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Abstract 

In this paper, a robust controller design approach based on ∞HQFT  is 

proposed, and its system with the each robustness sub-controller is 
verified in the presence of noise and system disturbances for Multi-input 
Multi-output (MIMO) quarter-model suspension system. The weighting 
functions of MIMO suspension system structure are adapted the mixed 
sensitivity standard configuration as well as can be calculated from the 
singular value uncertain matrix and the sensitivity function, respectively. 
The system performance of suspension system with the developed 
controllers obtained from the flowchart of ∞HQFT design procedure is 

illustrated. 

1. Introduction 

In general, traditional control design approaches consider a fixed operating 
point in the hope that the proposed controller is robust enough to stabilize the system 
under operating condition variations. Robust control, on the other hand, incorporates 
the uncertain parameters into the model in order to achieve the system robustness. 
Many researches had been devoted some effective ways to tackle the difficulty of 
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this design methodology. Combination or integration is used to form a new concept 
[8, 9, 11]. 

Quantitative Feedback Theory ( )QFT  [1, 7, 8, 10, 16] is an efficient, 

frequency-based, and robust controller design methodology that maintains system 
response within pre-specified tolerances despite the presence of uncertainties and 
disturbances. Then, ∞H  control, had been intensively developed for twenty years. 

In particular, Glover and Doyle [5] had been begun new field for state-space theory 
in ∞H  control solved by 2-Riccati-equation algorithms. Optimal control focuses on 

plants with uncertainties and external disturbances to design a stabilized controller 
that minimizes the ∞H -norm to error signals from external disturbances [3]. Only in 

the last decade year, the researchers in control theory begun to realize the QFT and 

∞H  design conceptions. Both the QFT and ∞H  design techniques have 

preoccupied the control region since 1980 [17]. 

A two-degree-of-freedom (TDOF) feedback system is typically assumed for the 

∞HQFT  technique [16]. Figure 1 depicts the command input ( ),r  plant ( ),P  

controller ( ),K  pre-filter ( ),F  system output ( ),y  disturbance ( )d  and sensor 

noise ( ),n  where K is the 1st-design-degree-of-freedom, which reduces the system 

sensitivity, and F is the 2nd-design-degree-of-freedom, which defines the system 
performance [8].  
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Figure 1. Structure of a TDOF feedback system. 

With the development of suspension system with force control [2], many 
schemes and approaches regulated by a displacement or motion compensation had 
been presented. A combined ∞HQFT  design approach [11, 16] uses the concept 

of ∞H  optimal control to find the optimal controller K and then the output 

performance of overall system with the developed controller can be obtained. 
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In this paper, a Multi-input Multi-output (MIMO) suspension system is applied, 
and we attempt to design controllers such that the oscillations of sprung and 
unspring masses can be rapidly stable based on the combined ∞HQFT  approach 

that provides a helpful strategy to cope with the uncertainty issues. 

2. Passive-suspension Model 

A basic suspension system, used as a target model for a MIMO design case, is 
illustrated in Figure 2, where M, K and B denote the mass, spring and damper, 
respectively, as well as the related coefficients, u and y represent the driving force 
and displacement. The two-mass motion control system set up and designed to 
control the motion of the suspension, using the control functionality realized by the 
two robust controllers. 
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Figure 2. The basic analysis model for the passive-suspension scheme. 
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The motion equations for the model are arranged as follows.  The state equations are 
described as 









































+



















































+
−

+
−

−−
=

























2

1

2

1

4

3

2

1

2

21

2

1

2

21

2

1
1

1

1

1

1

1

1

1

4

3

2

1

10

01

00

00

1000

0100

u

u

M

M

x

x

x

x

M
BB

M
B

M
KK

M
K

M
B

M
B

M
K

M
K

x

x

x

x

 (1) 

and the output equations are shown as 
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We can manipulate the following relationship by calculating (1) and (2):  

( )
( )

( )
( )
( )

,
2

1

11
2

111

112121
2

2

2

1
























∆
++

∆
+

∆
+

∆
++++

=





sU
sU

KsBsMKsB

KsBKKsBBsM

sY
sY

 (3) 

where ( )[ ( ) ] ( ) .2
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211
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Using the ∞HQFT  approach, controllers for the trajectories of the two masses 

are regulated by the obtained transfer functions. The specific coefficients of the 
transfer functions are derived by considering the allowable margins of the system 
parameters, disturbance, and noise. 

3. The Design Procedure of ∞H  Controller by QFT Algorithm 

A standard ∞H  design structure is illustrated in Figure 3, where y denotes the 

value measured by the controller K, u denotes the output of the controller, w 
represents an external disturbance, z is the error signal, and G is the transfer function 
matrix of plant containing the weighting function [11, 16]. 
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Figure 3. ∞H  standard control structure. 

Assuming a plant with parameter variations and uncertainties, the transfer 
function can be defined as the set ( ){ }sP=℘  containing all possible transfer 

functions ( ).sP  In a plant with parameter variations, the output performance must 

satisfy both the time and frequency specifications [6], In other words, ( ) ℘∈∀ sP  

given a unit step command input ( ),tr  the output ( )ty  must satisfy: 

( ) ( ) ( ).tTtytT ul ≤≤  (4) 

In the frequency domain representation [14], an upper bound ( )ωuT  and a lower 

bound ( )ωlT  are described as 

( ) ( ) ( ),ω≤ω≤ω udBl TjTT  (5) 

where ( ) ( )
( ) ( ) ( )sTsF
sR
sYsT 1==  and ( ) ( ) ( )

( ) ( )
( )
( ) .

111 sL
sL

sKsP
sKsPsT

+
≡

+
=  

In the presence of plant uncertainties, output disturbances and sensor noise, the 
overall system response range must satisfy the specification in frequency domain: 

( ) ( ) ( ).ω−ω≤ω∆ ludB TTjT  (6) 

A well-defined feedback control system demonstrates disturbance rejection in 
the low-frequency range and sensor noise reduction in the high-frequency range. In 
the design of a feedback controller, the above factors can be considered so that the 
loop gain can be properly shaped [11, 13]. 

To guarantee nominal performance and robust stability, three frequency-related 
terms can be identified in the following forms: 

,1≤∞SWS  (7) 
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,1≤∞ununTW  (8) 

,1≤∞TWT  (9) 

where ,SW  unW  and TW  represent the weighting functions of sensitivity function, 

control effort function and complementary sensitivity function, respectively. This 
kind of design methodology is called as ∞H  mixed sensitivity problem. 

Figure 4 shows the overall feedback system structure. The controller ( )K  for 

this system can be calculated by the LMI-based ∞H  algorithm, which contains a 

fewer constraints, proposed by Gahinet and Apkarian [4], is applied. 
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Figure 4.  A feedback system structure with weighting. 

The procedure steps to design the above uncertain TDOF feedback system by 

∞HQFT  are the following: 

1. Design of the controller K 

Without considering the prefilter F, the desired performance specifications can 
be transferred into the proper weighting functions, and then used the LMI-based 

∞H  algorithm to calculate the controller K. 

2. Design of the prefilter F 

After the controller is designed, we add the prefilter to modify the frequency 
response. 

The overall design steps are shown in Figure 5. In the process of designing the 
controller, the key point is determined by the choice of the weighting function. 



∞HQFT  CONTROLLER DESIGN OF A MIMO SUSPENSION SYSTEM 55 

<Step 1> 
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Figure 5. A combined ∞HQFT design steps. 
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A. Multiplicative perturbation modeling of the plant and weighting function TW  

Assume that ℘∈P  is a plant with parameter variations. If we use the 

multiplicative perturbation model of the plant, as shown in Figure 6, then P can be 
represented by 

( ),0 PIPP ∆+=  (10) 

where P∆  is the error in the multiplicative model. 

The condition of stability robustness [3, 13, 18] is 

∞∞ ∆
<

+ PPK
PK 1

1 0
0  (11) 

or 

,11 0
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+

⋅∆ ∞
∞
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If the system is a single-input single-output type, then the weighting function 

TW  can be computed by equation (13) [15]. 

( )
( ) ( )ω≤−
ω
ω jW
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Figure 6. Multiplicative perturbation model of the plant. 
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B. Sensitivity function and weighting function SW  

One of the most important indexes of control system performance is the 
sensitivity function, which reflects the degree to which the overall performance is 
affected by parameter variations in the system. The sensitivity function is defined by 

( )
( ) ( )
( ) ( ) ,

max

max
dBjP
dBjT

jST
P ω∆

ω∆
≡ω  (14) 

where ( ) ( )dBjT maxω∆  represents the maximum variations of ( )ωjT  in decibel, 

and ( ) ( )dBjP maxω∆  is the maximum variation of ( )ωjP  in decibel [8, 16]. 

In the QFT design concept, we generally choose some interesting frequencies 
below 10 rad/sec. We choose these frequencies when we find the sensitivity 
function. After choosing the nominal plant, and using equation (14), we find the 
magnitude response of the nominal sensitivity function ( )ωjS0  with a Bode plot. 

Next, by using the curve fitting package (mrfit) in the program MATLAB [14], we 
can get the nominal sensitivity function ( ).0 sS  

If the desired sensitivity function satisfies ( ) ( ),ω≤ω ∗DjS  then the system’s 

desired performance could be written as: 

( ) ( ) 10 ≤ωω jSjWS  (15) 

or 

( ) ( )
( ) ,

0 ω
ω≤ω

∗

jS
DjWS  (16) 

where ( )ω∗D  is the disturbance rejection specification. 

C. High frequency noise rejections and weighting function unW  

After selecting the nominal plant ,0P  the transfer function from n to u is given 

by 

.1 0KP
K

n
uTun +

−
==  (17) 

Equation (17) represents the effect of sensor noise on the amplifier. If this effect can 
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be reduced, then the cost of feedback design will also be down. Including the 
weighting function unW  in the transfer function ,unT  we have 

( ) ( ) .1≤ωω jTjW unun  (18) 

A good control system should have a proper loop-gain, set to reduce the sensor 
noise disturbance at high frequencies, and reduce the sensitivity at low frequencies. 
This constraint is considered when choosing unW  and .SW  After transferring the 

desired system performance specifications into a proper weighting function, we can 
use the LMI-based ∞H  algorithm to obtain the controller K. 

4. Simulation Results 

The response of the controllers obtained from this ∞HQFT  approach can be 

described. However, QFT algorithm does not deal with the controller design of 
MIMO system very well. The QFT constraints on the criteria of the MIMO system 
with uncertainty components can be described. Based on setting the design 
conditions appropriately, the applicable controllers can be calculated by the 

∞HQFT  approach. Figure 7 shows the singular value of uncertainty plant, where 

the solid line represents the weighting function ,1TW  ( )
( )3055.0

3004.04.0
+
+

s
s  and the 

dashed line denotes uncertainty parameter variations. Then, the weighting function 

TW  for this case is chosen [( ) ( )]1
11

1
11 ,150 −− ⋅⋅⋅= TTTTT WWWWdiagW  so that the 

fluctuation of overall system can be reduced to zero. Figure 8 shows the magnitude 
of sensitivity function situation, .SW  The selecting of control effort weighting 

function unW  is as a tuning parameter depending upon the sensitivity function 

variation. In this case, the weighting function is constant gain for suspension system, 
i.e., ( ).8,8diagWun =  Table 1 represents the specific design items for suspension 

system and Table 2 provides the design controller of the suspension system with the 
sub-optimal .4162.24=γ  Finally, Figure 9 illustrates the time-domain responses of 

system with the robustness controllers. The variation of mass 1 and mass 2 can be 
reduced to zero when the suspension system travels along the unit step target path. 
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Table 1. System parameters 

Parameters Values Units 

1M  793 (Kg) 

2M  114 (Kg) 

1B  1095 (Ns/m) 

2B  14.6 (Ns/m) 

1K  42720 (N/m) 

2K  101115 (N/m) 

 

Table 2. The results of ∞HQFT  controller 

Controllers Input ( )1u  

( )11 xy   ( )( )( )
( )( )( )8.42882.1084.9008001.0178.3348.1

8.42882.1094.9008065.02026.01737.23
222

22

++++++

++++−

ssssss
sssss  

( )32 xy  ( )( )( )( )
( )( )( )8.42882.1084.9008001.0178.3348.1

3.321449.91109.012.141.240008.0
222

2

++++++

+++−+

ssssss
sssss  

 

Controllers Input ( )2u  

( )11 xy   ( )( )( )( )
( )( )( )8.42882.1084.9008001.0178.3348.1

1.31593.81167.0792.291.230008.0
222

2

++++++

+++++

ssssss
sssss  

( )32 xy  ( )( )( )
( )( )( )8.42882.1084.9008001.0178.3348.1

8.42882.1084.9008057.00229.09555.21
222

22

++++++

++++−

ssssss
sssss  
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Figure 7. Singular value of uncertainty matrix for weighting function, .TW  

 
Figure 8. Sensitivity function variation. 
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(a) 

 
(b) 

Figure 9. The performance of MIMO system of (a) mass 1; (b) mass 2. 

5. Conclusion 

The controllers consider in the presence of disturbances and noise through the 

∞HQFT  approach keep the motion of the two-mass-spring within the uncertainty 

parameters. This design methodology produces a robust controller suitable for use in 
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MIMO suspension system. The controllers of MIMO suspension system can be 
effectively calculated by using the design procedure. Moreover, the verification 
results demonstrate the applicability of the MIMO suspension operation scheme, and 
conform to the requirements. 
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