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Abstract 

In this paper on space geometry, generalized inverses are used in the study 
of distances. Three cases are considered: distance from a point to a plane, 
distance from a point to a line and distance between two skew lines. 
Moore-Penrose inverses occur in the expressions of the feet of the 
perpendiculars and in the representation of the vectors materializing the 
distances. The results of this kind of problems fit in the cadre of 
approximation theory and, because best approximation problems often 
require the projection of the origin onto linear varieties, in order to solve 
the proposed problems, we make extensive use of the conjugacy principle, 
much present in Mathematics. The obtained results are not only useful for 
undergraduate Science and Engineering students but are also applicable in 
very practical sciences and techniques, notably on Coordinate Metrology, 
Photogrammetry, etc. Moreover, this paper could pave the way for more 
generalized problems demanding more sophisticated approaches. 

1. Introduction 

In this paper, we are interested in problems of distances between various 
entities, in the ordinary space. It is known that some students begin to approach the 
concept of distance in pre-university studies. It is hoped that the present paper helps 
Science and Engineering students to successfully cope with and deepen these kinds 
of problems in a Calculus course or in an Introductory Linear Algebra course in their 
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first two years of undergraduate work. However, this text pretends to be not only 
confined to undergraduate students but also the provided results could be extended 
to a great variety of problems in the three-dimensional space, which are common in 
the practical sciences and engineering such as the various questions that arise in the 
Coordinate Metrology field. 

Usually only formulae for distances are looked for. Here, instead of restricting 
ourselves to the computation of the distances, we focus our attention mainly on the 
nearest point (the foot of the perpendicular). 

The main tool used in this paper, in order to determine the foot of the 

perpendicular, is the Moore-Penrose inverse, ,†A  of a real matrix A, which is the 
unique matrix that satisfies [3, p. 9] the following relations 

( ) ( ) .,,, AAAAAAAAAAAAAAAA TT †††††††† ====  

For computing the Moore-Penrose inverse, there are formulae and algorithms. 
We just mention: the MacDuffee formula [1, pp. 25-26 and Theorem 5, p. 48], [3, 
Theorem 1.3.2, p. 14] and also [24, Theorem 1.1.5, p. 5], whose reference to [15] 
seems unsubstantiated; and the Decell algorithm [9]. 

Concerning the MacDuffee formula, we record 

Let ,BCA =  where ,,, nrrmnm CBA ××× ∈∈∈ RRR  with ( )Ar rank=  

( ) ( ).rankrank CB ==  Then, ( ) ( ) .11 TTTT BBBCCCA −−=†  

From the above MacDuffee formula we obtain, in particular, ( ) 1−= TT AAAA†  

and ( ) ,1 TT AAAA −=†  for a full row rank and full column rank matrix A, 

respectively, [2, p. 457], [5, p. 13] and [20, Exercise 5.12.16.d, p. 428]. 

Our proposal combines different and not so common mathematical tools 
specifically from linear algebra and approximation theory. These tools allow 
extensions to higher dimension Euclidean spaces. 

The present work has also a didactical tone. This algebraic approach of a 
geometric problem is an appropriate instance of didactics of mathematics and could 
be a starting point to other researches. 

In this paper, we consider distances: ( )π,Pd  between a point P and a plane ,π  
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in Section 1; ( )A,Pd  between a point P and a line ,A  in Section 2; and ( )21, AAd  

between two skew lines 1A  and ,2A  in Section 3. 

Lines and planes may be defined by underdetermined systems of linear 
equations ,BAX =  where A is a full row rank matrix. We look for the minimum 
Euclidean norm solution of such systems. In geometric terms, the minimum 
Euclidean norm solution of a system, having infinitely many solutions, corresponds 
to the point closest to the origin of the coordinates. It is known [1, p. 109], [20, p. 
423] that the Moore-Penrose inverse associated to an underdetermined system of 
linear equations gives the minimal least squares solution. In other words, it gives the 
solution nearest to the origin of the coordinates. 

Thus, if the point P is at the origin and applying the Moore-Penrose inverse, 
then we obtain the foot of the perpendicular 

( ) .1BAAABAS TT −== †  

But this is not always the case. What happens if P is not the origin? It is well 
known [10, p. 25] that the distance is invariant under translation. This fact answers 
the preceding question: in order to apply the Moore-Penrose inverse we must 
perform two convenient translations. First, moving the pair ( )A,Pd  of geometric 

objects such that the point P coincides with the origin of the coordinates and 
consequently falling in the previous case. Finally, performing the reverse translation. 
The legitimacy of the previous process is given by the conjugacy principle, much 
present in Mathematics, and which can be resumed by the following sentence. To 
solve a difficult problem A, we consider and solve an easier one T, using a 

transformation S and its inverse .1−S  The relation 1−= STSA  is called conjugacy 
and it is an equivalence relation. The pervasiveness of the conjugacy principle is 
quite well documented in [19, Vol. I, pp. 53, 75; Vol. II, pp. 67, 141, 374]. For a 
sound and gentle approach to conjugacy classes see [4, pp. 142-147]. When using 
the conjugacy principle, we consider a translation t (which is not a linear application, 
as the null vector is not preserved) defined by 

33: RR →vtG  

,vxx GGG
+→  

where, of course: 

( ) ( ) .
1

vv tt GG
−

− =  
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Some abuse of notation is patent in this paper. We use the sign ”“:=  to identify 

these situations. We consider an orthonormal referential { ( )}321 ,,, eeeO  and, under 

adequate isomorphisms, we write points and vectors in several ways, according to 
our needs in each moment. 

2. Distance from a Point to a Plane 

In this section, we will consider ( )π,Pd  the distance from a point P to a plane 

π given by .vuMX GG
β+α+=  Our goal is to determine: 

  (i) the foot of the perpendicular, S, drawn from the point P onto the plane ;π  

 (ii) the vector PSPS −=  which connects the point P to the plane ;π  

(iii) the distance ( )., πPd  

In order to answer the previous questions, we state the following: 

Proposition 1. Let π be a plane given by ,vuMX GG
β+α+=  where 

( ),,, 321 mmmM =  ,332211 eueueuu ++=
G  332211 evevevv ++=

G  

and let ( )321 ,, pppP =  be a point external to π. Then 

  (i) the foot of the perpendicular, S, drawn from the point P onto the plane π is 
given by 

( ) ( ),1 PMAAAAPS TT −+= −  

where A is the row matrix whose entries are the cofactors of the elements of the third 
column of the matrix 

;
1
1
1

33

22

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

vu
vu
vu

 

 (ii) PS  is a vector which achieves the distance from the point P to plane ;π  

(iii) the distance ( )π,Pd  between point P and plane π is given by ( )π,Pd  

.PS=  
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Proof. In order to set this geometric problem in the context of Moore-Penrose 
inverses, we need to move the point P to the origin of the coordinates (as illustrated 
in Figure 1). 

In fact, we make a translation so that the point P of the geometric pair ( )π,P  

moves to the origin of the coordinates. So, the geometric pair ( )π,P  turns into the 

geometric pair 

( ) ( ) ( ) ( ).,:,,:, POPOPOPPOPOPO −π=−+π−+=+π+=π′  

We have 

( ) ,:: vuMvuPMXP GGGG
β+α+′=β+α+−=′=−π=π′  

where ( ).,, 332211 pmpmpmM −−−=′  

 

Figure 1. Foot of the perpendicular, S, drawn from the point P. 

Associated with the pair ( )π′,O  is the system of linear equations 

.BXA ′=′  

Applying the Moore-Penrose inverse, we obtain the foot of the perpendicular on 
the plane ,π′  

.BAS ′=′ †  
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Hence, we find 

SO ′  and ( ) ( ).,, π=π′=′ PdOdSO  

Performing the reverse translation ,OPPO =−  we get 

,PSOPSOPSS +′=−+′=+′=  

PSPSS =−=′  

and thus 

( ) ., PSPd =π  

Now, let us present the procedure when use is made of the Moore-Penrose 
inverse in order to determine .S ′  It is convenient to write the plane π′  in cartesian 
notation. 

We have, successively, 

 vuMX GG
β+α+′=′=π′ :  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
β+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
α+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

=

3

2

1

3

2

1

3

2

1
:

v
v
v

u
u
u

m
m
m

z
y
x

 

.:

3

2

1

33

22

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−′
′−′
′−′

=⎥⎦
⎤

⎢⎣
⎡
β
α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mz
my
mx

vu
vu
vu

 

For the sake of eliminating the real parameters α and ,β  let us assume, without 

loss of generality, that the principal determinant is 

.0det
22

11 ≠⎥⎦
⎤

⎢⎣
⎡=Δ

vu
vu

p  

By geometric considerations and by using the Rouché-Cappeli-Kronecker-
Fontené theorem, the unique characteristic determinant, ,3CΔ  corresponding to the 

third equation, must be null. So, 

.0:det0

333

222

111

3 =′−′=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−′
′−′
′−′

==Δ BXA
mzvu
myvu
mxvu

C  
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Hence, the plane π′  is given by the underdeterminated linear system, having 
infinitely many solutions, 

,BXA ′=′  

where 

[ ]122131132332 vuvuvuvuvuvuA −−−=  

and 

( ) ( ) ( )[ ],312212311312332 mvuvumvuvumvuvuB ′−+′−+′−=′  

with .3,2,1, =−=′ ipmm iii  

The looked for exact solution of minimum Euclidean norm is given by 

 ( ) ( ) ( ).11 PMAAAABAAAS TTTT −=′=′ −−  ~ 

2.1. Example 

Consider the point ( )1,3,2=P  and the plane ( ) ( )211,1,1: eeX +−α+==π  

( ).31 ee +−β+  

Making the translation ,OPPO −=  from the geometric pair ( )π,P  we form 

the geometric pair ( ) ( ),,, POO −π=π′  where 

( ) ( ) ( ).0,2,1: 3121 eeeeX +−β++−α+−−=′=π′  

Writing the plane π′  in the matrix form 

,BXA ′=′  

the foot of the perpendicular is given by 

BAS ′=′ †  

( ) BAAA TT ′= −1  

[ ] [ ]3
1
1
1

111
1
1
1 1

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

 

.
1
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=  
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Undoing the translation, we obtain 

( ) ( )0,2,1321,1,1 321 =+++−−−=+′= eeeOPSS  

from where we conclude that the foot of the perpendicular S onto π is ( ).0,2,1=S  

A vector which materializes the distance is 

( ) 3211,1,1 eeePSPS −−−=−−−=−=  

and the distance is 

( ) .3, =′==π SOPSPd  

3. Distance from a Point to a Line 

In this section, we will consider ( )A,Pd  the distance between a point P and a 

line A  given by ,uMX G
α+=  where M is a point on the line and uG  is a director 

vector of the line. Our goal is to determine: 

  (i) the foot of the perpendicular, S, drawn from the point P onto the line ;A  

 (ii) the vector PSPS −=  which connects the point P to the line ;A  

(iii) the distance ( )., APd  

In order to get the pretended results, we establish the following: 

Proposition 2. Let A  be a line given by ,uMX G
α+=  where ( )321 ,, mmmM =  

is a point on A  and 332211 eueueuu ++=
G  is a director vector of A  and let 

( )321 ,, pppP =  be a point external to the line .A  Then 

  (i) the foot of the perpendicular, S, drawn from the point P onto the line A  is 
given by 

( ) ( ),1 PMAAAAPS TT −+= −  

where 

;
0

0

13

12
⎥⎦
⎤

⎢⎣
⎡

−
−

=
uu

uu
A  

 (ii) PS  is a vector which achieves the distance from the point P to the line ;A  
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(iii) the distance ( )π,Pd  between point P and the line A  is given by ( )A,Pd  

.PS=  

Proof. The distance ( )A,Pd  is the norm of the vector ,PS  where S is the foot 

of the perpendicular of the point P on the line A  (as illustrated in Figure 2). If the 
point P is at the origin of the coordinates, then writing the line equation in the matrix 
form 

,BAX =  

the point S is given by 

,BAS †=  

where †A  is the Moore-Penrose inverse of A. 

Again, if the point P is not at the origin, then a translation of this point to the 

origin is required. Thus, translating the geometric pair ( )A,P  along the vector ,PO  

we obtain the geometric pair ( ),, A′O  where the line A′  is written in the matrix form 

,BXA ′=′  

which gives the foot of the perpendicular 

.BAS ′=′ †  

In order to use generalized inverses, we write the line A′  as the intersection of 
two planes and hence we have to eliminate the real parameter .α  The equation of 

the line ,A′  

( ) ,uPMX G
α+−=′  

gives, successively, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
α+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

3

2

1

33

22

11

u
u
u

pm
pm
pm

z
y
x

 

and 

[ ]
( )
( )
( )

.

33

22

11

3

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−′
−−′
−−′

=α
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

pmz
pmy
pmx

u
u
u
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From the interplay between algebraic and geometric considerations (Rouché-
Cappeli-Kronecker-Fontené) and as the system is consistent, there are two null 
characteristic determinants 2CΔ  and ,3CΔ  corresponding to the second and third 

equations, respectively, 

( )
( )⎥⎦

⎤
⎢⎣
⎡

−−′
−−′

=Δ=
222

111
2 det0

pmyu
pmxu

C  

and 
( )
( )

,det0
333

111
3 ⎥⎦

⎤
⎢⎣

⎡
−−′
−−′

=Δ=
pmzu
pmxu

C  

by assuming, without loss of generality, that the principal determinant is 

[ ] .0det 11 ≠==Δ uup  

We form the linear system 

( ) ( )

( ) ( )⎩
⎨
⎧

−−−=′−′

−−−=′−′
=′=′

,

,
:

33111313

22111212

pmupmuzuxu

pmupmuyuxu
BXA  

which has infinitely many solutions. The (unique) one of minimum Euclidean norm 
is given by 

( ) ( ) ( ).11 PMAAAABAAABAS TTTT −=′=′=′ −−†  

 

Figure 2. Foot of the perpendicular, S, drawn from the point P. 
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Finally, under the reverse translation, we find 

,PSS +′=  

and 

 ( ) ., SOPSPd ′==A  ~ 

Remark 3.1. If the line equation is given by a system of two plane equations 

,0: 11111 =+++=π dzcybxa  

,0: 22222 =+++=π dzcybxa  

we can write the line equation in the matricial form 

,BAX =  

where 

.,
2

1

222

111
⎥⎦
⎤

⎢⎣
⎡
−
−

=⎥⎦
⎤

⎢⎣
⎡=

d
d

B
cba
cba

A  

Otherwise, if the line equation is given in the vectorial form 

,uMX α+=  

where ( ) A∈= 321 ,, mmmM  and ( )321 ,, uuuu =
G  is the direction vector of ,A  in 

order to write the line equation in a matrix form, we need to obtain two plane 
equations such that the intersection is the given line. For this – instead of using 
characteristic determinants – we use the cross vector product. We utilize two 

vectors, ,1v  ,2v  such that ,21 vvu ×=  where { }21, vv  is a linearly independent set. 

If ( ),,, 321 uuuu =  then we can choose conveniently ,1v  2v  such that the dot 

products are null: 01 =• uv  and .02 =• uv  For example, if ,01 ≠u  then we may 

choose 

( )131 ,0, uuv −=  

and 

( ).0,, 122 uuv −=  



CONJUGACY AND GEOMETRY II - MOORE-PENROSE INVERSE ... 37 

Thus, we obtain the plane equations 

0113 =+− dzuxu  

and 

,0212 =+− dyuxu  

where 

13311 mumud −=  

and 

.12212 mumud −=  

3.1. Example 

Consider the point ( )1,2,3=P  and the line 

( ) ( ).31,2,5: 321 eeeX ++−α+−==A  

In order to use the Moore-Penrose inverse, the point P has to be displaced to the 

origin. So, we perform the translation .23 321 eeePO −−−=  

The geometric pair ( )A,P  is transformed into the geometric pair ( ),, A′O  such 

that 

( ) ( ) ( ).32,0,2,,: 321 eeezyxX ++−α+−=′′′=′=′A  

The line can be given by the system of linear equations 

.:
0
6

101
013

0
63

BXA
z
y
x

zx
yx

′=′=⎥⎦
⎤

⎢⎣
⎡=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

⎥⎦
⎤

⎢⎣
⎡⇔

⎩
⎨
⎧

=′+′
=′+′

 

The foot of the perpendicular, ,S ′  drawn from the origin onto the line A′  is 
given by 

( ) BAAAS TT ′=′ −1  

.
18

12
18

11
1

0
6

10
01
13

101
013

10
01
13 1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥⎦

⎤
⎢⎣
⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−
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Reversing the translation operation ,OP  we find the perpendicular foot S, on ,A  

.
7

34
51

11
1

1
2
3

18
12
18

11
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=+′= PSS  

The vector which connects P to S is 

321 11
18

11
12

11
18

18
12
18

11
1 eeePSPS −+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=−=  

and the distance from P to A  is 

( ) .22
11
6, =′=−== SOPSPSPd A  

Remark 3.2. So far, in order to get two planes whose intersection is the line ,A  

we used either an algebraic approach with help of characteristic determinants or a 
geometric approach by using the cross vector product. However, the cross product of 

two vectors is restricted [12, 18] to spaces of dimensions 3 and 7. So, in nR  and 
also in more general settings, where the entries of the vectors and matrices either 
belong to a commutative ring or are pairwisely commuting matrices, we have to use 
(block) determinants [6, 17]. All the same, as the inner product has less restrictions 
than the cross product and in order to keep the geometric flavour of this paper, we 
propose another way for obtaining two planes whose intersection is the line .A  We 
may proceed in the following way: 

  (i) the line A  is given by ;uMX α+=  

 (ii) construct a plane π perpendicular to the line :A  

,0: =•=π uMX  

where •  stands for dot product; 

(iii) choose two points R and T on the plane :π  we build the planes 1π  and ,2π  

such that 21 ππ= ∩A  and defined by three points: 1π  is defined by the points M, N 

on the line A  and R on the plane ;π  2π  is defined by the same points M, N on the 

line A  and the point T on the plane :π  
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4. Distance between Two Skew Lines 

In this section, we will consider the distance, ( ),, 21 AAd  between the lines 1A  

and 2A  given by 

uPX α+==:1A    and   .:2 vQX β+==A  

The feet of the perpendiculars 1S  onto 1A  and 2S  onto 2A  are searched. We 

present an algorithm to achieve the feet of the perpendiculars and the distance 
between the two skew lines. 

So, in order to apply the technique presented in Section 3, we shall proceed in 
two steps: 

 (I) First, we displace the current point ( )βQ  of the line 2A  to the origin. We 

get the point ( )β′1S  on the line .1A′  Performing the reverse translation, we obtain the 

point ( )β1S  on the line .1A  

(II) Next, in an analogous way, we obtain ( )α2S  on the line .2A  

Since the point ( ) 11 A∈βS  we must have ( ) ( ),1 α=β PS  where ( )αP  is a 

current point of the line .1A  Analogously, the point ( ) ( ).2 β=α QS  From the 

consistent system of equations 

( ) ( )

( ) ( )⎩
⎨
⎧

β=α

α=β

,

,

2

1

QS

PS
 

we determine the convenient values of α and β. 
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Figure 3. Foot of the perpendicular, ( ),1 βS  onto the line .1A  

The distance between the two lines is given by 

( ) ., 2121 SSd =AA  

4.1. Algorithm 

Now, let us present the four steps procedure, illustrated by Figure 3. 

(I) Distance from the current point, ( ),βQ  of line ,2A  to the line .1A  

 We take the current point 

( ) ( )332211 ,, vqvqvqQ β+β+β+=β  on 2A  

 and the line 

.:1 uPX α+==A  

As we look for the foot of the perpendicular ( ),1 βS  onto ,1A  we apply the 

technique presented in Section 3. So, we perform the translation ( ) =β OQ  

( ).β− QO  The line 1A′  is written in vectorial form as 

( ) .:1 uQPX α+β−=′=′A  

The foot of the perpendicular, ( ),1 β′S  drawn from the origin onto the line 
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1A′  is given by 

( ) ( ) ( ),1
1 β′=β′ − BAAAS TT  on ,1A′  

with 

⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

13

12

0

0

uu

uu
A  and ( )

( )[ ] ( )[ ]
( )[ ] ( )[ ]

.
331113

221112
⎥
⎦

⎤
⎢
⎣

⎡

β−−β−

β−−β−
=β′

qpuqpu

qpuqpu
B  

(II) Distance from the current point ( ),αP  on line ,1A  to the line .2A  

 We take the current point 

( ) ( )332211 ,, upupupP α+α+α+=α  on 1A  

and the line 

.:2 vQX β+==A  

For getting the foot of the perpendicular ( ),2 αS  onto ,2A  we must 

consider, in analogy to the preceding situation, successively: the translation 

( ) ( );α−=α POOP  the line 

( ) ;:2 vPQX β+α−=′′=′′A  

and hence the foot of the perpendicular, ( ),2 α′′S  drawn from the origin onto 

the line 2A ′′  is given by 

( ) ( ) ( ),1
2 α′′=α′′ − DCCCS TT  on ,2A ′′  

with 

⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

13

12

0

0

vv

vv
C  and ( )

( )[ ] ( )[ ]
( )[ ] ( )[ ]

.
331113

221112
⎥
⎦

⎤
⎢
⎣

⎡

α−−α−

α−−α−
=α′′

pqvpqv

pqvpqv
D  

(III) Using reverse translations. 

Performing the two corresponding reverse translations, we obtain 

( ) ( ) ( )β+β′=β QSS 11  onto 1A  

( ) ( ) ( )α+α′′=α PSS 22  onto .2A  
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(IV) Final step, determination of the sought concretizations ∗α  and .∗β  

Notice that we look for the optimum point ( )∗βQ  on 2A  and the optimum 

point ( )∗αP  on .1A  

After the procedure comes to an end, we must have, due to geometric 
reasons, 

( ) ( )α=β PS1  

( ) ( ).2 β=α QS  

The preceding relations form a consistent system of six linear equations in 

the two unknowns α and ,β  from which we get ∗α=α  and .∗β=β  

Finally, the perpendicular feet are 

( ) ( )∗∗ α=β= PSS 11  onto the line 1A  

( ) ( )∗∗ β=α= QSS 22  onto the line 2A  

and the distance between the given lines is ( ) ,, 2121 SSd =AA  being 

21SS  the vector which materializes the distance. 

4.2. Example 

Let us be given the two lines 

( ) ( ),253,2,1: 3211 eeeuPX −+−α+−=α+==A  

( ) ( ).471,1,2: 3212 eeevQX −+β+−−=β+==A  

(I) Consider the pair ( ),, 21 AA ′′  when we displace the line 2A  to the origin of 

coordinates. We look for the distance from the current point ( )βQ  of line 2A  to line 

.1A  We can write 2A  as 

( ){ },:41,71,2:2 R∈ββ−−β+−β+=A  

so its current point is 

( ) ( ).41,71,2 β−−β+−β+=βQ  
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Performing the translation ( ) ( ),β−=β QOOQ  we get 

( ) ( ) ( ) vOvQQQXX β+=β+β−β=β−=′=′ :2A  

and 

( ) ( ) ;:1 uQPQXX α+β−=β−=′=′A  

and hence the foot of the perpendicular, ( ),1 β′S  drawn from the origin onto the line 

1A′  is given by 

( ) ( ) ( ),1
1 β′=β′ − BAAAS TT  on ,1A′  

with 

⎥
⎦

⎤
⎢
⎣

⎡

−
=

502

051
A  and ( ) .

228

3614
⎥
⎦

⎤
⎢
⎣

⎡

β+−

β−
=β′B  

We compute 

( ) ⎥⎦
⎤

⎢⎣
⎡

β+−
β−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥⎦
⎤

⎢⎣
⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=β′

−

228
3614

50
05
21

502
051

50
05
21 1

1S  

 .

3
10

5
6

3
20

5
13

3
81

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β+−

β−

β
−

=  

(II) Consider, now, the pair ( ),, 21 AA ′′′′  when the line 1A  is displaced in order to 

pass through the origin. 

The line 1A  may be represented as 

( ){ }.:23,2,51:1 R∈αα−−α+α−=A  

Here the translation is ( ) ( ),α−=α POOP  where 

( ) ( )α−−α+α−=α 23,2,51P  

is the generic point of line ,1A  and we have 

( ) ( ) ( ) uOuPPPXX α+=α+α−α=α−=′′=′′ :1A  



CECÍLIA COSTA et al. 44 

and 

( ) ( ) ;:2 vPQPXX β+α−=α−=′′=′′A  

and, mutatis mutandis, the foot, ( )α′′2S  onto ,2A ′′  of the perpendicular drawn from 

the origin, is given by 

( ) ( ) ( )α′′=α′′ − DCCCS TT 1
2  

with 

⎥
⎦

⎤
⎢
⎣

⎡

−−

−
=

104

017
C  and ( ) .

226

3610
⎥
⎦

⎤
⎢
⎣

⎡

α−−

α+
=α′′D  

After some computations, we get 

( ) .

4610

21

17047

33
1

2
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α+

α+−

α+

=α′′S  

(III) Performing the reverse translations, we write 

( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α−−

α+

α+

=α+α′′=α

2089

3565

580

33
1

22 PSS  onto 2A  

and 

( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

β−−

β+

β−

=β+β′=β

3
2

5
11

35
8

3
53

11 QSS  onto .1A  

(IV) Solving the system 

( )
( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

◊α=β
◊β=α

◊
22

11
SQ
SP

 

we obtain ,235
64−=α∗  ,47

18=β∗  taking, for example, one equation of the 

subsystem ( )1◊  and one equation of the subsystem ( ).2◊  
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So, the feet of the perpendiculars are 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=α=β= ∗∗

577
406
555

235
1

11 PSS  

( ) ( ) .
119
79

112

47
1

22
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=β=α= ∗∗ QSS  

One vector materializing the distance is 

3211221 235
18

235
11

235
5

18
11
5

235
1 eeeSSSS −−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=−=  

and the distance is given by 

( ) .
1691
156

235
2, 2121 === SSd AA  

5. Final Remarks and Conclusions 

By using the Moore-Penrose inverse as an elaborated tool for solving space 
geometry problems, we intended to pave the way for the formulation of questions in 

the context of space .nR  As it is hinted in [11] and [14] some interesting problems 
do arise when thinking on distances involving affine subspaces. 

In the present paper, our procedure is an algebraic one. For a more geometric 
approach, the companion paper [7], in terms of Gram determinants, also sheds some 
light on the usefulness of the much present yet somewhat [19, Vol. II, pp. 374-376] 
hidden conjugacy principle and the power of the origin of the coordinates. 

As well, when studying the distance from a point to a line considered as the 
intersection of two given planes, we may gain hindsight for dealing with other more 
restrictive questions [16]. Science and Engineering readers, once they have grasped 
the beautiful geometric use we make of the Moore-Penrose inverse, may have the 
willingness to learn more about generalized inverses. Starting with the Moore-
Penrose inverse may constitute a good option [3, p. 45] as for that end are enough 
some linear algebra preparation and mathematical maturity. Other than the faithful 
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Moore-Penrose inverse, there are many kinds of generalized inverses which have 
several applications [3], from linear programming, to electric circuit theory [3, p. 
84], to control population models [3, p. 184] and even to cryptology [8]; we just 
mention three generalized inverses: Bott-Duffin [1, p. 92], Moore-Penrose and 
Drazin [1]. 

With regard to computational aspects of generalized inverses [24] and, in 
particular, concerning the Moore-Penrose inverse, some caution is in order, as it is 
neither continuous [20, pp. 423-424] nor numerically stable [3, p. 247], [20, pp. 423-
424] and [25, pp. 885-886]. 

Computational experts, when dealing with matrices partitioned into blocks, may 
feel the necessity to go further than [23], which is a block version of Decell 
algorithm. They may look for a block generalization of [13] which could allow to 
numerically treat matrix exponentials having as an exponent the Drazin inverse of a 
matrix partitioned into blocks [22], as well. 

More mathematically minded readers may feel rewarded when considering 
rather abstract settings [21]. To think on best approximation problems, in this 
context, may lead us to find rather sophisticated tools as we look for adequate inner 
products and convexity and compactness results. 
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