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Abstract 

In the follow-up to our analysis of the non-homogeneous case of the 
problem in [3], in this paper, we present the analysis of the homogeneous 
case, leading to the existence and uniqueness of the solution to Option A 
in the statement of the problem as it appears in [2]. As in [3], our analysis 
occurs in the space, ([ ] ( )).,,0 22 ΩHTL  In this space, we select appropriate 

test functions with a compact support in the open bounded domain Ω. Our 
analysis differs to the one proposed by Ladyzhenskaya in [7], in the 
selection of some function spaces. Obviously, our test functions are 
‘candidates’ for a ‘weak’ solution (in the sense of distributions), to the 
problem. Using ‘energy methods’, and some results from our previous 
research papers, we proceed to confirm the existence and uniqueness of 
the ‘weak’ solution to Option A of the problem as communicated in [2]. 

1. Symbols Used 

In this paper, we use the following symbols: 
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Ω : an open bounded domain in ;3R  

( ) :,, 321 xxxx =  spatial position in Ω; 

( ) :2 ΩL  space of the Libesque integrable functions on Ω; 

( ) :2 ΩH  the Sobolev space 2 on Ω; 

( ) :23 Ω∂H  the Nikol’skii space on the smooth boundary ;; Ω⊄Ω∂Ω∂  

( ) :,0 tyvγ  a surface velocity in ([ ] ( ));,,0 232 Ω∂HTL  

( ) :, txv  a time dependent velocity field in ([ ] ( ));,,0 22 ΩHTL  

ρ : a constant fluid volume density due to incompressibility; 

μ : a constant fluid viscosity; 

( ) :yn  a unit normal to the surface ;Ω∂  with ;Ω∂∈y  

( )( ) :, txvD  the rate of deformation tensor for the fluid. 

2. Introduction 

As in [3], the ‘weak’ solutions to the problem will be defined in ( ).Ωs
mH  

However, for the sake of the regularity of our time derivatives, we augment the 

space to ([ ] ( ));,,0 Ωs
m

m HTL  ,1 ∞<≤≤ ms  ;∞<T  with .2== sm  Therefore, 

we seek, ( ) ( ) (( ) ( ))Ω∈ 22 ,,0;., HTLxptv  such that, 
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3. Weak Formulation for the Problem 

We put ([ ) ( )).,,0: 22 Ω= HTLY  
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We define a set of test functions with compact support in Ω, as follows: 

{ ( ) ( ) ( ) ( ) ( ) }.0,;0,,;0,:,: 0
0 =⋅∇=Ω∂∈=γ∈=Θ txxxytyYtx vvvvv  

4. Some Important Identities 

Proposition 4.1. For ,Θ∈v  the followings hold: 

(a) ( )( ) .0, =∇⋅ Yvvv  

(b) ( ) .0, =∇ Yp v  

Proof. (a) We have ∑
=

=
∂
∂

=∇⋅
3

1
.3,2,1;

k k

i
k i

x
v

vvv  Then  

( )( ) ∑∑∫
= = Ω

=
∂
∂

=∇⋅
3

1

3

1
3,2,1;,

m k
m

k
i

mkY idxx
vvvvvv  

( )∑∑ ∫
= = Ω ∂

∂
=

3

1

3

1
.2

1

m k
m

k
im

k dxx
vvv  

Re-writing the previous expression and integrating by parts, we obtain 
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k
im

k dxdsdxx
vvv vvvnv  

With the choice of v in Θ; integration by parts and the use of the Gauss’s divergence 
theorem, the result follows. 

Using the Gauss’s divergence theorem, we have 

(b) 

( ) ( ) ( )∫ ∫ ∫Ω Γ Ω
Ω⋅∇−⋅γγ=⋅∇ .200 dxppdxp LY vdsvv  

By 1(b) and 1(d), it follows that, ( ) .0, =∇ Yp v  This, in turn, implies that 

.⊥∈∇ Yp  
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5. The Energy Statement for the Problem 

To derive the energy statement for the problem, we take the scalar product of 
1(a) with ,Θ∈v  as follows: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) .,,,,, 22 YYHHYt p vfvvvvvvvv =∇+Δμ−∇⋅ρ+∂ρ ΩΩ  (2) 

By Proposition 4.1, we have 

( )( ) ( ) 0, 2 =∇⋅ ΩHvvv  and ( ) .0, =∇ Yp v  

Simplifying (2), we obtain 

( ) ( )
( ) ∫ΩΩ

=∇μ+ ,2/
2 fvdxtvtE

L
 (3) 

as the energy identity for the problem. From the no-slip condition ( ),00 =γ v  for 

,0>ρc  and since Ω is bounded, we deduce the Poincare inequality: 

( )
( )

( )
( )

22
22 ΩρΩ

≥∇
LL

tct vv    (see pp. 248-249 of [1]). (4) 

In view of (4), we rewrite (3) as follows: 

( ) ( )
( ) ∫ΩΩρ ≤μ+ ,2/

2 fvdxtvctE
L

 

that is, 

( ) ( ) ∫Ωρ ≤μ+ .2/ fvdxtEctE  (5) 

The solution to (5) is given by 

( ) ( ) ( ) ( ) [ )∫ ∫ ∈μ−+ζ⎥
⎦

⎤
⎢
⎣

⎡ ζμμ−≤ ρ
Ω

ρρ
t

TttcCdfvdxctctE
0

,,0;2exp2exp2exp  (6) 

from which we deduce that as ,∞→t  ( ) ;0→tE  in the sense of an exponential 

decay for the energy of the problem. 

By (6), we observe that, at ,0=t  ( ) ,0 CE ≤  that is, 

( )
( )

;2
1 20

2 Cx
H

≤
Ω

v  (7) 

thus pointing to the uniform boundedness of ( ).0 xv  
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We therefore, rewrite (6) in the following form: 

( ) ( ) ( )∫ ∫ ζ⎥
⎦

⎤
⎢
⎣

⎡
ζμμ−≤

Ω
ρρ

t

Y dfvdxctctx
0

2 2exp2exp,2
1 v  

( )
( )

( );2exp2
1 20

2 tcx
H ρΩ

μ−+ v    for [ ).,0 Tt ∈  (8) 

The rate of deformation for the problem is defined by the following equation: 

( )
( ) ( )

22
22 2

1
ΩΩ

∇=
LL

D vv    (see p. 27 of [5], for ).00 =η=⋅γ vnv  (9) 

We also have that 

( ) ( )
( )

( )tDtE
L

βμ−≤
Ω

2/
22 v    (see (12) on p. 9 of [4]) 

for ( ) ( ) ( ) 021: 2
22 >−−=β tECtECt  (see pp. 36-37 of [5]). 

In view of (9), therefore, 

( )
( )

( ).2/
2 ttE

L
β∇μ−≤

Ω
v  (10) 

From (3), (9) and (10), we obtain the following energy inequality: 

( )[ ]
( ) ∫ΩΩ

≤∇β−μ ,1 2
2 fvdxt

L
v    for ( ) ( ],21,0∈β t  

where (see  p. 9 of [4], for ( ) ( ]).23,0∈β t   

Eventually, we have 

( ) ∫ΩΩ
≤∇μ ,2

1 2
2 fvdx

L
v    for ( ) .211 ≥β− t  (11) 

Adding the inequalities (8) and (11), we obtain 
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22
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1
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LL
vv  
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As our attention is focused on the solution to Option A as stipulated by the statement 
in [2], we take ,0≡f  and from (12), we obtain 

( ) ( ) ( )
( )

( ).2exp,, 2022
2 tcxtxtx

HYY ρΩ
μ−≤∇μ+ vvv  (13) 

We now rewrite (13) in the form that will reveal an operator that will play a crucial 
role in the conclusion of the existence and uniqueness of the ‘weak’ solution to the 
problem: 

We now rewrite (13) in the form 

( ) ( ) ( )
( )

( ).2exp,, 20
2 tcx

HYY ρΩ
μ−≤Δμ− vvvvv  (14) 

6. The Riesz’s Representation for the Problem 

We construct the following map: ,: R→Θ×ΘΦ  defined by 

( ) ( ) ( ) ;,,, YYY wvwvwv Δμ−    for ., Θ∈wv  

It is not hard to show that Φ is a bounded sesquelinear form on .Θ×Θ  Hence, by 
the Riesz’s representation theorem (p. 192 of [6]), there exists a bounded linear 
operator ,: Θ→ΘA  such that, for ,wv =  

( ) ( )YA vvvv ,, =Φ   and  .A=Φ  (15) 

In view of the preceding deduction, we then have ( )( ) ( ) ;,, YY AI vvvv =Δμ−  

from which we deduce that 
.AI =Δμ−  (16) 

7. The Characterization of the Operator Δμ−I  

Proposition 7.1. The operator Δμ−I  is self-adjoint and positive on Θ. 

Proof. For ,, Θ∈wv  

( ) ,;, 101 nvvwvwvwv ⋅∇=γ⎟
⎠

⎞
⎜
⎝

⎛
∇⋅∇−γ⋅γμ=Δμ ∫ ∫Ω∂ Ω

dxdsY  

( ) ,;, 101 nwwvwvwvw ⋅∇=γ⎟
⎠

⎞
⎜
⎝

⎛
∇⋅∇−γ⋅γμ=Δμ ∫ ∫Ω∂ Ω

dxdsY  
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from which we conclude 

( ) ( ) ;,, YY vwwv Δμ=Δμ   with  ,000 =γ=γ vw  by 1(b). (17) 

Further, 

( )( ) ( ) ( ) ,,,, YYYI wvwvwv Δμ−=Δμ−  

( )( ) ( ) ( ) .,,, YYYI vwvwvw Δμ−=Δμ−  

By (17) and the inner product property, 

( )( ) ( )( ) ;,, YY II vwwv Δμ−=Δμ−  

thus proving that ( )Δμ−I  is self-adjoint. Also,  

( )( ) ;0, 22 ≥∇μ+=Δμ− YYYI vvvv  

thus proving the positive property of Δμ−I  on Θ. 

Proposition 7.2. The operator Δμ−I  is invertible and ( ) 1−Δμ−I  is a bounded 

linear operator on Θ. 

Proof. By (16), Δμ  is bounded on Θ. 

Hence, there exists, ,01 >C  such that, 

( ) YY C vv 1≤Δμ    (see p. 91 of [6]). 

That is, 

( ) .1 YY C vv −≥Δμ−  

However, 

( ) ( ) .1 11 YYYYYY CCI vvvvv −=−≥Δμ−≥Δμ−  

Therefore, provided, ,01 1 >− C  

( ) ( ) .1 1 YY CI vv −≥Δμ−  (18) 

On the other hand, since Δμ−I  is bounded by (16), there exists ,0/
1 >C  such that, 

( ) ./
1 YY CI vv ≤Δμ−  (19) 
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Combining (18) and (19), we obtain the inequality, 

( ) ( ) .1 /
11 YYY CIC vvv ≤Δμ−≤−  (20) 

From the preceding inequality, ( ) ,0v =Δμ−I  implies that, ,0v =  that is, 

( ) { },0=Δμ−IKer  and hence ( ) 1−Δμ−I  existed. 

By Theorem 2.6-10(a) in [6], ( ) Θ→ΘΔμ− − :1I  is a linear operator, and, by 

Theorem 2.6-10(b), ( ) 1−Δμ−I  is bounded. 

Proposition 7.3. Δμ−I  is a compact operator on Θ. 

Proof. Since 3R⊂Ω  (according to Option A in [2]), Θ is finite dimensional. 
By Theorems 8.1-4(a) and 8.1-4(b) in [6], Δμ−I  is compact on Θ. By (16), we 

subsequently conclude that A is also compact on Θ. 

Proposition 7.4. The operator ( ) AI 1−Δμ−  is compact on Θ. 

Proof. By (16) and Proposition 7.3, A is a compact operator on Θ. By 

Proposition 7.2, ( ) Θ→ΘΔμ− − :1I  is a bounded linear operator. By Theorem 

8.3-2 in [6], then ( ) AI 1−Δμ−  is also compact and the result follows. 

With the results in Propositions 7.1, 7.2, 7.3 and 7.4, we are now ready to set up 
the problem (Option A in [2]) in order to deduce the existence and uniqueness of the 
‘weak’ solution to problem (1), noting that pressure was eliminated in the energy 
statement. However, if the velocity solution existed and is unique, the same would 
apply to the pressure. Mathematically, once the velocity has been proven to exist and 
is unique, we could use the Navier-Stokes equation to calculate the corresponding 
pressure.  

8. The Existence and Uniqueness for the Solution to 
the Problem (Option A in [2]) 

By (16), we have 

( ) .vv AI =Δμ−  (21) 

Using (21), we then set up the following equation for the problem having 

demonstrated the existence; linearity and boundedness of ( ) ,1−Δμ−I  in Proposition 

7.2. 
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Hence, we put 

( ) ( ),1,0;1 ∈αΔμ−α= − vv AI    for .Θ∈v  (22) 

Lemma 8.1. For ,Θ∈v  the solution to ( ) ;1 vv AI −Δμ−α=  ( ),1,0∈α  is 

uniformly bounded. 

Proof. By (8) for 0≡f  (according to Option A in [2]) 

( ) ( ) ( ) ( )tcxtx HY ρΩ μ−≤ exp, 20vv  

( ) ,exp CtcC <μ−≤ ρ  

since ( ) ,1exp <μ− ρtc  for all ( );,0 Tt ∈  and the result follows. 

Main Theorem 8.2. For ,Θ∈v  the equation ( ) ( )1,0;1 ∈αΔμ−α= − vv AI  

has at most one solution. 

Proof. By Lemma 8.1 the solution to the equation, ( ) ;1 vv AI −Δμ−α=  

( ),1,0∈α  for ,Θ∈v  is uniformly bounded. 

By Proposition 7.4, the operator ( ) AI 1−Δμ−  is compact. Then, by the Leray-

Schaueder fixed-point Theorem (p. 245 in [8]), the solution to the equation does 
exist. 

To prove uniqueness, let Θ∈w  be another solution to the equation. Then, 

( ) ( ) YY AI wvwv −Δμ−α=− −1  

( ) .1
YYAI wv −Δμ−α≤ −  

Since by (16), ( ) ,11 <Δμ−α −
YAI  ( ),1,0∈α  uniqueness follows. 

Remarks 8.3. 

(a) By (7), we have 

( )
( )

.
2
1 20

2 Cx
H

≤
Ω

v  
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Since 

( ) ( )
( ) ,; 210

21

20

0
0

210
2 α+α+α=α⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂∂∂

∂= ∑
≤α≤ ααα

α

Ω xxx
xx H

vv  

( ) ,
210

0
C

xxx
x ≤
∂∂∂

∂
ααα

α v  and the converse also holds. In a way, we can claim that our 

( )x0v  satisfies, to a certain extent, condition (4) as per the requirements of Option 

A in the statement of the problem in [2]. 

(b) By (8), we have 

( ) ( )
( )

( ) ( )
( )

,
2
12exp

2
1,

2
1 20202

22 Cxtcxtx
HHY ≤<μ−≤

ΩρΩ
vvv  

since ( ) ,1exp <μ− ρtc  for all ( ).,0 Tt ∈  Therefore, for ( ),,0 Tt ∈  ( ) .,2
1 2 Ctx Y <v  

Hence, our energy satisfies condition (7) in the stipulation of Option A of the 
problem in [2]. 

(c) The fixed-point of (22), which is the solution to Option A, satisfies the 
inequality (8). Therefore, we have 

( ) ( ) ( ) ( ),exp, 20 tcxtx HY ρΩ μ−≤ vv    for all [ ).,0 Tt ∈  (23) 

Should we “stretch” the interval [ )T,0  to [ )∞,0  the inequality (23) still holds. 

Hence, we assert that the fixed-point of (22) is global on time, and, therefore, it 
satisfies condition (6) of the stipulations to the solution to Option A of the problem. 
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