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Abstract 

This paper aims at studying a two level iterative scheme for solving 
nonlinear parabolic partial differential equations. This scheme combines 
two basic ideas, the fixed iterative and the so called Adomian 
decomposition method. We establish the convergence of this scheme and 
prove its efficiency throughout numerical study of some relevant examples. 
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1. Introduction 

Let Ω be a bounded domain of nR  ( )0>n  and 0>T  be a fixed number. Set 

] [ Ω×= TQ ,0  and ] [ .,0 Ω∂×=Σ T  In the present work, we are interested in solving 

the following reaction-diffusion model with homogeneous Dirichlet boundary value 
conditions: 
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where N is a nonlinear operator and 0u  is a given function. In the following, we will 

sometime set ( ) ( )..,tutu =  

We assume throughout that N is locally Lipschitzian over ( ( )),;,0 12 ΩHTL  and 

1u  is smooth enough. We further need following assumptions: 

( )1H  If ( ( )),;,0 12 Ω∈ HTLu  then ( ) ( ).2 QLuN ∈  

( )2H  There exists ( ( ))Ω⊂ 12 ;,0 HTLV  a vicinity of 0u  and a constant μ 

depending of V such that 10 <μ<  and 

 ( ) ( ) ( ) ( ( )),122 ;,0 Ω−μ≤− HTLQL wvwNvN    ., Vwv ∈∀  (2) 

Note that such a problem often occurs in many practical situations involving 
diffusion phenomena [6, 7, 11, 12, 15]. We also notice that various authors have 
previously studied problems of type (1). Notably, many of them have proved that for 
some convenable assumptions on the operator N, there exists a unique solution u in 

( ( )).;,0 1
0

1 ΩHTC  We refer to [5, 8, 11] for further information about the existence 

and uniqueness of parabolic equation type. Subsequently, we agree to call solution of 

the system (1), any function ( ( ))Ω∈ 12 ;,0 HTLu  that satisfies 

( ) ( )∫ ∫ ∫ ∫Ω Ω
φ+φ=φ∇⋅∇+φ

Q Q
uNuuTu ,0    ( ).1

0 Ω∈φ∀ H  (3) 

Among various numerical methods for differential equations, the Adomian 
decomposition method has shown good skill for determining the solutions as 
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polynomial series forms. This method has become as an efficient one for nonlinear 
ordinary differential equations. In [3], the authors have proposed a new methodology 
combining decomposition method with fixed point iterative ones to solve nonlinear 
differential equations. But even in [3], the authors provided many illustrated 
examples, they did not study the convergence property of the resulting numerical 
scheme. In this present paper, we shall mainly pay our attention in establishing a 
convergence result. 

The outline of this paper is as follows. In Section 2, we briefly recall the 
numerical scheme developed in [3]. In Section 3, we discuss the convergence of the 
scheme and in Section 4, we give some illustration examples. 

2. The Numerical Scheme 

Let us now recall the numerical scheme developed in [3] for the following 
system: 
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where L is a linear differential operator and N is a nonlinear operator. By the basic 
idea of the successive iterative method we can approach the problem (4) as follows: 

Find the sequence of functions ( ) 0≥k
ku  such that 
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where the first term 0u  of the sequence is arbitrary chosen. Thus, after determining 
the sequence satisfying (5), the solution of the problem (4) will be formally obtained 
as the limit of this sequence: 

 .lim k
k

uu
∞→

=  (6) 

Here the basic idea consists in calculating the solution of (4) in each iteration as 
Adomian polynomial series. To this end let us consider the following operators: 

tL
∂
∂=1    and   ( ) ( ) ,..

0

1
1 ∫=−

t

t
dsL  (7) 
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then integrating the equation (5) yields the Adomian canonical form [1, 13, 15, 17], 
that is, 

 ( ) ( ) ( )11
1

1
10

−−− ++= kkkk uNLuLLtuu  (8) 

which provides the following Adomian algorithm: 

( ) ( ),11
100
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11
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.............................................  

( ( ))k
n

k
n uLLu 1

1
1 −
−=  

.............................................  (9) 

From which, the kth iterative solution is expressed as an Adomian series 

 ∑=
n

k
n

k uu  (10) 

so that we have formally 

 .lim ∑∞→
=

n

k
nk

uu  (11) 

It should be noticed that numerically the first term 0u  of iteration must be chosen to 
permit a simplification of calculations and to obtain the Adomian algorithm which 
leads to higher accuracy. We note that a large number of papers are concerned with 
the convergence of the Adomian algorithm. See for example [2, 15, 17]. In particular, 
in the linear case, the convergence of the Adomian algorithm is obvious. 

3. The Convergence Study 

Let us consider the following iterative scheme associated with the system 
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We need to establish the existence of the sequence ( ) 0≥k
ku  defined in (12) that 

converges to the solution of the original problem (1). Let us start by re-calling the 
following classical result [8]. 

Theorem 1. Let us consider the following parabolic problem: 
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If ( ( ))Ω∈ −12 ;,0 HTLf  and ( ),Ω∈ Lg  then there exists a unique ( ;,02 TLu ∈  

( )) ( ( ))ΩΩ 1
0

01
0 ;,0 HTCH ∩  solution of (13). Moreover we have 

( ) ,1∫ ∫ ∫ ∫ ∫Ω Ω Σ
φ+φ+φ=φ∇⋅∇+φ

Q Q
ufguTu    ( ).1

0 Ω=φ∀ H  (14) 

We can now state the main result of this paper. 

Theorem 2. For all ,0 Vu ∈  there exists a unique sequence ( ) 0≥k
ku  in 

( ( ))Ω1
0

2 ;,0 HTL  whose terms satisfy the iterative scheme (12) such that uuk →  

in ( ( )),;,0 1
0

2 ΩHTL  where u is solution of (2). 

Proof. (i) Existence and unicity. By hypothesis ( ),H1  if ,0 Vu ∈  then 

( ) ( ( )).;,0 220 Ω∈ LTLuN  Thus, applying Theorem 1 by setting ( ),0uNf =  there 

exits a unique solution named ∈1u  ( ( ))Ω1
0

2 ;,0 HTL  satisfying (12) for .0=k  

Suppose that there exists a unique subsequence ( ) ( ( ))Ω⊂≤≤
1
0

2
0 ;,0 HTLu nk

k  whose 

terms satisfy (12). Then, applying Theorem 1 by setting ( ),kuNf =  there exits a 

unique solution named ∈+1ku  ( ( ))Ω1
0

2 ;,0 HTL  satisfying (12). Consequently, by 

the induction hypothesis, the result follows. 

(ii) Convergence of the sequence ( ) .0≥k
ku  Let us set .1 kkk uuw −= +  Then 

we have 
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By Theorem 1, we have 

( ) [ ( ) ( )] ,1∫ ∫ ∫Ω

− φ−=φ∇⋅∇+φ
Q Q

kkkk uNuNwTw    ( ).1
0 Ω∈φ∀ H  (16) 

Setting ,kw=φ  it follows 
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Q Q
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thus, we deduce 
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Q Q
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Knowing that 
( ( )) ∫ ∇=

Ω Q
k
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k ww 22

;,0 1
0

2  and using Poincare inequality we 

obtain 
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that we rewrite as 
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Noticing that, since ,0 Vu ∈  ( ) ,Vtuk ∈  for all k, it follows due to the assumption 

( )2H  that 

 ( ) ( ) ( ) ( ( ))Ω
−− −μ≤− 1

0
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with .10 <μ<  From where we deduce  
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This shows that ( ) 0≥k
ku  is the Cauchy sequence in ( ( )).;,0 1

0
2 ΩHTL  Consequently, 

uuk →  in ( ( )).;,0 1
0

2 ΩHTL  To finish the demonstration we have by Theorem 1, 

 ( ) ( ) ,111∫ ∫ ∫ ∫Ω

+++ φ+φ=φ∇⋅∇+φ
Q Q Q

kkkk uNuuTu    ( ),1
0 Ω∈φ∀ H  (23) 

then passing to the limit and using the fact that N is locally Lipschitzian, it follows 

 ( ) ( ) ,∫ ∫ ∫ ∫Ω Ω
φ+φ=φ∇⋅∇+φ

Q Q
uNuuTTu    ( )Ω∈φ∀ 1

0H  (24) 

thus, u is the solution of (1). 

4. Numerical Examples 

To gain insights into the convergence issue of the numerical scheme presented 
in this paper, we have chosen two test examples. All of them concern nonlinear 
parabolic equations from which analytical solutions are very difficult to compute. 

4.1. Example 1 

Consider the following nonlinear PDE 
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with ( ).4,45 ππ−=Ω  Let set 
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As seen in Section 2, the kth order iterative Adomian canonical form for this system 
is 

 ( ) ( ) ( ) ( ) ( ( )) .sincos
0 0 0

1
2

2
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t t t kk
k

k dssuNdssudss
x
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Let us choose the first term 0u  as constant. Then we have ( ) .00 =uN  We have 

successively: 

•  :1=k  

( ) ( ) ( ) ( ) ( ),sincossincos
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Thus, 
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•  :2≥k  

It is easy to establish that 

 ( ) ( )( ) ( ) .sincos 121 tp exxuuu λ−β+α=====  (30) 

In fact, if ( ) ( )( ) ( ) ,sincos 11 tk exxu λ−− −=  then we have ( ) .01 =−kuN  Consequently, 

,1
n

k
n uu =  thus ( ) ( )( ) ( ) .sincos 1 tk exxu λ−−=  Then 

 ( ) ( )( ) ( ) tk
k

exxuu λ−
∞→

−= 1sincoslim  (31) 

which is the exact solution of Example 1. 

4.2. Example 2 

Our second test example is the Allen-Cahn equation 

 ,3
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t
u −+

∂
∂ε=

∂
∂  (32) 
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where ε is a parameter that is assumed to be small enough. This is an example of a 
nonlinear reaction-diffusion equation. This type of equation provides a phenomenon 
known as metastability. As in [18], we consider the following boundary and initial 
conditions 
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xxxu
tutu

 (33) 

Let us note that in this example the boundary condition is not homogeneous but the 
numerical scheme developed in this paper is also applicable. The kth order iterative 
Adomian canonical form for this system is given by 

( )xxuk π−+= 5.1sin47.053.0  
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Approximated solutions for various values of order iterative Adomian canonical k 
with nth truncated Adoinian series are pictured in Figures 1 and 2. All these solutions 
are obtained using Maple. For our computation we have taken as the first term, 

.10 =u  Thus, ( ) .00 =uN  The approximated analytical solution for 3=k  and 2=n  
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This solution is pictured in Figure 1. For 5=k  and ,5=n  the solution is given by 
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This solution is pictured in Figure 2 and is very close to the exact ones (see [18]). 
We see the rapid convergence to the exact solution with a small value of the 
truncated parameter of the Adomian series as well as the iterative order parameter. 

5. Conclusion 

The Adomian method has proved reliable for linear or nonlinear ordinary 
differential equations. However this method in its original form is less effective for 
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partial derivative equations (PDEs). In a systematic way, it does not take into account 
all boundary and initial conditions. Several attempts were made without success to 
adapt it to PDE. In this paper, we have combined the fixed points iterative technique 
with that of the Adomian method for obtaining a two steps numerical scheme which 
not only take into account all the boundary and initial conditions but make it 
possible to accelerate convergence towards the exact solution. Examples 1 and 2 are 
illustrations. It is necessary to underline, a considerable advantage by the scheme 
presented in this work is at the level of stability. The stability issue is indeed very 
characteristic for classical numerical schemes applied to the nonlinear parabolic 
equations. However, one of the difficulties of this scheme lies in the determination 
of the calculation of the analytical expression of the solution. On the other hand, this 
numerical scheme probably may be a good alternative for the numerical resolution of 
the parabolic PDE being able to present blow up phenomena. 

 

Figure 1. The approximated solution for truncated parameters 3=k  and 2=n  with 

.10 2−=ε  
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Figure 2. The approximated solution for truncated parameters 5=k  and 5=n  with 

.10 2−=ε  
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