CONTINUOUSLY COMPOSED ROTATIONS

MIHAI CARAGIU
Department of Mathematics and Statistics
Ohio Northern University
525 S. Main St. Ada, OH 45810, U. S. A.
e-mail: m-caragiu1@onu.edu

Abstract

We discuss a continuous analogue of the traditional result to the effect that the composition of a finite number of plane rotations is either a translation or a rotation, depending on whether the sum of the rotation angles is, or is not, an integer multiple of 2π. A continuously composed rotation process would be defined by a smooth complex curve $c:[0,1] \rightarrow \mathbb{C}$ with $c(t)$ playing the role of an 'instantaneous center' of rotation, together with a real valued function $\omega:[0,1] \rightarrow \mathbb{R}$ representing the 'angle density'. The examples provided illustrate in various degrees an interesting Fourier series connection.

1. Introduction

In the present paper, we will investigate a continuous analogue of the following result on the composition of plane rotations [2]:

Theorem 1. If $R_{0}, R_{1}, \ldots, R_{n-1}$ are n plane rotations with angles $\theta_{0}, \theta_{1}, \ldots, \theta_{n-1}$, respectively, then the composition $R_{n-1} \circ R_{n-2} \circ \cdots \circ R_{0}$ is either a rotation of angle $\theta_{0}+\theta_{1}+\cdots+\theta_{n-1}$, if $\theta_{0}+\theta_{1}+\cdots+\theta_{n-1} \notin 2 \pi \mathbb{Z}$, or a translation, if $\theta_{0}+\theta_{1}$ $+\cdots+\theta_{n-1} \in 2 \pi \mathbb{Z}$.
2010 Mathematics Subject Classification: 51M04, 65T50, 42A16.
Keywords and phrases: rotations, translations, Fourier coefficients.
Received December 14, 2009

The overall idea is to replace the n centers $C_{0}, C_{2}, \ldots, C_{n-1}$ of the rotations $R_{0}, R_{1}, \ldots, R_{n-1}$ with a smooth function $c:[0,1] \rightarrow \mathbb{C}$. The rotation R_{i} with an angle θ_{i} around C_{i} will become an 'infinitesimal rotation' with an angle $d \theta=$ $\omega(t) d t$ (where $\omega:[0,1] \rightarrow \mathbb{R}$ is a smooth 'angle density' function) around the 'instantaneous center' of rotation $c(t)$.

2. Formulating the Main Problem

Let $c:[0,1] \rightarrow \mathbb{R}$ be a smooth curve in the complex plane, such that $c(t)$ will play the role of an instantaneous center of rotation at the moment t. Let $\omega:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let

$$
\theta(t)=\int_{0}^{t} \omega(\tau) d \tau
$$

so that $d \theta=\omega(t) d t$ will represent the angle element of an 'infinitesimal rotation' around the instantaneous center $c(t)$. Also, for $t \in[0,1]$, let $z(t) \in \mathbb{C}$ be the position, at the moment t, of the point transformed by this continued rotation process. What we need to do is to describe, in terms of the given data $\{c, \omega\}$, the relationship between $Z=z(0)$ and $W=z(1)$:

$$
W=T_{c, \omega}(Z)
$$

Naturally, in order to get a proper generalization of Theorem 1, we expect the transformation $T_{c, \omega}$ to be a translation if $\Theta:=\theta(1) \in 2 \pi \mathbb{Z}$ and a rotation with angle Θ (around a center which is to be identified) otherwise.

3. The Main Result on Continuously Composed Rotations

The differential formulation of the fact that, at the moment t, the point $z=z(t)$ undergoes an infinitesimal rotation with an angle element $d \theta=\omega(t) d t$, around the instantaneous center $c(t)$ is the following:

$$
\begin{equation*}
d z=i(z-c) d \theta=i(z-c) \omega(t) d t \tag{1}
\end{equation*}
$$

From (1) it follows that governing the continued rotation process will be the following linear first-order, non-homogeneous differential equation:

$$
\begin{equation*}
z^{\prime}-i z \omega=-i c \omega \tag{2}
\end{equation*}
$$

with the initial condition $z(0)=Z$. By multiplying both sides of (2) with the integrating factor

$$
\rho(t)=\exp (-i \theta(t))
$$

we get $[z \rho]^{\prime}=-i c \omega \rho$ and by using $\theta^{\prime}=\omega$,

$$
\begin{equation*}
[z \rho]^{\prime}=c \rho^{\prime} \tag{3}
\end{equation*}
$$

Now we integrate (3) and we get:

$$
z(t) \rho(t)-z(0) \rho(0)=\int_{0}^{t} c(\tau) \rho^{\prime}(\tau) d \tau=c(t) \rho(t)-c(0) \rho(0)-\int_{0}^{t} c^{\prime}(\tau) \rho(\tau) d \tau
$$

or, with $\rho(0)=1$ and $z(0)=Z$,

$$
z(t) \rho(t)-Z=c(t) \rho(t)-c(0)-\int_{0}^{t} c^{\prime}(\tau) \rho(\tau) d \tau
$$

From the above relation, we obtain the following explicit formula for $z(t)$:

$$
\begin{equation*}
z(t)=c(t)+(Z-c(0)) \exp (i \theta(t))-\exp (i \theta(t)) \int_{0}^{t} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau \tag{4}
\end{equation*}
$$

This is the position $z(t)$, at any moment t, of the point that is continuously rotated around centers that slide along the curve given by the smooth function c, with an angular velocity $\omega(t)$ in the instantaneous rotation around the center $c(t)$, for $0 \leq t \leq 1$. The continued rotation process will terminate at $t=1$, when $z=z(1)$ $=W, \theta=\theta(1)=\Theta$, while (4) becomes

$$
\begin{equation*}
W=c(1)+(Z-c(0)) \exp (i \Theta)-\exp (i \Theta) \int_{0}^{1} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau \tag{5}
\end{equation*}
$$

At this point we distinguish two cases.

1. If $\Theta \in 2 \pi \mathbb{Z}$, then (5) is of the form

$$
W=Z+B
$$

where

$$
\begin{equation*}
B:=c(1)-c(0)-\int_{0}^{1} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau \tag{6}
\end{equation*}
$$

This will be a translation with the complex vector B.
2. If $\Theta \notin 2 \pi \mathbb{Z}$, then (5) is of the form

$$
W=Z \exp (i \Theta)+A
$$

where

$$
\begin{equation*}
A:=c(1)-\exp (i \Theta)\left(c(0)+\int_{0}^{1} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau\right) \tag{7}
\end{equation*}
$$

This will be a rotation with angle Θ around the center $A(1-\exp (i \Theta))^{-1}$.
Thus, with the above notations and settings we can now state our main result, which is a continuous extension of Theorem 1.

Theorem 2. The result of applying a continuously composed family of rotations defined as, indicated above, by the smooth center path $c:[0,1] \rightarrow \mathbb{C}$ and angular velocity function $\omega:[0,1] \rightarrow \mathbb{R}$ is either a translation or a rotation, depending on whether $\Theta=\int_{0}^{1} \omega(\tau) d \tau$ is, or is not in $2 \pi \mathbb{Z}$. In the first case, the translation is with a complex vector B given by (6). In the second case, the rotation is with an angle Θ around the center $A(1-\exp (i \Theta))^{-1}$, where A is given by (7).

4. Continuously Composed Rotations Resulting in Translations

The following examples, illustrating the synchrony between the discrete and continuous cases, represent continuous analogues of results discussed in [1], featuring translations resulting from a finite composition of plane rotations. As we will see, the discrete Fourier transforms connection noticed in [1] would appear, in the continuous limit, as a nice connection between continuously composed rotations and the Fourier coefficients of the mapping of the centers.

Example 1. According to problem, B4 in the 2004 Putnam Exam, the composition of n rotations with an angle of $2 \pi / n$ each, around the centers $c(r)=$ $r+1$ for $r=0,1, \ldots, n-1$ (in that particular order) is a translation with a vector represented by the complex number n.

For a continuous analogue, we may take $c(t)=n t$ for $0 \leq t \leq 1$ and $\omega(t)=2 \pi$, that is, the angle uniformly increases with an angular velocity $d \theta / d t=2 \pi$ and $\Theta=2 \pi$. Thus, the result of the continuously composed rotation process is, according to Theorem 2 above, a translation with vector

$$
B=c(1)-c(0)-\int_{0}^{1} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau=n-\int_{0}^{1} n \exp (-2 \pi i \tau) d \tau=n
$$

which constitutes a continuous analogue of the above mentioned problem.
Example 2. Let $\zeta=\exp (2 \pi i / n)$. In [1], it is proved that the composition of n rotations with an angle of $2 \pi / n$ each, around centers $c(r)=\zeta^{r}$ for $r=0,1, \ldots, n-1$, (in that particular order) is a translation with a vector represented by the complex number $n\left(\zeta^{-1}-1\right)$. If we take the limit when $n \rightarrow \infty$, this will be a translation with the complex number

$$
\lim _{n \rightarrow \infty}\left[-2 n i \sin \left(\frac{\pi}{n}\right)\left(\cos \left(\frac{\pi}{n}\right)-i \sin \left(\frac{\pi}{n}\right)\right)\right]=-2 \pi i
$$

For a continuous analogue we will take $c(t)=\exp (2 \pi i t)$ for the centers path, and $\omega(t)=2 \pi$, that is uniform angular velocity distribution which gives $\theta(t)=2 \pi t$ and an overall angle $\Theta=2 \pi$. The result of the continuously composed rotation process will be, according to Theorem 2 above, and taking onto account that in this particular case we have $c(0)=c(1)=1$, a translation with a vector represented by the complex number

$$
B=-\int_{0}^{1} c^{\prime}(\tau) \exp (-i \theta(\tau)) d \tau=-2 \pi i \int_{0}^{1} \exp (2 \pi i \tau) \exp (-2 \pi i \tau) d \tau=-2 \pi i
$$

The last example generalizes the previous two and explicitly features a Fourier series connection.

Example 3. In [1], we related composition of plane rotations with discrete Fourier transforms [3], proving that if $z_{0}, z_{1}, \ldots, z_{n-1}$ are complex numbers, and if for all k and r with $0 \leq k, r \leq n-1$, we let R_{r}^{k} be the rotation around z_{r} with $2 k \pi / n$, then for each k, the composition $R_{n-1}^{k} \circ R_{n-2}^{k} \circ \cdots \circ R_{0}^{k}$ is a translation by a vector represented by the complex number $t_{k}=\left(\zeta^{-k}-1\right) \hat{z}_{k}$, where $\zeta=\exp (2 \pi i / n)$ and $\hat{Z}=\left(\hat{z}_{0}, \ldots, \hat{z}_{n-1}\right)$ is the discrete Fourier transform of $Z=\left(z_{0}, \ldots, z_{n-1}\right)$.

To find a continuous model for the result in the above theorem, notice that the overall rotation angle increases with the same amount, $2 k \pi / n$, as we move from one center to the next, so that the total increment will be $2 k \pi$. We will model this by choosing $\theta(t)=2 k \pi t$ for $0 \leq t \leq 1$, which makes $\Theta=2 k \pi$. Since the (ordered) list $z_{0}, z_{1}, \ldots, z_{n-1}$ may be viewed as a complex-valued function defined on $\mathbb{Z} / n \mathbb{Z}$, the smooth curve of the centers, $t \mapsto c(t)$ will be set up, in this analogy, to satisfy the constraint $c(0)=c(1)$. Again, the result of the continuously composed rotation process will be a translation with a vector represented by the complex number

$$
B_{k}:=c(1)-c(0)-\int_{0}^{1} c^{\prime}(\tau) \exp (-2 \pi i k \tau) d \tau
$$

that is,

$$
B_{k}=-2 k \pi i \int_{0}^{1} c(\tau) \exp (-2 \pi i k \tau) d \tau=-2 k \pi i \gamma_{k}
$$

where γ_{k} are the coefficients in the Fourier expansion of the function $t \mapsto c(t)$ giving the instantaneous center of rotation:

$$
c(t)=\sum_{k=-\infty}^{\infty} \gamma_{k} \exp (2 \pi i k t)
$$

Thus, we found a nice connection, in the continuous limit, between the translation vectors and the Fourier coefficients of the mapping of the centers.

References

[1] M. Caragiu, Discrete Fourier transforms and plane rotations, Adv. Appl. Discrete Math. 2(2) (2008), 151-157.
[2] G. E. Martin, Transformation geometry, An introduction to symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, 1982.
[3] A. Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, Cambridge University Cambridge Press, 1999.

