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Abstract 

In this paper, a two-grid finite element method is proposed for solving n-d 
coupled partial differential equations (PDEs). With this method, we 
reduce the solution of the coupled system, on a fine grid, to a much 
coarser grid, so the equations are decoupled on the fine grid. The 
theoretical results are shown that the solution achieves asymptotically 
optimal accuracy. 

1. Introduction 

The two-grid finite element method was used to solve the discretizing 
nonsymmetric and indefinite partial differential equations (PDEs). The idea of the 
method was that two spaces of different scales were employed, one finite element 
coarse space and one finite element fine space. It was first used for symmetrization 
of nonsymmetric problems by Xu [6-9]. In order to solve a nonsymmetric problem 
on a fine grid, the solution on coarse grid was given first, and then the solution of a 
symmetric positive definite problem on the fine grid was gotten. Many other authors 
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used this method for many different applications [1-5, 10]. In [4], Jin et al. studied 
two-grid discretization method for 2-dimension PDEs, e.g., Schrödinger equation. In 
[5], Tang et al. studied two-grid discretization techniques for 3-dimension PDEs, 
e.g., ICF system. On this basis, we research two-grid discretization techniques for                  
n-dimension PDEs. First, we decouple an n-d system of PDEs by discretizing the 
coupled systems on the coarse grid, and solving a decoupled system on the fine 
coarse. We give strictly theoretical proof. 

2. Preliminaries 

We consider the following boundary value problem of second order elliptic 
problem, the problem is coupling, 
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where unknown function ( )....,,, 21 nuuuU =  Ω is a polygonal domain which, for 

simplicity of exposition, will be assumed to be convex. The operator ULi  has the 

following definition: 
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Then the equivalent variational form of (1) is defined as follows: Find ∈U  
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For simplicity, we denote ( ) ( ) ( ) ,,,ˆ, VUNVUaVUa +=  where 
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We need introduce the auxiliary equation of coupling problem (1), assume =U~  
( ),~...,,~,~

21 nuuu  
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then the equivalent variational form of (3) is defined as follows: 
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For all ( ( )) ,~ 1
0

nHV Ω∈  we can easily prove that ( ) ( ),~,~~~,~ VUaUVa =  then we hold 

the following result by using (4), 

 ( ) ( ).~,~,~ VgUVa =  (5) 
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Before we prove the theorem, we give four assumptions for original system (1) 
and its auxiliary equation (3), and we will discuss their properties. 

Assumption 1. Let iL  be a uniformly elliptic operator in (1), coefficient 

( ),Ω∈ ∞Lai
kl  ( ) ( ).,,1 Ω∈Ω∈ ∞∞ LcWb i

k
i
kl  

Assuming the i-norm of the vector X is: ,22
2

2
1 iniii xxxX +++= "  

.2,1,0=i  Let the notation =;  and =≺  be respectively equivalent to c≥  and 

,c≤  where c is some positive constant. According to Assumption 1, the following 

properties hold for all ( ( )) ,, 1 nHVW Ω∈  the proofs of these properties are gotten 

straightforward. 

Property 1. 

 ( ) .,ˆ 2
1WWWa =;  (6) 

Property 2. 

 ( ) ., 11 VWVWa =≺  (7) 

Property 3. 

 ( ) ( ) .,,, 1001 VWVWNVWVWN == ≺≺  (8) 

Assumption 2. 

 ( ) ( ( )) .,, 1
0

2
1

nHWWWWa Ω∈∀=;  (9) 

Assumption 3. Assume that ( ( )) ,2 nLf Ω∈  the variational problem (2) has a 

unique solution 

 ( ( )) ,1
0

nHU Ω∈   and  .02 fU =≺  (10) 

Assumption 4. Assume that ( ( )) ,1
0

nHg Ω∈  the variational problem (4) of the 

auxiliary problem (3) has a unique solution ( ( )) ( ( )) ,~ 1
0

1 nn HHU ΩΩ∈ ∩  and 

.02 gU =≺  

Let hT  be a quasi-uniform triangulation of Ω with mesh size ,0>h  and let dn  

be the number of non-boundary nodes, and hS0  be the corresponding piecewise 

linear polynomial space. 
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For simplicity, we assume ( ).1
00 Ω⊂ HS h  Then the finite element approximation 

of problem (2) is defined as follows. Find a ( ) ,0
nh

h SU ∈  such that 
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hhhh SwwfwUa ∈∀=  (11) 

We denote the Algebraic system of the problem (11) to the following form: 
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Theorem 1. Let U be the solution of variational problem (2), and hU  be the 

solution of finite element problem (4), according to Assumptions 1, 2 and 3. Then the 
following error estimate of hU  holds: 

 .1,0,2
2 ==− − sUhUU s

sh ≺  (12) 

Proof. Let he  be the error between U and ,hU  that is, ,hh UUe −=  and we 

can hold the following result from (2) and (11): 

 ( ) ( ) .,0, 0
nh
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Let ( )nhI SU 0∈  be the interpolation function of U, which conclude that h
I UU −  

( ) ,0
nhS∈  according to Assumption 1 and (13). Then 
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Take heg =  and hh ew =  in (6), and according to (5), (6), (10) and (13), then we 

have 
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According to the above mentioned inequality and (14), we have 

 .2
2

10 Uhehe hh == ≺≺  (15) 

Due to (14) and (15), the conclusion (12) is gotten. 

3. A New Two-grid Finite Element Method 

In the general case, the finite element discretization (11) apparently corresponds 
to a coupled system of equations. In order to reduce the computational cost, 

following [1, 2], we introduce another finite element space ( )Ω⊂⊂ 1
000 HSS hH  

defined on a coarser quasiuniform triangulation of Ω, where H and h are the coarse 
and fine meshsize, respectively, and have the relation .hH >  So we propose the 
following algorithm. 

Algorithm 1 (A two-grid finite element method). 

Step 1. Find ( ) ,0
nh

H SU ∈  such that 

( ) ( ) ( ) .,,, 0
nH

H SfUa ∈χ∀χ=χ  

Step 2. Find ( ) ,0
nh

h SU ∈∗  so that 

 ( ) ( ) ( ) ( ) .,,,,ˆ 0
nh

hhHhhh SwwUNwfwUa ∈∀−=∗  (16) 

We note that the linear system in Step 2 is a decoupled system which involves n 
separate Poisson equations. The computational cost mainly focuses on two parts, one 
is in Step 1, which a coupled system needs to be solved on the coarser space, the 
other is in Step 2, which n separate Poisson equations need to be calculated on the 
fine grid. 

The following Theorem 2 shows, ∗
hU  and hU  can reach the optimal accuracy 

under 1H -norm if .hH =  Due to the dimension of HS0  is much smaller than the 

dimension of ,0
hS  the efficiency of the algorithm is then evident. 

Theorem 2. Let U be the solution of variational problem (3), hU  be the 

solution of finite element problem (4), and ∗
hU  be the numerical solution by using 
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Algorithm 1, according to Assumptions 1, 2 and 3. Then the following error estimate 

of ∗
hU  holds: 

 .2
1 HUU hh =− ∗ ≺  (17) 

So ,2
1 HhUU h +=− ∗ ≺  if we take ,hH =  then ∗

hU  and hU  have same 

accuracy under 1H -norm. 

Proof. Let hê  be the error between ∗
hU  and ,hU  that is, ,ˆ ∗−= hhh UUe  and 

we can hold the following result from (11) and (16): 

( ) ( ) ( ) .,0,,ˆˆ 0
nh

hhHhhh SwwUUNwea ∈∀=−+  

Take hh ew ˆ=  in equation above, according to (6) and (8), and we have 

( ) .ˆˆ,ˆˆˆ 10
2
1 hHhhhh eUUeeae −== ≺≺  

According to the above mentioned inequality, we have .ˆ 01 Hhh UUe −=≺  

Due to Theorem 1, 

.22
000 HhUUUUUU HhHh +=−+−=− ≺≺  

So that .2
1 HUU hh =− ∗ ≺  Consider Theorem 1 and (17), we have the following 

result: 

 11
∗∗ −+−=− hhhh UUUUUU  

11
∗−+−= hhh UUUU≺  

.2
2

2
2 HhUHUh +=+= ≺≺  

Algorithm 1 can be improved in a successive fashion as follows. 

4. Iteration Method 

Let .00 =hU  Assume that the kth numerical solution ( )nhk
h SU 0∈  has been 

obtained, then the ( )1+k th numerical solution ( )nhk
h SU 0

1 ∈+  is defined as follows: 
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Algorithm 2 (Iteration method). 

Step 1. Find a correction vector ( )nH
H Se 0∈  on the coarse grid, such that 

 ( ) ( ) ( ) ( ) .,,,, 0
nHk

hH SUafea ∈χ∀χ−χ=χ  (18) 

Step 2. Find the ( )1+k th solution ( ) ,0
1 nhk

h SU ∈+  it satisfies the following 

equation: 

 ( ) ( ) ( ) ( ) .,,,, 0
1 nh

hhH
k
hhh

k
h SwweUNwfwUa ∈∀+−=+�  (19) 

Theorem 3. Let U be the solution of variational problem (2), hU  be the 

solution of finite element problem (11), and k
hU  be the kth iteration solution by 

using Algorithm 2, according to Assumptions 1, 2 and 3. Then the following error 

estimate of k
hU  holds: 

 .1,1
1 ≥=− + kHUU kk

hh ≺  (20) 

Consequently, 

 .1,1
1 ≥+=− + kHhUU kk

h ≺  (21) 

When 1≥k  and k
h

k UHh ,1+=  and hU  have the same accuracy under 1H -norm. 

Proof. From (11) and (19), we have 

 ( ) ( ( ) ) ( ) .,,,ˆ 0
1 nh

hhH
k
hhh

k
hh SwweUUNwUUa ∈∀+−−=− +  (22) 

Specially, take 1+−= k
hhh UUw  in (22), and according to (6), (8) and (22), we have 
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1
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0
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hhH
k
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Thus 
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H
k
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k
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From (11) and (18), we have 
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H
k
hh SeUUa ∈χ∀=χ+−  (24) 
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Due to ( ) ,0
nH

H Se ∈  so ( ( ) ) .0, =+− HH
k
hh eeUUa  From (7), (9) and (24), we 

have 

( ) ( ( ) ( ))H
k
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k
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( ) .11
k
hhH

k
hh UUeUU −+−=≺  

Thus 

 ( ) .11
k
hhH

k
hh UUeUU −=+− ≺  (25) 

Let U~  be the solution of (4) when ( ) ,H
k
hh eUUg +−=  and ( )nHI SU 0

~
∈  be the 

interpolation of ,~U  from (7), (10), (15), (24), (25) and error estimate of finite 
element method. Then 

 ( ) ( ( ))H
k
hhH

k
hh eUUgeUU +−=+− ,2

0  

( ( ) )UeUUa H
k
hh

~,+−=  

( ( ) )I
H

k
hh UUeUUa ~~, −+−=  

( ) 11
~~ I

H
k
hh UUeUU −+−=≺  

( ) 21
~UeUUH H

k
hh +−=≺  

( ) ( ) .01 H
k
hhH

k
hh eUUeUUH +−+−=≺  

Thereby, 

 ( ) ( ) .10 H
k
hhH

k
hh eUUHeUU +−=+− ≺  (26) 

According to (23), (25) and (26), if ,1≥k  we can deduce the following result: 

 .1
11

1
1

1 hh
kk

hh
k
hh UUHUUHUU −=−=− −− ≺≺  (27) 

Note that 1
hU  is the solution ∗

hU  obtained by Algorithm 1, then according to (17) 

and (27), which implies that .1
1

+=− kk
hh HUU ≺  Because of 

.111
k
hhh

k
h UUUUUU −+−=− ≺  

From (12), (20) and the inequality above, so the conclusion (21) becomes clear. 
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The result of Theorem 3 shows that it suffices to take ( )1+
=

k hH  to obtain the 

optimal approximation under 1H -norm. Because the dimension of HS0  can be much 

smaller than ,0
hS  so the cost of calculated amount in Algorithm 2 focuses on solving 

n separate Laplacian systems in step 2, which is much easier to solve than the 
coupled system in (11). 
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