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Abstract 

In this paper, the problem of magnetohydrodynamics (MHD) boundary 
layer flow of an upper-convected Maxwell fluid over a rigid surface is 
investigated, numerically. The governing boundary layer equation is 
reduced into ordinary differential equation by a similarity transformation. 
The transformed equation is then solved numerically using an implicit 
finite-difference scheme known as the Keller-box method. The effects of 
the Deborah number and magnetic parameter on the velocity profiles and 
the skin friction coefficients are computed, analyzed and discussed. 

1. Introduction 

From the perspective related to fluid, it is found that Newtonian fluid is 
categorized as the simplest type of fluid to form constitutive equations and the 
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governing equation for such a fluid is the Navier-Stokes equation [10]. However, the 
other type of fluid, namely the non-Newtonian fluid is more relevant towards the 
technological applications [9], for example, in bio-engineering, drilling operations 
and food industry [11]. Meanwhile, the solution for the problem of non-Newtonian 
fluid is rather complex and the classic Navier-Stokes theory is inadequate to deal 
with this type of problem. As such, various models for non-Newtonian fluid have 
been studied and solved by the researchers in order to fulfill the needs of the 
industries. The type of fluid considered in this paper concerns the Maxwell fluid, 
which is one of the non-Newtonian fluids having the properties of elasticity and 
viscosity [16]. Several studies have considered this kind of fluid such as those by 
Fetecau and Fetecau [5, 6, 7] and Fetecau et al. [8]. To be more specific, the present 
study investigates the upper-convected Maxwell fluid, which is a generalisation of 
the Maxwell fluid for the case of large deformations using the upper-convected time 
derivative [16]. 

The case of the hydrodynamic boundary layer flow of an upper-convected 
Maxwell fluid over a rigid surface has been studied by Sadeghy et al. [13] by solving 
the problem via perturbation method and two numerical schemes, namely the Runge-
Kutta and the finite-difference methods. Similar problem has been considered by 
Hayat and Sajid [11] by adding the effect of magnetic field and they have solved the 
problem analytically by using a semi-analytical method, namely the homotopy 
analysis method (HAM). 

In this paper, we revisit and investigate numerically the MHD boundary layer 
flow of an upper-convected Maxwell fluid over a rigid surface. By using the 
similarity transformation, the governing boundary layer equation is then reduced into 
ordinary differential equation before it is solved numerically by an efficient implicit 
finite-difference scheme known as the Keller-box method (see Cebeci and Bradshaw 
[1, 2]). 

2. Basic Equations 

The equation used to describe the Maxwell fluid model starts from the Cauchy 
stress tensor T, which is given by (see [3, 4, 12, 14, 17]), 

,SIT +−= p  (1) 

where Ip−  denotes the indeterminate spherical stress. The extra stress tensor S is 
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given by (see [11]), 

,1ASLLSSS μ=⎟
⎠
⎞⎜

⎝
⎛ −−λ+ T

dt
d  (2) 

which L is the velocity gradient, μ is the dynamic viscosity, λ is the relaxation time, 
and the first Rivlin-Ericksen tensor 1A  is defined by 

.1
TLLA +=  (3) 

Now, consider the MHD Sakiadis flow with a uniform magnetic field, ,0B  is 

imposed along the y-direction. After neglecting the induced magnetic field, the 
steady flow is then governed by the equation 
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with the momentum equation along the x-direction is 
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and the momentum equation along the y-direction is 
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where u and v are the velocities in the x- and y- directions, respectively, ρ is the fluid 
density, σ is the electrical conductivity, p is the pressure and ,xxS  ,xyS  yxS  and 

yyS  are the components of the extra stress tensor. By using the boundary layer 

approximations (see [13] and [15]), 

( ),1Ou =    ( ),δ= Ov    ( ),1Ox =    ( ),δ= Oy  (7) 

( ),1OSxx =
ρ

   ( ),δ=
ρ

O
Sxy    ( ),2δ=

ρ
O

Syy  (8) 

where δ is the boundary layer thickness (see [17]), the flow without the influence of 
pressure gradient is now governed by (4) and (see [11]), 
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The boundary conditions are given by 

,Uu =    0=v    at   ,0=y  

0→u    as   .∞→y  (10) 

By introducing the stream function ψ as 

,yu
∂
ψ∂=    ,xv

∂
ψ∂−=  (11) 

equation (4) is identically satisfied and equation (9) becomes 
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By using the following similarity transformation (see [11] and [13]): 

,yx
U
ν

=η    ( ),ην=ψ fxU  (13) 

where U is the withdrawal velocity and ν is the kinematic viscosity, (12) becomes 

( ) ,0222 222 =′′′η+′′′+′′′β−′′+′−′′′ ffffffffffMf  (14) 

where the magnetic parameter UxBM ρσ= 2
0

2  and the Deborah number =β  

,2xUλ  and prime ( )′  denotes the differentiation with respect to .η  The boundary 

conditions (10) are transformed into 

,0=f    1=′f    at   ,0=η  

0→′f    as   .∞→η  (15) 

3. Numerical Procedure 

Equation (14) subject to the boundary conditions (15) is solved numerically 
using an implicit finite-difference scheme known as the Keller-box method, as 
described by Cebeci and Bradshaw [1, 2]. The method has the following four main 
steps: 

(i) Reduce equation (14) to a first order equation. 

(ii) Write the difference equations using central differences. 
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(iii) Linearize the resulting algebraic equation by Newton’s method and write in 
matrix-vector form. 

(iv) Use the block-tridiagonal-elimination technique to solve the linear system. 

4. Results and Discussion 

Equation (14) subject to the boundary conditions (15) is solved numerically                                              
[1, 2]. The numerical value of the skin friction coefficient at the wall ( )0f ′′  is given 

in Table 1 for various values of the Deborah number β and the magnetic parameter 
M. It is observed that the magnitude of the skin friction coefficient decreases with 
the increment of Deborah number β when the magnetic parameter M is fixed, except 
for the case of .0.2=β  The effect is the opposite for the variation in magnetic 

parameter M, namely the magnitude of the skin friction coefficient increases with the 
increment of M when β is fixed. 

Table 1. Values of ( )0f ′′  for various values of β and M 

β 00.0=M  25.0=M  50.0=M  00.1=M  

0.0 –0.443903 –0.503783 –0.657239 –0.859284 

0.4 –0.408902 –0.467862 –0.622057 –0.828268 

0.8 –0.363669 –0.425801 –0.586407 –0.798052 

1.2 –0.300159 –0.366485 –0.543091 –0.766302 

1.6 –0.238798 –0.305375 –0.524208 –0.754476 

2.0 –0.400956 –0.471673 –0.620967 –0.808917 

Figures 1 and 2 illustrate the effects of the Deborah number β on the velocity 
profiles ( )η′f  and ( )ηf  in the x-direction, respectively, for the case of the 

hydrodynamic flow. It is shown that as β increases, both ( )η′f  and ( )ηf  profiles 

decrease. On the other hand, Figures 3 and 4 illustrate the effect of the presence of a 
uniform imposed magnetic field in the same flow as Figures 1 and 2, and it is 
observed that the magnetic field has strengthened the thinning effect. Figures 5 and 
6 show the effects of the magnetic parameter M on the velocity profiles ( )η′f  and 

( ).ηf  It is observed that the increasing of magnetic parameter will cause the 

decreasing of both ( )η′f  and ( )ηf  profiles and the increasing of the boundary layer 

thickness. Besides that, the boundary layer thickness increases for the velocity at the 
x-component and decreases for the y-component. Most of the numerical solutions 
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obtained in the present study are in good agreement with the analytical solutions 
obtained by Hayat and Sajid [11] who solved the problem via homotopy analysis 
method. 

 

Figure 1. Effect of Deborah number β on the velocity fields ( )η′f  when .0.0=M  

 

Figure 2. Effect of Deborah number β on ( )ηf  fields when .0.0=M  
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Figure 3. Effect of Deborah number β on the velocity fields ( )η′f  when .5.0=M  

 

Figure 4. Effect of Deborah number β on ( )ηf  fields when .5.0=M  
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Figure 5. Effect of magnetic parameter M on the velocity fields ( )η′f  when .1.0=β  

 

Figure 6. Effect of magnetic parameter M on ( )ηf  fields when .1.0=β  
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5. Conclusion 

A numerical study is performed to solve the problem of magnetohydrodynamics 
boundary layer flow of an upper-convected Maxwell fluid over a rigid plate. Effects 
of Deborah number and MHD parameter on the skin friction coefficient and velocity 
fields are observed and discussed and it is found that the numerical solutions 
obtained in the present study are in good agreement with the analytical solutions 
obtained in [11]. 
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