfied. The environment has a winning strategy which serves 
as a counterexample to both formulas. For example, Environment can input the 
coordinates (1, 3), then press the button, then input (7, 8), then press the button 
again. The corresponding execution path is ( →→→→→→ 186421 SSSSSS  

).753 SSS →→  The first time the button is pressed, the Pre¬  proposition holds, 

so the program will execute along the left-hand subtree. During this stage, 
scaleFactor is set to 10 (at S6). The program then accepts coordinates (7, 8), which 
satisfy the Pre proposition. The program should execute along the right-hand 
subtree, but there will be a state that can satisfy both L and move. Therefore, 
Formula 2.b does not hold. Environment has succeeded in forcing the program to 
execute Move with scaleFactor 10=  when the Pre proposition is true. Thus, 
formula 2.d also does not hold. We conclude that there must be some problem with 
the Aspect, as the program does not adhere to the policies. 

6. Related Work and Conclusion 

Once a program has been verified to comply with a given security policy, the 
software company or a trusted third party will issue a certificate to this effect. Code 
consumers can then choose to trust the code or not on this basis. 
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Language-based approaches to computer security have employed two major 
strategies for enforcing security policies over untrusted code: low-level type systems 
and execution monitoring. 

Low-level type systems can enforce security policies involving important 
program invariants such as memory and control. Proof-carrying code (PCC) [21] 
generalizes the type-safety approach by providing explicit proof of safety (code 
safety). The PCC approach launched the idea that untrusted code should be 
accompanied by information that aids in verifying its safety. The code consumer 
uses a specialized application to check that the proofs provided are valid, and hence 
the code is safe to execute. Such proofs can be automatically generated by a 
certifying compiler [20] based on a static analysis of the producer code. The 
traditional approach to PCC based on type theory is problematic in that it usually 
enforces fixed-type security policies that are encoded into the type system or proof 
logic itself. The security policies therefore cannot be changed without changing the 
type system or certifying compiler. 

Execution monitoring is an established technique for enforcing a wide range of 
policies over programs. For efficiency, execution monitoring is often implemented in 
the form of in-lined reference monitors [13]. Researchers have devised many 
techniques for proving that a program with in-line monitors obeys the safety 
policies. 

Mobile [12] is a certifying in-lined reference monitoring system for the 
Microsoft .NET framework. It rewrites .NET CLI binaries according to a declarative 
security policy specification, producing a proof of policy-adherence in the form of 
typing annotations in an effect-based type system. These proofs can be verified by a 
type-checker to guarantee policy-adherence of code with in-line monitors. 

Aktug et al. [1] designed a two-level class file annotation scheme using Floyd-
style program logic for Java bytecode, characterizing two key properties: (i) that the 
program adheres to a given policy, and (ii) that the program has an embedded 
monitor for this policy. They sketch a simple in-lining algorithm, and show how the 
two-level annotations can be completed to produce a fully annotated program. This 
method establishes the mediation property, meaning that in-lined programs are 
guaranteed to adhere to the intended policy. Furthermore, the validity of the code 
can be efficiently checked using an annotation checker based on the weakest 
precondition. This work is preparing the ground for on-device checking of policy 
adherence in a proof-carrying code setting. 
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The methods developed by Hamlen and Aktug only certify that a program with 
in-lined monitors adheres to certain safety policies. Neither can establish the 
transparency property, which would ensure that the monitors have no ill effects on 
the original program. 

In this paper, we have tried to deal with the verification of policy adherence in a 
different way. First, we enforce security policies over a program by means of aspect-
oriented programming (AOP). Second, based on the characteristics of AOP, we 
abstract the execution structure of the program using alternating-time temporal logic 
(ATL). In this framework we can devise formulas that characterize the coherence 
and transparency properties. Finally, by checking the validity of the ATL formulas 
within the abstracted structure, we can determine whether the program complies with 
the security policies and whether execution of a policy affects the original 
functionality. Together, the two conclusions attest to the correctness of the program. 
This method can prove that programs comply with a wide range of security policies, 
not just safety policies. 

This method establishes trust-by-policy-adherence, and provides a semantic 
framework for certifying code on this basis. It represents a step forward from trusted 
code toward trustworthy code. 
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