ON THE $H(S)$-PART IN BCH-ALGEBRAS

EUN HWAN ROH

Department of Mathematical Education Institute of Mathematical Education
Chinju National University of Education
Jinju 660-756, Korea
e-mail: ehroh@cue.ac.kr
idealmath@gmail.com

Abstract

We consider special subsets $H(S)$ in a BCH-algebra X, where S is a nonempty subset of X. We give related properties of them and provide an equivalent condition that the special $H(S)$-part of X is an ideal.

1. Introduction

In 1966, Imai and Iséki ([7]) and Iséki ([8]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCKalgebras is a proper subclass of the class of BCI-algebras. In 1983, Hu and $\mathrm{Li}([5,6])$ introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. They have studied some properties of these algebras.

As we know, the primary aim of the theory of BCH-algebras is to determine the structure of all BCH-algebras. The main task of a structure theorem is to find a complete system of invariants describing the BCH-algebra up to isomorphism, or to establish some connection with other mathematics branches. In addition, the ideal theory plays an important role in studying BCH-algebras, and some interesting

2010 Mathematics Subject Classification: 06F35, 03G25.
Keywords and phrases: BCH-algebra, $H(S)$-part, subalgebra, ideal.
Received February 4, 2010
results have been obtained by several authors ($[1,2,3,4,12,13]$). In this paper, we construct special subsets $T(S)$ in a BCH-algebra X, where S is a non-empty subset of X. We give related properties of them and provide an equivalent condition that the special $H(S)$-part of X is an ideal.

2. Preliminaries

A $B C H$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(1) $x * x=0$,
(2) $x * y=0$ and $y * x=0$ imply $x=y$,
(3) $(x * y) * z=(x * z) * y$,
for all x, y, z in X. A BCH-algebra X satisfying the identity $((x * y) *(x * z)) *(z * y)$ $=0$ and $0 * x=0$, for all $x, y, z \in X$ is called a $B C K$-algebra. A BCH-algebra X is said to be medial $([2])$ if it satisfies $(x * y) *(a * b)=(x * a) *(y * b)$ for all $x, y, a, b \in X$. We defined the relation \leq in a BCH-algebra by: $x \leq y$ if and only if $x * y=0$.

In any BCH-algebra X, the following hold: for all $x, y \in X$,
(4) $(x *(x * y)) \leq y$,
(5) $x \leq 0$ implies $x=0$,
(6) $0 *(x * y)=(0 * x) *(0 * y)$,
(7) $x * 0=x$,
(8) $0 *(0 *(0 * x))=0 * x$.

A non-empty subset S of BCH-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset I of BCH-algebra X is called an ideal of X if $0 \in I$ and if $x * y, y \in I$ imply that $x \in I$. Note that an ideal of a BCH-algebra may not be a subalgebra. An ideal I of BCH-algebra X is said to be closed if $0 * x \in I$ for all $x \in I$. Note that every closed ideal in BCH-algebra X is a subalgebra, but converse is not true.

In a BCH-algebra X, the set $A^{+}:=\{x \in X \mid 0 \leq x\}$ is called a positive part of X and the set $A(X):=\{x \in X \mid 0 *(0 * x)=x\}$ is called an atom part of X. Note that $A(X)=\{0 *(0 * x) \mid x \in X\}=\{0 * x \mid x \in X\}$ and $A^{+} \cap A(X)=\{0\}([10])$.

For any elements x, y in a BCH-algebra X, let us write $x * y^{n}$ for $(\cdots((x * y) * y) * \cdots) * y$, where y occurs n times.

In what follows, the letter X denotes a BCH-algebra unless otherwise specified.

3. Main Results

Definition 3.1. Let S be a subset of X. The set

$$
H(S):=\left\{y \in S \mid y=0 * x^{2} \text { for some } x \in S\right\}
$$

is called the $H(S)$-part of X.
Clearly, $0 \in H(S)$ if S containing 0 .
Theorem 3.2. If S is a subalgebra of X, then $H(S)$ is a subalgebra of X.
Proof. Let $a, b \in H(S)$. Then $a=0 * x^{2}$ and $b=0 * y^{2}$ for some $x, y \in S$. Thus, we have

$$
\begin{aligned}
a * b & =((0 * x) * x) *((0 * y) * y) \\
& =((0 *((0 * y) * y)) * x) * x \\
& =(((0 *(0 * y)) *(0 * y)) * x) * x \\
& =(((0 * x) *(0 * y)) *(0 * y)) * x \\
& =((0 *(x * y)) *(0 * y)) * x \\
& =((0 *(0 * y)) * x) *(x * y) \\
& =((0 * x) *(0 * y)) *(x * y) \\
& =(0 *(x * y)) *(x * y) \\
& =0 *(x * y)^{2},
\end{aligned}
$$

and $x * y \in S$. Hence $a * b \in H(S)$.

Corollary 3.3. $H(X)$ is a subalgebra of X.
Theorem 3.4. If S is a subset of X, then $H(S) \subseteq A(S)$, where $A(S):=\{x \in S \mid 0$ $*(0 * x)=x\}$.

Proof. Let $a \in H(S)$. Then $a=0 * x^{2}$ for some $x \in S$. Thus, we have

$$
0 *(0 * a)=0 *\left(0 *\left(0 * x^{2}\right)\right)=0 * x^{2}=a
$$

Hence $H(S) \subseteq A(S)$.
Lemma 3.5 ([11]). Let S be a subalgebra of X. Then $A(S)$ is a subalgebra of X.
Note that every subalgebra of a medial BCH-algebra X is an ideal in X (see [2]). By Theorem 3.2, Theorem 3.4 and Lemma 3.5, we have

Corollary 3.6. Let S be a subalgebra of X. Then $H(S)$ is an ideal of $A(S)$.
In general, the $H(S)$-part $H(S)$ of X may not be an ideal of X as shown in the following example.

Example 3.7. Let $X:=\{0, a, b, c\}$ be a BCH-algebra in which $*$-operation is defined by:

$*$	0	a	b	c
0	0	c	0	a
a	a	0	a	c
b	b	c	0	a
c	c	a	c	0

Taking an ideal $S:=X$, then $H(S)=\{0, a, c\}$ is not an ideal of X since $b * a=$ $c \in H(S)$ and $b \notin H(S)$.

Now we give equivalent conditions that $H(S)$ is an ideal of X.
Theorem 3.8. Let S be a closed ideal of X. The following are equivalent:
(i) $H(S)$ is an ideal of X.
(ii) $x * a=y * a$ implies $x=y$ for all $x, y \in A^{+}$and $a \in H(S)$.
(iii) $x * a=0 * a$ implies $x=0$ for all $x \in A^{+}$and $a \in H(S)$.

Proof. (i) \Rightarrow (ii) Let $H(S)$ be an ideal of X and $x * a=y * a$, for all $x, y \in A^{+}$ and $a \in H(S)$. Then by Theorem 3.2, we have

$$
(x * y) * a=(x * a) * y=(y * a) * y=(y * y) * a=0 * a \in H(S)
$$

Since $H(S)$ is an ideal of X, it follows that $x * y \in H(S)$. On the other hand, note that $x * y \in A^{+}$and $A^{+} \cap H(S) \subseteq A^{+} \cap A(S) \subseteq A^{+} \cap A(X)=\{0\}$. Thus, we have $x * y=0$. Similarly, we get $y * x=0$, and hence $x=y$.
(ii) \Rightarrow (iii) Since $0 \in A^{+}$, it is clear.
(iii) \Rightarrow (i) Assume that (iii) holds. Let $s, t \in S$ such that $s * t \in H(S)$ and $t \in H(S)$. Then since S is an ideal of X, we have $s \in S$. Denote $u=0 *(0 * s)$. Then we get

$$
u * t=(0 *(0 * s)) * t=0 *(t * s) \in A(S)
$$

and $s * t \in H(S) \subseteq A(S)$ and

$$
\begin{aligned}
(u * t) *(s * t) & =((0 *(0 * s)) *(s * t)) * t \\
& =(((0 * s) *(0 * t)) *(0 * s)) * t \\
& =(0 *(0 * t)) * t=0
\end{aligned}
$$

Thus by Theorem 3 in [2] we have $u * t=s * t$. Hence

$$
(s * u) * t=(s * t) * u=(u * t) * u=0 * t
$$

which implies from (iii) that $s * u=0$, i.e., $s *(0 *(0 * s))=0$. Therefore $s=0$ $*(0 * s) \in A(S)$ since $s \in S$. As $H(S)$ is an ideal of $A(S)$, we get $s \in H(S)$, and $H(S)$ is an ideal of X.

By Theorem 3.8, we have equivalent condition that $H(X)$ is an ideal of X.

Corollary 3.9. The following are equivalent:

(i) $H(X)$ is an ideal of X.
(ii) $x * a=y * a$ implies $x=y$ for all $x, y \in A^{+}$and $a \in H(X)$.
(iii) $x * a=0 * a$ implies $x=0$ for all $x \in A^{+}$and $a \in H(X)$.

References

[1] B. Ahmad, On classification of BCH-algebras, Math. Japon. 35(5) (1990), 801-804.
[2] M. A. Chaudhry, On BCH-algebras, Math. Japon. 36(4) (1991), 665-676.
[3] M. A. Chaudhry and H. Fakhar-ud-din, Ideals and filters in BCH-algebras, Math. Japon. 44(1) (1996), 101-111.
[4] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35(6) (1990), 1131-1138.
[5] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11(2) (1983), 313-320.
[6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon. 30(4) (1985), 659-661.
[7] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
[8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[9] Y. B. Jun, Characterizations of BCI/BCH-algebras, Indian J. Pure Appl. Math. 25(4) (1994), 361-363.
[10] K. H. Kim and E. H. Roh, The role of A^{+}and $A(X)$ in BCH-algebras, Math. Japon. 52(2) (2000), 317-321.
[11] E. H. Roh, The structure of $T(S)$-part in BCH-algebras, Submitted.
[12] E. H. Roh, Y. B. Jun and Q. Zhang, Special subset in BCH-algebras, Far East J. Math. Sci. (FJMS) 3(5) (2001), 723-729.
[13] E. H. Roh, S. Y. Kim and Y. B. Jun, On a problem in BCH-algebras, Math. Japon. 52(2) (2000), 279-283.

