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Abstract 

In the present paper, the diffusion equation for a time dependent diffusion 
coefficient ( )tD  is solved, in two and three dimensions. It is pointed out 
that the behavior of the solution is controlled by the definite integral of 
( )tD  for time, assuming that the diffusion process is taking place at the 

time interval [ ].,0 t  The physical meaning of the solution is that at time t, 

the value of the quantity which is involved in the diffusion process 
depends on the mean value of ( )tD  at [ ]t,0  and not on its specific 

variation with time. The conclusions of this paper may be useful in 
modeling diffusion processes in various fields of geosciences such as 
hydrology, geomorphology and soil or atmospheric pollution. 

0. Introduction 

The diffusion equation has been extensively used to describe heat and mass 
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transfer in various physical systems (Zerefos [10], Gupta [2], Menke and Abbot [4], 
Streeter et al. [8]). It has also been used in geomorphology to describe a landform 
evolution by erosion processes (Culling [1], Kirkby [3] and Scheidegger [5]). 

In all these approaches, the diffusion coefficient D is considered to be time 
independent. In the context of our research in theoretical geomorphology, however, 
we have solved the diffusion equation with a time varying coefficient in one 
dimension (Skianis et al. [6]). The physical meaning of a time varying D in 
geomorphologic processes is that climate variations as well as human activities such 
as cutting of trees or ploughing, may change the soil erodibility and, consequently, 
the value of the diffusion coefficient. Skianis et al. [6] showed that the development 
of the landform with a time varying D is controlled by a function ( )tg  which is 

defined as the integral of Ddt for a time interval from zero to t. 

A time varying D may also have a physical meaning in other systems where 
diffusion processes take place such as atmospheric pollution or transportation of a 
liquid with contaminants through the subsoil. In such cases, the diffusion equation 
has to be solved in two or in three dimensions. We can intuitively assume that in the 
multi-dimensional case the solution of the diffusion equation should behave in a 
similar way, as in the one dimensional case. Since intuition by its own is not enough 
to come to reliable conclusions, in this paper, the diffusion equation in two and three 
dimensions is solved and its behavior for certain simple geometries is discussed. 
These models may have a broader interest in various fields of earth sciences such as 
hydrology, soil and atmospheric pollution, geomorphology and geothermy. 

1. The Diffusion Equation in Two Dimensions 

In Cartesian coordinates x, y, the diffusion equation is (Gupta [2]) 

 ( ) ( ) ( )yxftD
y

f
x

ftDt
f ,2

2

2

2

2
∇⋅=









∂
∂+

∂
∂⋅=

∂
∂  (1) 

with an initial condition 

 ( ) ( )yxtyxf ,0,, ϕ==  (2a) 

and a boundary condition 

 ( ) 0,,lim , =±∞→ tyxfyx  (2b) 
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where f is the time and space dependent variable ( ).,, tyxf  

The Fourier transform ( )tuuF yx ,,  of ( )tyxf ,,  is given by 

 ( ) ( ) [ ( )]∫ ∫
∞

∞−

∞

∞−
+−⋅= dxdyyuxuiyxfuuF yxyx exp,,  (3) 

where xu  and yu  are the wave numbers at x and y directions, respectively, i is the 

imaginary unity. 

The Fourier transform of ( )yxf ,2∇  is defined as ( ( ))yxf ,.F.T 2∇  and it is 

given by (Gupta [2]) 

 ( ( )) ( )yx uuFwyxf ,,.F.T 22 −=∇  (4) 

and 2w  is given by 

 222
yx uuw +=  (5) 

Combining relations (1), (3) and (4) gives 

 ( ) ( )tuuFwtDt
F

yx ,,2−=
∂
∂  (6) 

The solution of this ordinary differential equation is 

 ( ) ( ) [ ( )]tgwuuF yx
2exp.F.T, −⋅ϕ=  (7) 

where ( )ϕ.F.T  is the Fourier transform of ( )yx,ϕ  and ( )tg  is given by 

 ( ) ( )∫=
t

daaDtg
0

 (8) 

Relation (7) gives the solution of the diffusion equation at the wave number 
domain. According to the convolution theorem (Gupta [2]) and well-known Fourier 

transforms (Spiegel [7]), the product of ( ) [ ( )]tgw2exp.F.T −⋅ϕ  at wave number 

domain is the convolution of ( )yx,ϕ  with [ ( ) ( )( )],4exp 22 tgyx +−  which gives 

the solution ( )tyxf ,,  at space domain. Therefore the solution of the diffusion 

equation with a time varying diffusion coefficient is given by 
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 (9) 

If D is time constant, then according to relation (8), ( ) Dttg =  and, according 

to relation (9), the solution of the diffusion equation with a time constant diffusion 
coefficient is 

( ) ( ) 






 +
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 (10) 

Relation (9) shows that the solution of the diffusion equation with a time varying 
diffusion coefficient is controlled by the function ( ),tg  which is the integral of 

( )tD  for time t. 

On the other hand, if we define a mean value mD  of the diffusion coefficient t 

for a time interval [ ],,0 t  then according to relation (8), ( )tg  becomes 

 ( ) tDtg m=  (11) 

Combining relations (9) and (11) gives 
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ss
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4

1
22

 (12) 

Comparing relations (10) and (12), it can be concluded that the behavior of the 
solution of the diffusion equation with a time varying diffusion coefficient ( )tD  

depends on the mean value of ( )tD  for the time interval during which the diffusion 

process is developed. The solution does not depend on the specific variation of the 
diffusion coefficient during this time interval. 
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1.a. Special case: the diffusion equation in a 2-dimensional space with radial 
symmetry 

The 2-dimensional diffusion equation with radial symmetry has a particular 
importance in theoretical geomorphology, when the hill or the mountain upon which 
the erosion process takes place presents a symmetry along a vertical axis. The 
diffusion equation is (Zauderer [9]): 

 ( ) 







∂
∂+

∂

∂⋅=
∂
∂

r
f

rr
ftDt

f 1
2

2
 (13) 

with .0≥r  

There is the initial condition 

 ( ) ( )rtrf ϕ== 0,  (14a) 

and the boundary condition 
 ( ) 0lim =∞→ rfr  (14b) 

The zero order Hankel transform ( )tF ,λ  of ( )trf ,  is given by 

 ( ) ( ) ( )∫
∞

λ=λ
0

0 ,, drtrfrrJtF  (15) 

where 0J  is the Bessel function of first kind and zero order. 

Applying the Hankel transform on relation (13) and taking into account its 
properties (Zauderer [9]), the following ordinary differential equation is obtained 

 ( ) 02 =λ⋅+
∂
∂ FtDt
F  (16) 

The solution of equation (16) is 

 ( ) ( ) [ ( )]tgHTtF 2exp, λ−⋅λϕ=λ  (17) 

where ( )λϕ  is the Hankel transform of ( ).rϕ  

Applying the inverse Hankel transform on relation (17) and taking into account 
certain properties of the function 0J  (Zauderer [9]), it can be obtained that 

 ( ) ( ) ( ) ( ) ( )∫
∞








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




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1, dsssf
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tg
trf  (18) 
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where 0I  is the modified Bessel function of first kind and zero order. 

For a time constant D, the solution ( )trf ,  of the diffusion equation has the 

form of relation (18), however, ( )tg  has to be replaced by Dt. 

If the initial condition is represented by a function ( )rϕ  which has a constant 

value 0f  for br ≤≤0  and a zero value for ,br >  relation (18) becomes 

 ( ) ( ) ( ) ( )∫ 













 +−=
b

sdstg
rsItg

srftgtrf
0

0
22

0 24exp2
1,  (19) 

If D is time constant, then ( )trf ,  is given by 

 ( ) ∫ 













 +−=
b

sdsDt
rsIDt

srfDttrf
0

0
22

0 24exp2
1,  (20) 

For 0=r  and a time dependent D, relation (19) becomes 

 ( ) ( ) ( ) 















−−=== tg

bftftrf 4exp1,0
2

01  (21) 

For 0=r  and a time constant D, relation (20) becomes 

( ) ( ) 















−−=== Dt

bftftrf 4exp1,0
2

02  (22) 

If ( )tD  presents a periodical variation with time which is given by 

( ) ( )ttD π+= sin1  (22a) 

or alternatively by 

( ) ( )ttD π−= sin1  (22b) 

then according to relation (8), ( )tg  is given by 

( ) ( )
π

−
π
π= 1cos tttg ∓  (23) 

The minus sign corresponds to relation (22a) and the plus sign to relation (22b). 
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Combining relations (21) and (23), the variations of ( )11f  and ( )11 −f  against t 

may be easily calculated. ( )11f  and ( )11 −f  are defined to be equal to the function 

( ),1 tf  for a ( )tD  given by relations (22a) and (22b), respectively. 

In Figure 1, the time variation of the function ,2f  for a time constant 1=D  is 

represented, together with functions ( )11f  and ( ).11 −f  In all cases, 0f  is put equal 

to unity. 

It can be observed that a time dependent diffusion coefficient introduces 
significant deviations to the values of f. On the other hand, at time instances t, where 
( )tg  equals Dt, which means that the mean value of the time dependent ( )tD  is 

equal to the time constant value D, the value of 2f  is equal to the value of ( )11f  and 

that of ( ).11 −f  

 

Figure 1. The time variation of the solution f, in a two dimensional space with radial 
symmetry at ,0=r  for a time constant and a time dependent diffusion coefficient, 

.1,1,1,1 0 −==== cfbD  

2. The Diffusion Equation in Three Dimensions 

In three dimensions, the diffusion equation at space domain is 

 ( ) ( ) ( )zyxftD
z
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f
x
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The boundary and initial conditions are the same as in the 2-dimensional case. 
Function ϕ depends on x, y, z. 

At wave number domain, the diffusion equation takes the form 

 ( ) ( )tuuFwtDt
F

yx ,,2−=
∂
∂  (25) 

In the 3-dimensional case, 2w  is given by 

 2222
zyx uuuw ++=  (26) 

Working in the same way as in the 2-dimensional case, it can be proved that the 
solution of the partial differential equation (24) is given by 

( )
( )[ ]

( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
ϕ

π
= zyx sss

tg
tzyxf ,,

4
1,,, 23  

( ) ( ) ( )
( ) zyx

zyx dsdsdstg
szsysx











 −+−+−
−× 4exp

222
 (27) 

If the diffusion process is due to a point source 0f  at time ,0=t  then the initial 

condition is expressed by a Dirac-delta function according to the expression: 

 ( ) ( ) ( ) ( ) ( )zyxfzyxtzyxf δ⋅δ⋅δ⋅=ϕ== 0,,0,,,  (28) 

Taking into account well-known properties of the delta function (Menke and 
Abbott [4]), relation (27) becomes 

 ( )
( )[ ] ( ) 







 ++
−⋅

π
=

tg
zyx

tg

f
tzyxf

4
exp

4
,,,

222

23
0  (29) 

Working in the same way, it can be easily proved that in two dimensions the 
solution f for a point source is given by 

 ( ) ( ) ( ) 






 +−⋅
π

= tg
yx

tg
ftyxf 4exp4,,

22
0  (30) 

For a time constant D, the function ( )tg  in relations (29) and (30) is substituted 
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by Dt and the following well-known expressions are obtained, in three and two 
dimensions, respectively, 

( )
[ ]








 ++
−⋅

π
=

Dt
zyx

Dt

f
tzyxf

4
exp

4
,,,

222

23
0  (31) 

( ) 






 +−⋅
π

= Dt
yx

Dt
ftyxf 4exp4,,

22
0  (32) 

The temporal variation of f for a time dependent and a time independent 
diffusion coefficient is, in qualitative terms, similar to that of the curves of (Figure 1). 
A measure of the influence of the temporal variation of the diffusion coefficient on 
the behaviour of f may be obtained by the ratio ( ) ( );21 tftf ( )tf1  is the function f at 

the source of the function for a time variable diffusion coefficient and ( )tf2  is the 

respective function f for a time constant diffusion coefficient. 

Taking into account relations (29) and (31) and putting ( ) ( ),0,0,0,, =zyx  

the quantity ( ) ( )tftf 21  in three dimensions is given by 

 ( )
( ) ( )

23

2
1

4 




π

= tg
Dt

tf
tf  (33) 

Combining relations (30) and (32) and putting ( ) ( ),0,0, =yx  the quantity 

( ) ( )tftf 21  in two dimensions is given by 

 ( )
( ) ( )tg

Dt
tf
tf

π
= 42

1  (34) 

For a time constant D equal to unity and ( )tD  defined by the relation (22b), the 

expression for ( )tg  is given by relation (23) with the plus sign and, taking into 

account the relations (33) and (34), the ratio ( ) ( )tftf 21  can be calculated for 

various t values. In Figure 2, the curves ( ) ( )tftf 21  for the 2-dimensional and the 3-

dimensional cases are presented. It can be observed that the deviations between f 
values with a time constant D and f values with a time dependent D are quite high at 
small t values and tend to diminish as long as t increases. The deviations are higher 
in the 3-dimensional case than in a 2-dimensional case. 
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Figure 2. The time variation of the ratio ,21 ff  in two and in three dimensions, 

.1=D  

The solution of the 1-dimensional diffusion equation with a time dependent 
diffusion coefficient has been found by Skianis et al. [6]. In that case, the solution f 

is controlled by ( )[ ].4 tgπ  In qualitative terms, the temporal variation ( ) ( )tftf 21  

is the same with that of the 2-dimensional and 3-dimensional cases but the deviation 
between the solution for a time dependent D and that of a time constant D is smaller. 
Therefore a time dependent diffusion coefficient controls the behaviour of the 
solution of the diffusion equation. The deviations between the solution for a time 
constant D and that of a time dependent D become higher as long as the space 
dimension increases. 

3. Conclusions 

The solution of the diffusion equation with a time dependent diffusion coefficient 

is controlled by the quantity ( )[ ] ,4 ntgπ  where n is the space dimension and takes 

values 1, 2, 3 in geological and environmental processes. 

On the other hand, the value of the solution f at time t does not depend on the 
specific temporal variation of the time diffusion coefficient but only on its mean 
value for the time interval [ ].,0 t  This remark may be useful in studying the 

diffusion of a contaminant in the subsoil or in the atmosphere, when the hydraulic or 
diffusion properties of the medium are not time constant. Knowledge of the mean 
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value of these parameters at the time interval [ ]t,0  is sufficient in order to make 

reliable calculations of the concentration of the contaminant in space and time. 
Furthermore, the results and conclusions of this paper may be also useful in 
modelling geomorphological processes or heat conduction at ground surface, when 
the diffusion coefficient varies with time. 
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