Far East Journal of Mathematical Sciences (FJMS)

Volume 38, Number 2, 2010, Pages 187-192
Published Online: April 1, 2010
This paper is available online at http://www.

This paper is available online at http://www.pphmj.com © 2010 Pushpa Publishing House

ON THE H(S)-PART IN BCH-ALGEBRAS

EUN HWAN ROH

Department of Mathematical Education Institute of Mathematical Education Chinju National University of Education Jinju 660-756, Korea e-mail: ehroh@cue.ac.kr

idealmath@gmail.com

Abstract

We consider special subsets H(S) in a BCH-algebra X, where S is a non-empty subset of X. We give related properties of them and provide an equivalent condition that the special H(S)-part of X is an ideal.

1. Introduction

In 1966, Imai and Iséki ([7]) and Iséki ([8]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In 1983, Hu and Li ([5, 6]) introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. They have studied some properties of these algebras.

As we know, the primary aim of the theory of BCH-algebras is to determine the structure of all BCH-algebras. The main task of a structure theorem is to find a complete system of invariants describing the BCH-algebra up to isomorphism, or to establish some connection with other mathematics branches. In addition, the ideal theory plays an important role in studying BCH-algebras, and some interesting

2010 Mathematics Subject Classification: 06F35, 03G25.

Keywords and phrases: BCH-algebra, H(S)-part, subalgebra, ideal.

Received February 4, 2010

results have been obtained by several authors ([1, 2, 3, 4, 12, 13]). In this paper, we construct special subsets T(S) in a BCH-algebra X, where S is a non-empty subset of X. We give related properties of them and provide an equivalent condition that the special H(S)-part of X is an ideal.

2. Preliminaries

A BCH-algebra is a non-empty set X with a constant 0 and a binary operation "**" satisfying the following axioms:

- (1) x * x = 0,
- (2) x * y = 0 and y * x = 0 imply x = y,
- (3) (x * y) * z = (x * z) * y,

for all x, y, z in X. A BCH-algebra X satisfying the identity ((x * y) * (x * z)) * (z * y)= 0 and 0 * x = 0, for all $x, y, z \in X$ is called a *BCK-algebra*. A BCH-algebra X is said to be *medial* ([2]) if it satisfies (x * y) * (a * b) = (x * a) * (y * b) for all $x, y, a, b \in X$. We defined the relation \le in a BCH-algebra by: $x \le y$ if and only if x * y = 0.

In any BCH-algebra X, the following hold: for all $x, y \in X$,

- $(4) (x * (x * v)) \le v$
- (5) $x \le 0$ implies x = 0,
- (6) 0 * (x * y) = (0 * x) * (0 * y),
- (7) x * 0 = x,
- (8) 0 * (0 * (0 * x)) = 0 * x.

A non-empty subset S of BCH-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset I of BCH-algebra X is called an *ideal* of X if $0 \in I$ and if $x * y, y \in I$ imply that $x \in I$. Note that an ideal of a BCH-algebra may not be a subalgebra. An ideal I of BCH-algebra X is said to be *closed* if $0 * x \in I$ for all $x \in I$. Note that every closed ideal in BCH-algebra X is a subalgebra, but converse is not true.

In a BCH-algebra X, the set $A^+ := \{x \in X \mid 0 \le x\}$ is called a *positive part* of X and the set $A(X) := \{x \in X \mid 0 * (0 * x) = x\}$ is called an *atom part* of X. Note that $A(X) = \{0 * (0 * x) \mid x \in X\} = \{0 * x \mid x \in X\}$ and $A^+ \cap A(X) = \{0\}$ ([10]).

For any elements x, y in a BCH-algebra X, let us write $x * y^n$ for $(\cdots((x * y) * y) * \cdots) * y$, where y occurs n times.

In what follows, the letter *X* denotes a BCH-algebra unless otherwise specified.

3. Main Results

Definition 3.1. Let S be a subset of X. The set

$$H(S) := \{ y \in S \mid y = 0 * x^2 \text{ for some } x \in S \}$$

is called the H(S)-part of X.

Clearly, $0 \in H(S)$ if S containing 0.

Theorem 3.2. If S is a subalgebra of X, then H(S) is a subalgebra of X.

Proof. Let $a, b \in H(S)$. Then $a = 0 * x^2$ and $b = 0 * y^2$ for some $x, y \in S$. Thus, we have

$$a * b = ((0 * x) * x) * ((0 * y) * y)$$

$$= ((0 * ((0 * y) * y)) * x) * x$$

$$= (((0 * (0 * y)) * (0 * y)) * x) * x$$

$$= (((0 * x) * (0 * y)) * (0 * y)) * x$$

$$= ((0 * (x * y)) * (0 * y)) * x$$

$$= ((0 * (0 * y)) * x) * (x * y)$$

$$= ((0 * x) * (0 * y)) * (x * y)$$

$$= (0 * (x * y)) * (x * y)$$

$$= 0 * (x * y)^{2},$$

and $x * y \in S$. Hence $a * b \in H(S)$.

Corollary 3.3. H(X) is a subalgebra of X.

Theorem 3.4. If S is a subset of X, then $H(S) \subseteq A(S)$, where $A(S) := \{x \in S \mid 0 \}$ * $\{x \in S \mid 0 \}$.

Proof. Let $a \in H(S)$. Then $a = 0 * x^2$ for some $x \in S$. Thus, we have

$$0*(0*a) = 0*(0*(0*x^2)) = 0*x^2 = a.$$

Hence $H(S) \subseteq A(S)$.

Lemma 3.5 ([11]). Let S be a subalgebra of X. Then A(S) is a subalgebra of X.

Note that every subalgebra of a medial BCH-algebra X is an ideal in X (see [2]). By Theorem 3.2, Theorem 3.4 and Lemma 3.5, we have

Corollary 3.6. Let S be a subalgebra of X. Then H(S) is an ideal of A(S).

In general, the H(S)-part H(S) of X may not be an ideal of X as shown in the following example.

Example 3.7. Let $X := \{0, a, b, c\}$ be a BCH-algebra in which *-operation is defined by:

*	0	а	b	С
0	0	С	0	a
a	a	0	а	c
b	b	С	0	а
c	c	а	С	0

Taking an ideal S := X, then $H(S) = \{0, a, c\}$ is not an ideal of X since $b * a = c \in H(S)$ and $b \notin H(S)$.

Now we give equivalent conditions that H(S) is an ideal of X.

Theorem 3.8. *Let S be a closed ideal of X. The following are equivalent:*

- (i) H(S) is an ideal of X.
- (ii) x * a = y * a implies x = y for all $x, y \in A^+$ and $a \in H(S)$.
- (iii) x * a = 0 * a implies x = 0 for all $x \in A^+$ and $a \in H(S)$.

Proof. (i) \Rightarrow (ii) Let H(S) be an ideal of X and x * a = y * a, for all $x, y \in A^+$ and $a \in H(S)$. Then by Theorem 3.2, we have

$$(x * y) * a = (x * a) * y = (y * a) * y = (y * y) * a = 0 * a \in H(S).$$

Since H(S) is an ideal of X, it follows that $x * y \in H(S)$. On the other hand, note that $x * y \in A^+$ and $A^+ \cap H(S) \subseteq A^+ \cap A(S) \subseteq A^+ \cap A(X) = \{0\}$. Thus, we have x * y = 0. Similarly, we get y * x = 0, and hence x = y.

- (ii) \Rightarrow (iii) Since $0 \in A^+$, it is clear.
- (iii) \Rightarrow (i) Assume that (iii) holds. Let $s, t \in S$ such that $s * t \in H(S)$ and $t \in H(S)$. Then since S is an ideal of X, we have $s \in S$. Denote u = 0 * (0 * s). Then we get

$$u * t = (0 * (0 * s)) * t = 0 * (t * s) \in A(S)$$

and $s * t \in H(S) \subseteq A(S)$ and

$$(u * t) * (s * t) = ((0 * (0 * s)) * (s * t)) * t$$
$$= (((0 * s) * (0 * t)) * (0 * s)) * t$$
$$= (0 * (0 * t)) * t = 0.$$

Thus by Theorem 3 in [2] we have u * t = s * t. Hence

$$(s*u)*t = (s*t)*u = (u*t)*u = 0*t,$$

which implies from (iii) that s * u = 0, i.e., s * (0 * (0 * s)) = 0. Therefore s = 0 $* (0 * s) \in A(S)$ since $s \in S$. As H(S) is an ideal of A(S), we get $s \in H(S)$, and H(S) is an ideal of X.

By Theorem 3.8, we have equivalent condition that H(X) is an ideal of X.

Corollary 3.9. *The following are equivalent:*

- (i) H(X) is an ideal of X.
- (ii) x * a = y * a implies x = y for all $x, y \in A^+$ and $a \in H(X)$.
- (iii) x * a = 0 * a implies x = 0 for all $x \in A^+$ and $a \in H(X)$.

References

- [1] B. Ahmad, On classification of BCH-algebras, Math. Japon. 35(5) (1990), 801-804.
- [2] M. A. Chaudhry, On BCH-algebras, Math. Japon. 36(4) (1991), 665-676.
- [3] M. A. Chaudhry and H. Fakhar-ud-din, Ideals and filters in BCH-algebras, Math. Japon. 44(1) (1996), 101-111.
- [4] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35(6) (1990), 1131-1138.
- [5] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11(2) (1983), 313-320.
- [6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon. 30(4) (1985), 659-661.
- [7] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
- [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- [9] Y. B. Jun, Characterizations of BCI/BCH-algebras, Indian J. Pure Appl. Math. 25(4) (1994), 361-363.
- [10] K. H. Kim and E. H. Roh, The role of A^+ and A(X) in BCH-algebras, Math. Japon. 52(2) (2000), 317-321.
- [11] E. H. Roh, The structure of T(S)-part in BCH-algebras, Submitted.
- [12] E. H. Roh, Y. B. Jun and Q. Zhang, Special subset in BCH-algebras, Far East J. Math. Sci. (FJMS) 3(5) (2001), 723-729.
- [13] E. H. Roh, S. Y. Kim and Y. B. Jun, On a problem in BCH-algebras, Math. Japon. 52(2) (2000), 279-283.