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Abstract 

In the present paper, we study the structure of the nodal sets and the 
singular sets of solutions for a semi-linear elliptic equation in general 

dimensional Euclidean space .nR  We shall show that both the nodal sets 

and singular sets are on unions of countable 1C  manifolds. Especially, the 
highest dimensional subsets of nodal sets and singular sets are on unions 

of countable α,1C  manifolds for some .10 <α<  Thus the nodal sets and 
singular sets are countably ( )1−n  and ( )2−n  rectifiable, respectively. 

1. Introduction 

We consider a semi-linear elliptic equation 

 ( )ψψ=ψ∇− 22 fA   in   Ω, (1.1) 

where Ω is a bounded domain in nR  and a function f is real-valued, bounded on 
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[ ).,0 ∞  Here A is a real vector-valued function (called magnetic potential), ψ is a 

complex-valued function. A∇  and 2
A∇  are defined by ,AA i−∇=∇  ∇  is the 

gradient operator and 

( )[ ] .div2 22 ψ−ψ+ψ∇⋅−ψΔ=ψ∇ AAAA i  

In this paper, we shall clarify the structure of the nodal set and singular set of any 
non-trivial solution ψ of (1.1). 

Let us recall that superconductivity in three dimensional space can be described 
by a pair of ( ),, Aψ  where ψ is a complex-valued function called the order 

parameter and A  is a real vector-valued function called the magnetic potential, 
which is a minimizer of the Ginzburg-Landau functional 

∫ ∫Ω
κ −κ+

⎭
⎬
⎫

⎩
⎨
⎧

ψκ+ψκ−ψ∇
3

.curl2
224

2
222

R
dxdx HAA  

Here H  is the applied magnetic field, κ is the Ginzburg-Landau parameter. Then the 
Euler equations for ψ become 

 
( )

⎪⎩

⎪
⎨
⎧

Ω∂=ψ∇⋅

Ωψψ−κ=ψ∇−

κ

κ

,on0

,in1 222

A

A

ν
 (1.2) 

where ν  is the outer unit normal vector at .Ω∂  It is well known that the solution of 
(1.2) satisfies 1≤ψ  in Ω. If we put Aκ=A  and 

( )
( )

⎪⎩

⎪
⎨
⎧

>

≤−κ
=

,1if0

,1if12

t

tt
tf  

then the first equation for ψ in (1.2) is of the form (1.1). 

In the superconductivity theory or Landau-de Gennes model of liquid crystal, if 
we want to know the property of the third critical field 3cH  or ,3cQ  we need the 

estimate of the lowest eigenvalue ( )Aqμ  of the Schrödinger operator ,2
Aq∇−  i.e., 

 
( )

⎪⎩

⎪
⎨
⎧

Ω∂=φ∇⋅

Ωφμ=φ∇−

.on0

,in2

A

A A

q

q q

ν
 (1.3) 

If we put ( ) ( )Aqtf μ=  which is a constant, equation (1.3) is also of the form (1.1). 
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For the theory of liquid crystal, nA =  is a unit vector field. See Lu and Pan [17, 
18] and Pan [20, 21]. 

For ,3≥n  the eigenvalue problem 

 μψ=ψ∇− 2
A   in  Ω (1.4) 

with the Dirichlet boundary condition or the Neumann boundary condition is 
considered by Helffer and Mohamed [15] and Helffer and Morame [16]. This 
problem is also of the form (1.1). 

First, we note an important property that equation (1.1) is the gauge invariant. 
That is to say, if ψ is a solution of (1.1) and χ  is a smooth real-valued function, then 

ψ=φ χie  is a solution of 

 ( )φφ=φ∇− χ∇−
22 fA   in  Ω. (1.5) 

Let ( )xB  be an anti-symmetric nn ×  matrix with ( )ji,  component =ijB  

,ijji xAxA ∂∂−∂∂  where ( )....,,, 21 nAAA=A  If ( ) 0≡xB  in Ω and Ω is simply 

connected, there exists a unique real-valued function χ  up to an additive constant 

such that .χ∇=A  Thus ψ=φ χie  is a solution of 

( ) .2 φφ=φΔ− f  

In this case, we can apply the results in the papers which treat in the frame of real-
valued functions. However, if ( ) ,0≢xB  the nodal set or singular set of the 

complex-valued solution ψ cannot be reduced to the case of real-valued functions. 
See Pan [22]. 

Here the nodal set of ψ is defined by 

( ) ( ){ }0; =ψΩ∈=ψ xxN  

and the singular set of ψ is defined as a subset of the nodal set 

( ) ( ) ( ){ }.0,0; =ψ∇=ψΩ∈=ψ xxxS  

The structures of ( )ψN  and ( )ψS  for real-valued solution were analyzed by many 

authors, see Garofalo and Lin [8], Han [10], Han et al. [12] and Han [11]. For 
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,3=n  the structure of ( )ψS  of complex-valued solution of (1.1) is investigated by 

[22]. 

In this paper, we attempt the extension of the results of [22] to the general 
dimensional case with some improvements. 

In the following, we say that a function ( )Ω∈ψ 2
locL  vanishes of infinite order 

at Ω∈0x  if for any integer ,0≥m  

( )
( )∫ +=ψ

0xB
nm

r
rOdx   as  ,0→r  

where ( ) { }.; 00 rxxxxB n
r <−∈= R  We use the symbols ( )C;2,1 ΩW  or 

( ),; npL RΩ  etc. for the usual Sobolev spaces of complex-valued functions or real-

valued vector functions, etc., respectively. 

Our main results are following. 

Theorem 1.1. Let ( )3≥⊂Ω nnR  be a bounded domain. Assume that 

(a) ( ),; nL RΩ∈ ∞A  ( )Ω∈ qLlocdiv A  with 2nq >  if 4≥n  and 2≥q  if 

,3=n  and ( ).;
2nLB RΩ∈ ∞  

(b) ( )C;2,1
loc Ω∈ψ W  is a non-trivial complex-valued solution of (1.1) with 

( )nW C;2,1
loc Ω∈ψ∇A  and ( ) ( ) .2 ∞<ψ Ω∞Lf  

Then the following hold: 

(1) (Doubling property) There exists a constant 0>C  such that for any 
( ) ,02 ΩxB R  

( )( )∫ ∫ ψ≤ψ
02 0

.22

xB xBR R
dxCdx  

(2) ψ cannot vanish of infinite order at any point in Ω. 

For the nodal sets and singular sets of the solution ψ, we have 

Theorem 1.2. Under the conditions of Theorem 1.1, we have the following 
decompositions of ( )ψN  and ( ).ψS  For any ,ΩΩ′  
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( ) ( ( ) ),
1

0
∪ ∩∩
−

=

Ω′ψ=Ω′ψ
n

j

jNN  

where ( ) Ω′ψ ∩jN  is on a union of countable j-dimensional 1C  manifolds for 

2−≤ nj  and ( ) Ω′ψ− ∩1nN  is on a union of countable ( )1−n -dimensional 
α,1C  manifolds with any ( ) ( ],2,01,0 qn−∈α ∩  and 

( ) ( ( ) ),
2

0
∪ ∩∩
−

=

Ω′ψ=Ω′ψ
n

j

jSS  

where ( ) Ω′ψ ∩jS  is on a union of countable j-dimensional 1C  manifolds for 

3−≤ nj  and ( ) Ω′ψ− ∩2nS  is on a union of countable ( )2−n -dimensional 
α,1C  manifolds for some ( ).1,0∈α  Thus ( ) Ω′ψ ∩jN  and ( ) Ω′ψ ∩jS  are 

countably j-rectifiable for 10 −≤≤ nj  and ,20 −≤≤ nj  respectively. 

Remark 1.3. For ,3=n  [22] analyzed only the singular set. [22] showed that 

( ) Ω′ψ ∩jS  for ,1,0=j  have finite decompositions 

( ) ( ( ) ) ( ),1,0
2
∪ ∩∩
≥

=Ω′ψ=Ω′ψ
m

j
m

j jSS  

where ( ) Ω′ψ ∩0
mS  is at most countable set and ( ) Ω′ψ ∩1

mS  is on a countable 

union of 1-dimensional α,1C  manifolds for some ( ).1,0∈α  

2. Preliminary Remarks 

Though we do not assume the boundary condition for solutions of (1.1), we note 
some remarks on solutions of (1.1) with the boundary conditions in this section. 

First, as long as we consider equation (1.1) with the Neumann boundary 
condition and f is smooth, decreasing function on [ )∞,0  and ( ) ,00 ≥f  we can 

slightly relax the boundedness assumption on f to that f is bounded on 
( ){ }.0;0 ≥≥ tft  In fact, we have 

Proposition 2.1. Let Ω be smooth, simply connected bounded domain in nR  

and f be a smooth, decreasing function in { }0; ≥∈=+ tt RR  satisfying ( ) .00 ≥f  
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Assume that ( ).;2,1 nW RΩ∈A  Then if the magnetic Neumann problem 

 
( )

⎪⎩

⎪
⎨
⎧

Ω∂=ψ∇⋅

Ωψψ=ψ∇−

on

inf

0

,22

A

A

ν
 (2.1) 

has a solution ( ),;2,1 CΩ∈ψ W  then ( ) .02 ≥ψf  

Proof. It is well known that we may assume the Coulomb gauge condition: 
0div =A  in Ω and 0=⋅ Aν  on .Ω∂  In fact, the problem 

⎪⎩

⎪
⎨
⎧

Ω∂⋅−=ϕ
∂
∂

Ω=ϕΔ−

on

,indiv

A

A

νν
 

has a unique solution ϕ up to an additive constant since 

∫ ∫Ω Ω∂
⋅= ,div dSdx AA ν  

where dS is the surface area of .Ω∂  Then it suffices to replace A with .ϕ∇+A  By 

the elliptic regularity theory, we have ( )Ω∈ψ ∞C  (cf. Sandier and Serfaty [24]). 

We can write the first equation in (2.1) in the form 

( ) .2 22 ψψ=ψ+ψ∇⋅+ψΔ− fi AA  

Multiplying ψ  to this equation, we have 

[( ) ] 22
2
1 ψ∇+ψψΔℜ=ψΔ  

 ( ) [ ( ) ] .2 22222 ψ∇+ψ+ψψ∇⋅ℜ+ψψ−= AAif  

Since 

( ) [ ( ) ] ,2 22222 ψ+ψψ∇⋅ℜ+ψ∇=ψ−∇=ψ∇ AAAA ii  

we have 

 ( ) .2
1 2222 ψ∇−ψψ=ψΔ− Af  (2.2) 

Choose Ω∈0x  so that ( ) ( ) .max 0xxx ψ=ψΩ∈  If ( ) ,00 =ψ x  then 0≡ψ  in 

Ω  and so ( ) 00 ≥f  by assumption. If ( ) ,00 >ψ x  ψ  is a smooth function near 
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.0x  When ,0 Ω∈x  by the maximality of ψ  at ,0x  we have ( ) 00 =ψ∇ x  and 

( ) .00 ≤ψΔ x  From (2.2), we get ( ( ) ) .02
0 ≥ψ xf  Since ( ) ( ) 2

0
2 xx ψ≤ψ  

and f is decreasing, we see that ( ( ) ) .02 ≥ψ xf  When ,0 Ω∂∈x  we have 

( ) ( ) ,00 =∂ψ∂ xτ  where τ  is the tangent unit vector at 0x  to .Ω∂  On the other 

hand, it follows from the boundary condition that 0=∂ψ∂ ν  on .Ω∂  Multiplying 

,ψ  we have 

022 =⎥⎦
⎤

⎢⎣
⎡ ψ⎟

⎠
⎞⎜

⎝
⎛ ψ
∂
∂ℜ=ψ

∂
∂

νν  

on .Ω∂  Thus we have 02 =∂ψ∂ψ ν  on .Ω∂  Since ( ) ,00 >ψ x  we have 

( ) ( ) .00 =∂ψ∂ xν  Therefore, ( ) .00 =ψ∇ x  Since ( ) ,00 ≤ψΔ x  we have 

( ( ) ) .02
0 ≥ψ xf  ~ 

Remark 2.2. Under the above condition, if we consider the solution of (2.1), we 

have ( )2ψf  is bounded in Ω. 

In our previous papers Aramaki [1, 2, 3] and Aramaki et al. [4] associated with 
superconductivity, we considered the equation of type (1.1) under appropriate 

hypotheses on f (cf. Pan and Kwek [23]). Let 2R⊂Ω  be a smooth, simply 
connected domain. We consider the equations associated with superconductivity 
with the de Gennes boundary condition: 

 

( )

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Ω∂=×

=γψ+ψ∇⋅

Ωψ−ψ∇ψ−ψ∇ψ−=

ψψ
ε

=ψ∇−

.on0curl

,0

,in2curl

,1

22

2
2

2

ν

ν

A

AA

A

A

i

f

 (2.3) 

[3] and [4] showed that when 0>γ  and ,0curl ≡A  the non-trivial solution ψ of 

(2.3) does not vanish in Ω. 

When ( ) ,1 ttf −=  equations (2.3) represent superconductivity. For this 

equation, there are many articles. For example, when 0=γ  and 2R⊂Ω  is simply 

connected domain, Elliot et al. [6] showed that the non-trivial solution ψ of (2.2) has 
only isolated zeros. For non-simply connected case, see Helffer et al. [13] and [14]. 
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3. Regularity of the Solution 

In this section, we give an pL -estimate for the weak solution ψ of (1.1).               
We follow the arguments in [22] with necessary modifications. Let =∞ :f  

( ) ( ).
2

Ω∞ψ Lf  

Lemma 3.1. Let ( ),; nL RΩ∈ ∞A  ( )Ω∈ qLlocdiv A  with 2nq >  and let ∈ψ  

( )C;2,1
loc ΩW  be any solution of (1.1). Then ( )C;,2

loc Ω∈ψ qW  and for any ( )02 xB R  

Ω  and any ,1 qp ≤<  there exists a constant 0>C  which depends only on p, 

q, ( )Ω∞LA  such that 

( )( ) ( )( )00
22

xBLxBL R
p

R
p RDR ψ∇+ψ  

{ ( )( ) ( ) ( ) ( )( )}.div
0202

22
xBLxBL R

p
R

p ifRC ψ−ψψ+ψ≤ A  (3.1) 

Proof. Step 1. We show that ψ is locally Hölder continuous in Ω. 

Write (1.1) in the form 

 [ ( )] ( )ψ−=ψψ−+ψ∇⋅+ψΔ− AAA div2 22 ifi  (3.2) 

in Ω. For any fixed 0>R  such that ( ) ,02 ΩxB R  since we want the local estimate, 

we may assume that ( )Ω∈ qLAdiv  and ( ).;2,1 CΩ∈ψ W  By the Sobolev imbedding 

theorem, 

( ) ( )( ).222,1 ΩΩ∈ψ −nnLW   

Since ( ) 222 >−nn  if ,3≥n  ( )Ω∈ψ 1pL  with ( ).221 −= nnp  Put =2p  

( )11 pqqp +  and applying the Hölder inequality, 

( ) ( ) ( ) ( ).divdiv 12 ΩΩΩ ψ≤ψ pqp LLL AA  

Since A and ( )2ψf  are bounded, it follows from the elliptic regularity theory (cf. 

Gilbarg and Trudinger [9, Theorem 9.11]) that we have ( )( )02
,2 2 xBW R

p
′∈ψ  for 

any .0 RR <′<  If ,02 2 >− pn  by Sobolev imbedding theorem, for any <α<0  
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,2 2pn−  ( )( ).02 xBC R′
α∈ψ  If ,02 2 =− pn  for any ,2pp >  ( )( )02

,2 2 xBW R
p

′  

( )( ).02 xBL R
p

′  Similarly as above, we have ( ) ( )( )023div xBL R
p

′∈ψA  with 

( ).3 pqqpp +=  Thus ( )( )C;02
,2 3 xBW R

p
′′∈ψ  for any .0 RR ′<′′<  If we 

choose p large enough, we see that ,02 3 >− pn  so ( )( )02 xBC R ′′
α∈ψ  with 

.2 3pn−=α  If ,02 2 <− pn  again applying the Sobolev imbedding theorem, 

( )( ) ( )( )CC ;; 0202
,2 32 xBLxBW R

p
R

p
′′′′   with ( ( )).2223 qnpqnnqpp −+=  

Therefore, we have ( )( )C;02
,2 3 xBW R

p
′′′∈ψ  for any .0 RR ′′<′′′<  Since clearly 

( )
( ) ( )( ) ,02

2
11

2
1

23 >
−++

−
=− pqnqnpq

qpnqpp  

if we repeat the above arguments finitely many times, we see that ∈ψ  

( ( ) )C;0xBC R
α  for some ( ),1,0∈α  where ( ) { }rxxxxBr ≤−= 00 ;  for .0>r  

Step 2. Let ( ) Ω02 xB R  and write (1.1) in the form 

 ( ) ( ) .div2 22 ψ−ψψ=ψ+ψ∇⋅+ψΔ− AAA ifi  (3.3) 

By the argument of Step 1, we may assume that ( ( ) ).;02 CxBC R
α∈ψ  Noting that 

for any ,1 qp ≤<  ( ) ( ) ( )( )02
2 div xBLif R

p∈ψ−ψψ A  and so applying [9, 

Theorem 9.11 and its proof], we have 

 ( )( ) ( )( )00
22

xBLxBL R
p

R
p RDR ψ∇+ψ  

{ ( )( ) ( ) ( ) ( )( )}.div
0202

22
xBLxBL R

p
R

p ifRC ψ−ψψ+ψ≤ A  ~ 

4. Doubling Property 

In this section, we shall discuss on the doubling property of non-trivial solutions 

of (1.1). We follow the ideas in [8] and [22]. Let ( )Ω∈ψ 2,1
loc0 W≢  be a solution of 

(1.1) and .0 Ω∈x  Then for any 0>r  with ( ) ,0 ΩxBr  define some quantities: 

( ) { ( ) }
( )∫ ψψ−ψ∇=

0
,, 222

0
xBr

dxfrxI A  
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( )
( )∫∂ ψ=

0
,, 2

0
xB

r
r

dSrxH  

( )
( )∫ ψ=

0
,, 2

0
xBr

dxrxD  

( ) ( )
( ) ( ) ( )

( ) ( ) ,0,if,
,,,,

,, 0
0
0

0
0
0

0 ≠== rxHrxH
rxrDrxNrxH

rxrIrxM  (4.1) 

where rdS  is the surface area of the sphere ( ).0xBr∂  

Lemma 4.1. Under the hypotheses of Theorem 1.1, let ( )C;2,1
loc Ω∈ψ W  be any 

non-trivial complex-valued solution of (1.1). Then there exist constants ,0r  c, N, 

where 0r  depends only on ∞f  and n, moreover c and N depend only on Ω, ψ, ,∞f  

( )Ω∞LB  and n such that for any 20 0rr ≤<  with ( ) ,02 ΩxB r  we have 

( ) crxM ≤,0  

and 

( )( )∫ ∫ ψ≤ψ
02 0

.4 22

xB xB
N

r r
dxdx  

Proof. By Lemma 3.1 and the hypothesis of Theorem 1.1, we see that ∈ψ  

( )C;2,2
loc ΩW  and ( ).;2,1

loc
nW CΩ∈ψ∇A  Without loss of generality, we may assume 

00 =x  and so for brevity of notations, we write ( ),,0 rxI  ( ),,0 rxH  ( ),,0 rxD  

( ),,0 rxM  ( )rxN ,0  and ( )0xBr  by ( ),rI  ( ),rH  ( ),rD  ( ),rM  ( )rN  and ,rB  

respectively. 

Step 1. We compute ( )rH ′  and ( ).rI ′  

Let ( ) 1, −+ ×∈ωρ nSR  be the polar coordinates where 1−nS  is the surface of 

the unit sphere 1B  in .nR  Since we can write 

( ) ( ) ,,
1

21∫∂
− ωψ=

B
n dSrrrH  

where dS is the surface area on ,1
1

−=∂ nSB  we have 



SEMI-LINEAR ELLIPTIC EQUATION 147 

( ) ( ) ( )∫ ∫∂ ∂

−−
ρ∂
ψ∂ψℜ+ωψ−=′

1 1

122 2,1
B B

nn dSrdSrrnrH  

 ( ) ∫∂ ψ∇ψℜ+−=
rB

rdSr
xrHr

n .,21  

Here it follows from the divergence theorem that 

 ∫ ∫∂ ∂
ψ∇ψℜ=ψ∇ψℜ

r rB B
rr dSr

xdSr
x ,, A  

( )∫ ψ∇ψℜ=
rB

dxAdiv  

( ){ }∫ ψ∇⋅ψ∇+ψ∇ψℜ=
rB

dxAAdiv  

{ }∫ ψ∇+ψ∇ψℜ=
rB

dx22
AA  

{ ( ) } ( )∫ =ψ∇+ψψ−ℜ=
rB

rIdxf .222
A  

Thus we have 

 ( ) ( ) ( ).21 rIrHr
nrH +−=′  (4.2) 

Next, we compute ( ).rI ′  Clearly, we have 

( ) { ( ) }∫∂ ψψ−ψ∇=′
rB

rdSfrI .222
A  

By the divergence theorem, 

 ∫ ∫∂ ∂
ψ∇=ψ∇

r rB B
rr dSr

xxrdS ,1 22
AA  

( )∫ ψ∇=
rB

dxxr
2div1

A  

∫ ∫ ψ∇∇+ψ∇=
r rB B

dxxrdxnr .,11 22
AA  
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In order to compute the last term in the above equality, we have 

 ∫ ψ∇∇=
rB

dxxJ 2,: A  

( )∫ ψ∇⋅ψ∇∇ℜ=
rB

dxx AA,2  

[ ( )]( )∫ ∑
=

ψ+ψ∂ψ−ψ∂∂ℜ=
rB

n

kj
kkkkjj dxiAiAx

1,
2  

( ),2: 21 JJ −=  

where 1J  and 2J  are defined by 

[ ( )]( )∫ ∑
=

ψ+ψ∂ψ−ψ∂∂ℜ=
rB

n

kj
kkjjkj dxiAiAxJ

1,
1 ,  

[ ( ) ( )]( )∫ ∑
=

ψ+ψ∂ψ∂−ψ∂ℑ=
rB

n

kj
kkkjjkj dxiAAAxJ

1,
2 .  

We continue the computation of 1J  and ,2J  

{ [ ( )]( )∫ ∑
=

ψ+ψ∂ψ−ψ∂∂ℜ=
rB

n

kj
kkjjjk iAiAxJ

1,
1  

( ) ( )ψ+ψ∂∂ψ−ψ∂− kkkjjj iAiAx  

( ) ( )}dxiAiA kkjjjk ψ+ψ∂ψ−ψ∂δ−  

( ) ( )∑ ∫
= ∂

ψ+ψ∂ψ−ψ∂ℜ=
n

kj B
kkjj

kj

r
dxiAiAr

xx

1,
 

{( ) ( ) }∫ ψ∇+ψ∇ψ∇⋅ℜ−
rB

dxx 2div AAA  

∫∂ ψ∇⋅=
rB

rdSxr
21

A  
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{( )[ ] }∫ ψ∇+ψ∇⋅+ψ∇ψ∇⋅ℜ−
rB

dxix 22
AAAA A  

( ) ( )∫ ∫∂
ψψψ∇⋅ℜ+ψ∇⋅=

r rB B
r dxfxdSxr

221
AA  

( ) ( )∫ ∫ ψ∇−ψ∇⋅ψ∇⋅ℑ+
r rB B

dxdxx .2
AAA A  

In order to compute ,2J  we note that 

 [ ( ) ( )]( )∑
=

ψ+ψ∂ψ∂−ψ∂
n

kj
kkkjjkj iAAAx

1,
 

( ) ( ) ( ) ( )∑
=

ψ∇⋅ψ∇⋅−ψ∇⋅+ψ∇ψ=
n

kj
kjjk xxxB

1,

2 .AAAA AA  

Therefore, we have 

( ){ } ( ) ( )∫ ∫ ψ∇⋅ψ∇⋅ℑ+ψ⋅ψ∇ℑ=
r rB B

dxxdxxBJ .2 AAA A  

Thus we see that 

 ( ) ( )∫ ∫∂ ⎭
⎬
⎫

⎩
⎨
⎧

ψψ−ψ∇⋅+ψ∇−=′
r rB B

rdSfr
xdxr

nrI 22
2

2 22
AA  

 ( ) ( ){ }∫ ∫ ψ⋅ψ∇ℑ−ψψ⎟
⎠
⎞⎜

⎝
⎛ ψ∇⋅ℜ+

r rB B
dxxBrdxfr

x .22 2
AA  (4.3) 

Step 2. We show that there exists 0r  depending only on ∞f  and n such that for 

any Ω∈0x  and for all 00 rr ≤<  with ,ΩrB  

 
( )( )∫ ∫∂ ψ≤ψ

0 0
.22

xB xB
r

r r
dSrdx  (4.4) 

We shall prove that (4.4) holds. We may assume that .00 =x  Multiplying (1.1) by 

( )ψ− 22 xr  and integrating over ,rB  we have 

( ) ( ) ( )∫ ∫ ψ−ψ=ψ−ψ∇−
r rB B

dxxrfdxxr .2222222
A  
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By the integraton by parts, the left hand side is equal to 

 (( ) )∫ ψ−∇⋅ψ∇ℜ
rB

dxxr 22
AA  

( ) ( )∫ ∫ ψ∇⋅ψℜ−ψ∇−=
r rB B

dxxdxxr .2222
AA  

Here we note 

 ( )∫ ψ∇⋅ψℜ
rB

dxx A2  

{ ( ) }∫ ψ−ψ=
rB

dxnx 22div  

∫ ∫∂
ψ−ψ⋅=

r rB B
r dxnxdSr

x .22  

Therefore, we see that 

 ( )∫ ψψ
rB

dxfr 222  

( ) ( )∫ ψ−ψ≥
rB

dxxrf 2222  

( )∫ ∫ ∫∂
ψ+ψ−ψ∇−=

r r rB B B
r dxndSrdxxr 22222

A  

∫ ∫∂
ψ+ψ−≥

r rB B
r dxndSr .22  

From this inequality, we have 

[ ( )]∫ ∫∂
ψψ−≥ψ

r rB B
r dxfrndSr .2222  

Choose 00 >r  so that .1
0

∞

−≤ f
nr  Then, for any 00 rr ≤<  with ,ΩrB  

∫ ∫∂ ψ≤ψ
r rB B

rdSrdx .22  

Step 3. Let 0≢ψ  in Ω and 0r  be as in Step 2. Then for any 00 rr ≤<  with 
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( ) ,0 ΩxBr  ( ) .0,0 >rxH  In fact, if ( ) 0,0 =rxH  for some ,0 0rr ≤<  then 

0≡ψ  on ( ).0xBr∂  By Step 2, we see that 0≡ψ  in ( ).0xBr  Then it follows from 

the unique continuation theorem of Aronszajn [5] that 0≡ψ  in Ω. 

Assume that 00 =x  as before and define 

( ) ( ) ( ) ( ){ }{ }.,1max;,0 000 rMrMrrrJ >∈=  

If ( ),0rJr ∈  then we have ( ) 0>rI  and ( ) ( ).rrIrH <  Therefore, it follows from 

Step 2 that 

 ( ) ( )∫ <≤ψ
rB

rIrrrHdx .22  (4.5) 

We shall show that 

Claim. There exists a constant 0>λ  depending only on ,∞f  ( ),Ω∞LB  Ω 

and n such that 

( ) ( )rMrM λ−≥′   for all  ( ).0rJr ∈  

In fact, since 

( ) ( ) ( )
( )

( ) ( )
( )

,2rH
rHrrI

rH
rIrrIrM

′
−

′+=′  

it follows from (4.2) and (4.3) that 

 ( )
( )

( )
( )

( )
( )rH
rI

rrI
rI

rM
rM 21 −−

′
=

′  

( ) ( )∫ ∫∂ ψ∇⋅+ψ∇−=
r rB B

rdSr
x

rIdxr
n

rI

2
2 221

AA  

( ) ( )∫∂ ψψ−
rB

rdSfrI
221  

( ) ( )∫ ψψ⎟
⎠
⎞⎜

⎝
⎛ ψ∇⋅ℜ+

rB
dxfr

x
rI

22
A  

( )
( )
( )∫ −−ψ⎟

⎠
⎞⎜

⎝
⎛ ⋅ψ∇ℑ−

rB rH
rI

rdxr
xBrI

212
A  
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( ) ( ) ( )∫ ∫ ψψ+ψ∇−
r rB B

dxfrrIdxrrI
222 11

A  

( ) ( )∫ ∫∂ ψ∇⋅+ψ∇−=
r rB B

rdSr
x

rIdxrrI
n 2

2 23
AA  

( )
( ) ( ) ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

ψψ−ψψ+− ∫ ∫∂ ∂r rB B
rdSfdxfrrIrH

rI 2222112  

( ) ( )∫ ψψ⎟
⎠
⎞⎜

⎝
⎛ ψ∇⋅ℜ+

rB
dxfr

x
rI

22
A  

( ) ∫ ψ⎟
⎠
⎞⎜

⎝
⎛ ⋅ψ∇ℑ−

rB
dxr

xBrI .2
A  (4.6) 

Here from the definition of ( )rI  and the Schwarz inequality, 

( ) ∫ ∫∂ ∂
ψ∇⋅ψ≤

r rB B
rr dSr

xdSrI .
2

22
A  

Therefore 

( )
( )
( )∫∂ −ψ∇⋅

rB
r rH

rIdSr
x

rI
22 2

A  

( ) ( ) ( ) .02 2
2

2 ≥⎥
⎦

⎤
⎢
⎣

⎡
−ψ∇⋅ψ= ∫ ∫∂ ∂r rB B

rr rIdSr
xdSrIrH A  

By Step 2 and the fact that ( ),0rJr ∈  we see that 

( ) ( ) ( )∫∂ ∞∞ ≤≤ψψ
rB

r frrIrHfdSf .
22  

We estimate the last two terms in (4.6). By using the Schwarz inequality and (4.5), 

 ( )∫ ψψ⎟
⎠
⎞⎜

⎝
⎛ ψ∇⋅ℜ

rB
dxfr

x 22 A  

∫ ψψ∇≤ ∞
rB

dxf A2  

⎭
⎬
⎫

⎩
⎨
⎧

ψ+ψ∇≤ ∫ ∫∞
r rB B

dxdxf 22
A  
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( ) ( ( ) )
⎭
⎬
⎫

⎩
⎨
⎧

ψ+ψ+≤ ∫∞
rB

dxfrIf 22 1  

( ){ ( ) }.11 2rfrIf ++≤ ∞∞  

Similarly, we have 

 ( )∫ ψ
⎭⎬
⎫

⎩⎨
⎧ ⋅ψ∇ℑ

rB
dxr

xB A2  

( )∫ ψψ∇≤ Ω∞
rBL dxB A2  

( ) ( ){ ( ) }.11 2rfrIB L ++≤ ∞Ω∞  

Thus since ,3≥n  we get 

( )
( ) ( ) [ ( ) ( ) ( ){ ( ) }2111 rfrIffrrIfrrIrIrM
rM

∞∞∞∞ ++−+−≥
′  

 ( ) ( ){ ( ) }]211 rfrIB L ∞Ω ++− ∞  

( ( ) )[ ( ) ] ,112 2 λ−≥+++−−= ∞Ω∞∞ ∞ rfBfrf L  

where 

( ( ) )[ ( ) ].112 2
00 rfBffr L ∞Ω∞∞ ++++=λ ∞  

Since ( ),0rJr ∈  ( ) .1>rM  Thus the claim holds. 

Step 4. Define ( ) ( ).ˆ rMerM rλ=  Then by Step 3, we see that 

( ) ( )( ) 0ˆ ≥′+λ=′ λrerMrW   in  ( ).0rJ  

If ( )ba,  is a constituent interval of ( ),0rJ  then we see that ( ) ( ){ }.,1max 0rMbM =  

Since ( )rM̂  is monotone increasing in ( ),, ba  for any ( ),, bar ∈  ( ) ( )bMrM ˆˆ ≤  

{ ( )}.,max 000 rMee rr λλ≤  On ( ) ( ),\,0 00 rJr  we also have the same inequality. Thus 

we see that for any ,0 0rr ≤<  

 ( ) ( ) { ( )},,max:ˆ
03 00 rMeecrMrM rr λλ=≤≤  (4.7) 

where 3c  depends only on ,∞f  ( ),Ω∞LB  0r  and n. 
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In this stage, we can also prove that if 0≢ψ  in 1rB  with ,1 ΩrB  then ( )rH  

0>  for any 10 rr ≤<  without using the unique continuation theorem [5]. In fact, 

suppose it were false. Then there exists 120 rr ≤<  such that ( ) .02 =rH  Since 

( ) ,3
recrM λ−≤  ( ) ( ) .3 rrHcrI ≤  Therefore, by (4.2), 

( ) ( ) ( ) ( ) ( ).2121
3cnr

rHrIrHr
nrH +−≤+−=′  

If we choose 00 >r  so that { ( ) },1,1min0 ∞−≤ fnr  then ( ) ( ) ,rrkHrH ≤′  

where .21 3cnk +−=  Thus 

( ( )) ( ) ( ) .0≤⎟
⎠
⎞⎜

⎝
⎛ −′=′ −− rHr

krHrrHr kk  

This implies that for any ,12 rrr ≤≤  ( ) ( ) .022 =≤ −− rHrrHr kk  Hence ( ) 0=rH  

for any .12 rrr ≤≤  In particular, we have 

∫∂ =ψ
1

1 .02

rB
rdS  

By Step 2, we get ∫ =ψ
1

.02

rB
dx  Thus we get 0≡ψ  in .1rB  This is a 

contradiction. 

Now since ( ) ( ) ( ),ˆ1 rHrMerrI rλ−=  it follows from (4.2) that 

 ( )
( ) ( ).ˆ21 rMerr

n
rH
rH rλ−+−=

′  (4.8) 

From this equality, we have 

( ) ( )
( ) ( ).ˆ21log 1 rMerr

n
rH
rH

r
rH r

n
λ−

−
=−−

′
=

′
⎟
⎠
⎞

⎜
⎝
⎛  

For 20r≤ρ  with ,2 ΩρB  integrate from ρ to 2ρ. Then we get 

( )
( )

( )∫
ρ

ρ

λ−
−

≤=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ

ρ 2
31 .2log2ˆ2

2
2log cdrrMerH

H r
n  

Thus we have 

( ) ( ) ( ),4242 13 ρ=ρ≤ρ − HHH Nnc  
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where ( ) 213 −+= ncN  depends only on ,∞f  ( ),Ω∞LB  ψ, n. That is to say, 

∫ ∫
ρ ρ∂ ∂

ρρρ Ω≤ρ<ψ≤ψ
2

.with20allfor4 20
2

2
2

B B
N BrdSdS  

When 20rR ≤  with ,2 ΩRB  integrating this inequality from 0=ρ  to ,R=ρ  

we get 

 ∫ ∫ ψ≤ψ
R RB B

N dxdx
2

.4 22  (4.9) 

This inequality holds for the case 0≡ψ  in .2RB  

Step 5. Let 0≢ψ  in Ω. In (4.7) and (4.9), the constants 3c  and N in fact 

depend on .0x  We must show that the constants are independent of .0x  In order to 

do so, it suffices to prove that for fixed 00 rr ≤<  with ( ) ,0 ΩxBr  

 ( )
( )

( ) .,sup~
0

0
∞<=

Ω
rxMrM

xBr
 (4.10) 

We may assume that ( ),2 Ω∈ψ L  ( )Ω∈ψ∇ 2LA  and .∞<∞f  Therefore, since 

( )
( )

( )
{ ( ) }

( )∫ ψψ−ψ∇=
ΩΩ 000

222
0 sup,sup

xBxBxB rrr
dxfrxI A  

 ( ) ( ),22 Ω∞Ω ψ+ψ∇≤ LL fA  

it suffices to prove that for any fixed ,0 0rr ≤<  with ( ) ,0 ΩxBr  ( ) Ω0inf xBr  

( ) .0,0 >rxH  Since ( )rxH ,0  is continuous in ,0x  it suffices to prove that 

 ( ) 0,0 >rxH  as long as ,0 0rr ≤<  ( ) .0 ΩxBr  (4.11) 

Suppose that (4.11) were false. Then there exists 010 rr ≤<  and Ω∈0x  such that 

( ) Ω01 xBr  and ( ) .0, 10 =rxH  Then repeating the proof of Step 4, we get 0≡ψ  

in ( ).01 xBr  By the doubling property or the unique continuation theorem, we have 

0≡ψ  in Ω. Thus (4.11) holds. If we put { ( )}03
~,1max0 rMec rλ=  and += 3cN  

( ) ,21−n  3c  and N are depending only on ,∞f  ( ),Ω∞LB  ψ, Ω but independent 

of .0x  This completes the proof of Lemma 4.1. ~ 
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Proof of Theorem 1.1. (i) follows from Lemma 4.1. (ii) is a result of the 
doubling property or the unique continuation theorem. Here we shall prove (ii) using 
the doubling property. Assume that ψ vanishes of infinite order at ,0 Ω∈x  i.e., for 

any integer ,0≥m  

( )
( )∫ →=ψ +

0
.0as2

xB
mn

R
RROdx  

We may assume that 00 =x  as before. We simply put Nc 42 =  and choose 00 >R  

so that .0 ΩRB  Then using the doubling property, we have 

 ∫ ∫ ψ≤ψ
0 20

2
2

2

R RB B
dxcdx  

∫ ψ≤
kR

B
k dxc

20

2
2  

,1

200
0

2

2
22 ∫ ψ=

α
α

kRk
k

B
R

R
k dx

B
Bc  

where kR
B

20
 is the volume of ,

20
kR

B  and 0>α  is to be chosen so that 

,122 =α−nc  i.e., ( ).2loglog 2 nc=α  Then 

,022
0

ααα ω= n
nR

k RBc k  

where nω  is the volume of the unit sphere .1B  Therefore, we have 

 ∫ ∫ ψω≤ψ
α

αα

0 200

2

2
0

2 1

R kRkB B
R

n
n dx

B
Rdx  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ω=

+

α
αα

mn

k
R

n
n

RO
B

R
k 2

1 0

2
0

0

 

,
2

0
0

mnn

k
n

n
R

RC
++α−

αα ⎟
⎠
⎞

⎜
⎝
⎛ω≤  

where C is a constant independent of k. Thus if we choose 0>m  large enough and 
let ,0→k  we see that 0≡ψ  in .0RB  Since Ω is arcwise connected, this implies 
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0≡ψ  in Ω. We can also use the unique continuation theorem of [5]. This completes 

the proof of Theorem 1.1. 

Lemma 4.2. If the conditions of Theorem 1.1 hold and if ( ),;1 CΩ∈ψ C  then 

for any ( ) ( ){ },0;0 =ψΩ∈=ψ∈ xxx N  

( )
( ) 1

,
,suplim

0
0

0
=

→ rxN
rxM

r
 

and the limit holds uniformly in ( ).0 ψ∈ Nx  Moreover, there exists 03 >c  

depending only on ,∞f  ( ),Ω∞LA  ( ),Ω∞LB  ψ and n such that for any 

20 0rr ≤<  with ( ) ,02 ΩxB r  where 0r  is as in Lemma 4.1, 

( ) ., 30 crxN ≤  

Proof. As before, we may assume that .00 =x  We see from (4.4) that 

( ) { ( ) }∫ ψψ−ψ∇=
rB

dxfrI 222
A  

{( ) }∫ ψ+ψ+ψ∇≤ ∞
rB

dxf 22A  

( )
( )∫ ∫ ψ⎥⎦

⎤
⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛ ++ψ∇+≤ ∞Ω∞

r rB BL
dxfrdxr 222 111 A  

( ) ( ) [ ( )
( )

] ( ).11 2 rHrrfrDr
L Ω∞ ∞++++≤ A  

On the other hand, we have 

( ) ∫ ψ∇=
rB

dxrD 2  

( )∫ ψ+ψ∇≤
rB

dx2AA  

( )
( )∫ ∫ ψ⎟

⎠
⎞⎜

⎝
⎛ ++ψ∇+≤

Ω∞
r rB BL

dxrdxr 222 111 AA  

( ) ( ( ) ) ( )⎢
⎣

⎡
ψψ+ψψ−ψ∇+= ∫ ∫

r rB B
dxfdxfr 222221 A  
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( ) ⎥
⎦

⎤
ψ+ ∫Ω∞

rBL dx
r

21 A  

( ) ( ) [
( )

( ) .1 2
⎭⎬
⎫

⎩⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +++≤

Ω∞ ∞ rHrfrIr
L

A  

Thus we have 

( ) ( ) [
( )

] ( ).
1

2 rHrf
r

rDrI
L Ω∞ ∞+−

+
≥ A  

Therefore, we have 

( )
( ) [

( )
]2

1
1

Ω∞ ∞+−
+ L

rfr
rH
rrD

r
A  

( )
( ) ( ) ( )

( ) [
( )

].1 2
Ω∞ ∞+++≤≤

L
rfr

rH
rrDr

rH
rrI A  

This shows that 

( ) [
( )

]2
0,

1
1

Ω∞ ∞+−
+ L

rfrrxN
r

A  

( ) ( ) ( ) [ ( )
( )

].1,1, 2
00 Ω∞ ∞++++≤≤

L
rrfrrxNrrxM A  (4.12) 

In particular, using Lemma 4.1, we see that 

( ) ( ) ( ) ( )[
( )

] ,1,1, 3
2

00 crfrrrxMrrxN
L

≤++++≤
Ω∞ ∞A  (4.13) 

where 3c  depends only on ,∞f  ( ),Ω∞LA  Ω, ( )Ω∞LB  and n. Hence the second 

conclusion of Lemma 4.2 holds. 

Claim. For any ( ),0 ψ∈ Nx  ( ) .1,suplim 00 ≥→ rxMr  

Suppose that it were false. Then there exists ( ),0 ψ∈ Nx  01 >r  and 1<c  

such that ( ) crxM <,0  for all .0 1rr ≤<  Put ( ).,dist2 02 Ω∂= xr  Similarly as 

Step 4 in the proof of Lemma 4.1, we have 

 ( )( ) ( )
( ) ( )( ).,211

,
,,log 0

0
0

0 rxMn
rrxH

rxHrxH +−=
′

=′  (4.14) 
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Integrating (4.14) from r to ,1r  we have 

( )
( )

( ) ( ) ,log21,21
,
,log

1 10
0

10 ∫ ⎟
⎠
⎞

⎜
⎝
⎛+−≤

+−
=

r

r r
rcndt

t
txMn

rxH
rxH  

where c is a constant as in Lemma 4.1. Thus we have 

( ) ( ) .,,
21

1
100

cn

r
rrxHrxH

+−

⎟
⎠
⎞

⎜
⎝
⎛≥  

Since ( )C;1 Ω∈ψ C  and ( ),0 ψ∈ Nx  by the mean value theorem, 

( ) ( ) ( )( ) ( )10000 <θ<−θ+ψ∇⋅−=ψ xxxxxx  

,2 rcr≤  

where ( ) .max 22 , ψ∇= ≥Ω∂ rxdrc  Therefore, we have 

 ( )
.1, 121122

11
0

22
∞<=≤ −−−

++
n

r
nn

rnn ScrSrc
rr

rxH  (4.15) 

On the other hand, since 

( ) ( ) ,1,, 21

1
1021

0
cn

cn r
rxH

r
rxH +−

+− ⎟
⎠
⎞

⎜
⎝
⎛≥  

we have 

( ) ( ) ( ).1,
, 12

21

1
101

0 −
+−

+ ⎟
⎠
⎞

⎜
⎝
⎛≥ c

cn

n rrrxH
r

rxH  

Since ,1<c  letting ,0→r  this leads to a contradiction to (4.15). Hence the claim 
holds. 

Since from (4.13), 

( )
( ) ( )

[ ( ) ]
( ) ,

,
11

,
,

00
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤ Ω∞ ∞

rxM
rfr

r
rxM
rxN LA

 

and from (4.12), 

( ) [ ( ) ] 20, crfrrxM L −≥+−≥ Ω∞ ∞A  

for some constant .02 >c  We note that we can choose the constant 2c  to be 
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independent of ( ).0 ψ∈ Nx  Thus we see that 

( )
( ) 1,

,suplim
0
0

0
≤

→ rxM
rxN

r
 

uniformly in ( ).0 ψ∈ Nx  On the other hand, we have 

( )
( )

( ) ( )
( )rxM
rrf

r
r

rrxM
rxN L

,
1

11
1

,
,

00
0 Ω∞ ∞++

+
−

+
≥

A
 

( ) ( ) .
1

11
1

2c
rrf

r
r

r
L Ω∞ ∞++

+
+

+
≥

A
 

Thus we see that 

( )
( ) 1

,
,suplim

0
0

0
≥

→ rxM
rxN

r
 

uniformly in ( ).0 ψ∈ Nx  This completes the proof of Lemma 4.2. ~ 

5. Structure of the Singular Sets 

In this section, we study the structure of the level sets, particularly the singular 
set of any solution of (1.1). First, we give an important theorem (cf. [10] and [22]). 

Theorem 5.1. Under the conditions of Theorem 1.1, let ( ) Ω02 xB R  with 

,0rR ≤  where 0r  is as in Lemma 4.1. Then there exists an integer 0≥m  such that 

we can write 

 ( ) ( ) ( ) ( ),00 xBxforxxxPx Rm ∈φ+−=ψ  (5.1) 

where mP  is non-zero complex-valued homogeneous, harmonic polynomial of 

degree m, and φ satisfies the following. For any ,1 qp ≤<  there exists a constant 

0>C  depending on m, p, q, ,∞f  ( ),Ω∞LA  ( )( )02
div xBL R

qA  and n such that 

for any ,20 Rr ≤<  

( ) qnmxxCx −+−≤φ 2
0  

and 

( )( ) ( )( )
( ) .222

00
pnqnm

xBLxBL CrrDr
r

p
r

p +−+≤φ∇+φ  
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For the proof, we need a lemma. 

Lemma 5.2. Under the hypotheses of Theorem 5.1, let ( )C;2,1
loc Ω∈ψ W  be any 

complex-valued weak solution of (1.1). Assume that there exists 0≥m  such that 

 ( ) ( ) .00 Ω⊂∈−≤ψ xBxallforxxCx R
m  (5.2) 

Then we have the following: 

 (i) For any ,1 qp ≤<  there exists a constant 1C  depending only on 

( ),Ω∞LA  p, q and n such that for any { },2,1min0 Rr ≤<  

( )( ) ( )( )00
22

xBLxBL r
p

r
p rDr ψ∇+ψ  

{ ( )( )},div1
02

22
1 xBL

qnpnm
R

qrfrrC A−
∞

+ ++≤  

and 

( )( )
( ) ( ){ ( )( ) }.1div

020 1 ++≤ψΔ ∞
−+ frC xBL

qnpnm
xBL r

q
r

p A  

(ii) When m in (5.2) is a non-negative integer, there exists a complex-valued 
homogeneous, harmonic polynomial mP  of degree m such that 

( ) ( ) ( ) ( ),00 xBxforxxxPx Rm ∈φ+−=ψ  

where φ satisfies 

( ) ,2
02

qnmxxcx −+−≤φ  

where 2c  depends only on p, q, m, ,1C  ,∞f  ( )( )0
div xBL R

qA  and n. 

Proof. The proof is essentially due to [22]. We may assume that .00 =x  By the 

hypothesis (5.2) and a simple computation, ( ) .1
pnm

BL rC
r

p +≤ψ  Using the 

Hölder inequality and (5.2), 

( ) ( )
( )

( ) pqpq
pqpq

q

B

q
BL

rr
r

p dxdx
−

−

⎭
⎬
⎫

⎩
⎨
⎧

ψ
⎭
⎬
⎫

⎩
⎨
⎧

≤ψ ∫∫ B

1
divdiv AA  

( ) ( )
( ).div

r
q BL

qnpnmCr A−+≤  
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From Lemma 3.1, 

( ) ( )r
p

r
p BLBL rDr ψ∇+ψ22  

{ ( ) ( ) ( ) ( )}r
p

r
p BLBL ifrC

22
div22 ψ−ψψ+ψ≤ A  

{ ( )}.div1
2

22
r

q BL
qnpnm rfrCr A−

∞
+ ++≤  (5.3) 

Since ( ) ,2 22 ψψ=ψ+ψ∇⋅+ψΔ− fi AA  it follows from (5.3) that 

( ) ( ) ( )r
p

r
p

r
p BLBLBL ψ+ψ∇⋅≤ψΔ 22 AA  

( ) ( ) ( ) ( )r
p

r
p BLBLf ψ+ψψ+ Adiv2  

( ) ( ) ( ) ( )r
p

r
p BLLBLL ψ+ψ∇≤

ΩΩ ∞∞
22 AA  

( ) ( ) ( )r
p

r
p BLBLf ψ+ψ+ ∞ Adiv  

( ) ( ){ [ ( ) ]r
q BL

qnqnqnpnm rfrrCr
2

div1 221 A−
∞

−−+ ++≤  

( ) ( )}r
q BL

qn fr
2

div1 A+++ ∞  

( ) ( ){ ( )}.div1
2r

q BL
qnpnm fCr A++≤ ∞

−+  

Thus (i) holds. For the proof of (ii), we apply [10, Lemma 3.3] with ,md =  

.2np >  If we put ( )02 >−=α qn  by the hypothesis of Theorem 1.1, we can 

write 

.2 α+−+=−+ p
nmq

n
p
nm  

By [10], there exists a homogeneous, harmonic polynomial mP  of degree m such 

that 
( ) ( ) ( ),0 xxxPx m φ+−=ψ  

and 

( ) ( ).in 00 xBxxCx r
m α+−≤φ  

This completes the proof of Lemma 5.2. ~ 

Proof of Theorem 5.1. As before, we may assume that .00 =x  Since from 
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Theorem 1.1 we see that ψ has no zero of infinite order, so there exists an integer 
0≥m  such that 

( ) ,in Ω≤ψ R
m BxCx  

and 

 ( ) .lim 10
∞=

ψ
+→ mx x

x  (5.4) 

By Lemma 5.2, there exists a complex-valued homogeneous, harmonic polynomial 

mP  of degree m such that 

( ) ( ) ( ),xxPx m φ+=ψ  

and 

( ) ,α+≤φ mxCx  

where .2 qn−=α  

Claim. .0≢mP  

Suppose that it were false. Then ( ) ( ).xx φ=ψ  By Lemma 5.2(i) with m replaced 

by ,α+m  we have 

( ) { ( ) }.1div
2

22
1 ++≤ψΔ ∞

α+−+ frC
r

q
r

p BL
pnm

BL A  

Again applying [10, Lemma 3.3] with ,md =  ,2α=ε  there exists a complex-

valued homogeneous, harmonic polynomial mP~  of degree m such that 

( ) ( ) ( )xxPx m φ+=ψ
~~  

and 

( ) .~ 2α+≤φ mxCx  

On the other hand, since ( ) ( ) ,2
1

α+≤φ=ψ mxCxx  ( ) .0~
≡xPm  Therefore, 

( ) ( ) .~ 2α+≤φ=ψ mxCxx  

Repeating this procedure we have ( ) 1+≤ψ mxCx  in .RB  This implies 

( ) .suplim 10
C

x
x

mx
≤

ψ
+→

 

This contradicts to (5.4). 
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Let .1 qp ≤<  Applying the pL  estimate to the equation ,ψΔ=φΔ  we have 

( ) ( ) { ( ) ( )},
22

2
0

22
r

p
r

p
r

p
r

p BLBLBLBL rCrDr ψΔ+φ≤φ∇+φ  

where 0C  depends on p, q, n and 

( ) .22
pnm

BL rC
r

p +α+≤φ  

From Lemma 5.2, 

( ) .3
2

2
pnm

BL rCr
r

p +α+≤ψΔ  

Thus we get 

( ) ( ) .4
2 pnm

BLBL rCrr
r

p
r

p +α+≤φ∇+φΔ  

This completes the proof of Theorem 5.1. 

Corollary 5.3. Under the conditions of Theorem 1.1, we have 

( ) ( ) .,lim,lim 00000
Ω∈=

→→
xeveryforrxNrxM

rr
 

Proof. We may assume that 00 =x  and ψ has the form (5.1). Since mP  is 

homogeneous of degree m, we see that .mm mPPx =∇⋅  Also, since mP  is harmonic, 

∫ ∫∂ ∂
∂

ℜ=∇
r rB B

r
m

mm dS
P

PdxP
ν

2  

∫∂ ⎟
⎠
⎞⎜

⎝
⎛ ∇⋅ℜ=

rB
rmm dSP

r
xP  

∫∂=
rB

rm dSPr
m 2  

( )∫ −
ω= −+

1
.222

nS
m

nm dSPmr  (5.5) 

Since we have 

∫ ∫∂
α+−+α+−+ ≤φ≤φ∇

r rB B
nm

r
nm rCdSCrdx ,, 212

1
22222  
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we see that from (5.5), 

( )
( )

( )∫
∫
∂

α+−+

α+−+

→→ +

+∇
=

r

r

B
nm

rm

B
nm

m

rr rOdSP

rOdxPr
rN

122

122

00
limlim  

.lim
2

2

0
m

dSP

dxPr

r

r

B
rm

B
m

r
=

∇
=

∫
∫
∂

→
 

On the other hand, since 

( )∫ +=
rB

nm
m rOdxP 22   and  ( )∫ α++=φ

rB
nmrOdx ,222  

taking the hypotheses into consideration, we have 

{ ( ) ( )∫ ∫ α+−++∇=ψψ−ψ∇
r rB B

nm
m rOdxPrdxfr ,122222

A  

and 

( )∫ ∫∂ ∂

α+−++=ψ
r rB B

nm
rmr rOdSPdS .1222  

Therefore, we have 

( )
{ ( ) }

∫
∫

∂

→→ ψ

ψψ−ψ∇
=

r

r

B
r

B
rr dS

dxfr
rM

2

222

00
limlim

A
 

.lim
2

2

0
m

dSP

dxPr

r

r

B
rm

B
m

r
=

∇
=

∫
∫
∂

→
 ~ 

Remark 5.4. By Corollary 5.3, we can define the vanishing order of ψ at 
Ω∈x  by 

( ) ( ) ( ) ( ).,lim,lim
00

rxNrxMxx
rr →→ψ === OO  

Then from Corollary 5.3 and Lemma 4.1, we get 
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Corollary 5.5. Under the conditions of Theorem 1.1, the vanishing order 
( )xψO  of ψ is a non-negative integer-valued function in Ω and uniformly bounded 

from above. 

Define the level set ( )ψmL  of ψ for ...,2,1=m  by 

 ( ) { ( ) }.; mxxm =Ω∈=ψ ψOL  (5.6) 

Then the nodal set ( )ψN  and the singular set ( )ψS  have the decompositions as 

follows: 

( ) ( )∪
1

,
≥

ψ=ψ
m

mLN  

( ) ( )∪
2

.
≥

ψ=ψ
m

mLS  

Note that from Corollary 5.3 and Lemma 4.1, the sums are finite. 

Now we introduce the blow-up of ψ at any point in Ω. For any Ω∈y  and any 

00 rR <<  with ( ) ,2 ΩyB R  where 0r  is as in Lemma 4.1. Define 

( ) ( )

( )
( )

21
21

,

⎭
⎬
⎫

⎩
⎨
⎧

ψ

+ψ=ψ

∫∂
−−

yB
r

n
ry

r
dSr

rxyx  

for Rr <<0  and ( ).02Bx ∈  

From Theorem 5.1, there exists an integer ( ) 0≥= ymm  such that we can write 

( ) ( ) ( ),rxyxPrrxy m
m +φ+=+ψ  

where mP  is non-zero, complex-valued homogeneous, harmonic polynomial of 

degree m and φ satisfies 

( ) ( ),0, 2BxCrrxy m ∈≤+φ α+  

where .2 qn−=α  Since we can write 

( ) ( ) ( )
( )∫ ∫∂

α+−−
−

→+ω=ψ
yB S

m
m

m
r

n

r
n

rrOdSPrdSr
1

,0as22221  
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we have 

( ) ( ) ( ),2
,

α+=ψ rOxPx yry  

where 

( ) ( ) ,21
2

1 ⎭
⎬
⎫

⎩
⎨
⎧

=

∫ −nS
m

m
y

dSP

xPxP  

so we get 

( ) ( ) ( )∫ −
α=−ψ

1
2

,nS
yry rOdxxPx  

as .0→r  We note that ( ) .112 =−nSLyP  We call this non-zero complex-valued 

homogeneous, harmonic polynomial yy P=ψ :  the homogeneous blow-up of ψ at 

.Ω∈y  The following lemma is a easy result of homogeneity of yψ  which is found 

in [10]. 

Lemma 5.6. For every ,1≥m  the level set ( )ym ψL  of the homogeneous blow-

up yψ  of ψ at Ω∈y  is a real linear subspace of ,nR  and ( ) ≤ψ y1dimL 1−n  

and ( ) 2dim −≤ψ nymL  for .2≥m  

From this lemma, we can define 

( ) { ( ) ( ) }jy ymm
j
m =ψψ∈=ψ LLL dim;  

for 1...,,1,0 −= nj  if ,1=m  and 2...,,1,0 −= nj  if 2≥m  and 

( ) ( )∪
1

,
≥

ψ=ψ
m

j
m

j LN  

( ) ( )∪
2

.
≥

ψ=ψ
m

j
m

j LS  (5.7) 

Then clearly ( ) ( )∪ 1
0

−
=

ψ=ψ
n
j

jNN  and ( ) ( )∪ 2
0

.−
=

ψ=ψ
n
j

jSS  Here we shall prove 

that ( )ψjS  is countably j-rectifiable (for the notation of j-rectifiability, see Federer 

[7] or Mattila [19]). 
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Proposition 5.7. (i) For every ,2...,,1,0 −= nj  ( )ψjS  is on a countable 

union of j-dimensional 1C  manifolds. 

(ii) In particular case where ,2−= nj  ( )ψ−2nS  is on a countable union of 

( )2−n -dimensional α,1C  manifolds for some ( ).1,0∈α  

Proof. (i) It suffices to show that for every 2≥m  and ,2...,,1,0 −= nj  

( )ψj
mL  is on a countable union of j-dimensional 1C  manifolds. In fact, we will 

show that for any ( ),0 ψ∈ j
mx L  there exists ( ) 00 >= xrr  such that ( ) ∩ψj

mS  

( )0xBr  is contained in a (single piece of) j-dimensional 1C  graph. 

Choose ,0 0rr ≤<  where 0r  is as Lemma 4.1. Then we can write 

( ) ( ) ( ) ( ) ,, 000 Ω∈φ+−=ψ xBxxxxPx rx  

where 0xP  is a non-zero homogeneous, harmonic polynomial of degree m, φ satisfies 

( ) α+−≤φ mxxCx 0  and ( )00 : xmx Pl L=  is j-dimensional real linear subspace of 

.nR  As before, we may assume that .00 =x  For any sequence { } ( )ψ⊂∞
=

j
mkkx L1  

with 00 =→ xxk  ( ),0≠kx  define ,kk x=λ  .kkk xy λ=  Then 0→λk  as 

.∞→k  After passing to a subsequence, we may assume that 0yyk →  as .∞→k  

Then .10 =y  If we put 

( ) ( ) ( ) ,,
21

21

k
k

k
B

n
kk

yydS
k

k α
λψ

=ψ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ψλ=α ∫
λ∂

λ
−−  

( ) ( ),yy kkk λλ= AA  ( ) ( ( ) )22 yfyf kkk λψλ=  and ( ) ( ),2 yByB kkk λλ=  then kψ  

satisfies 

 ( ) .2
kkk yf

k
ψ=ψ∇− A  (5.8) 

Let 0>ρ  be fixed. Then we see that as ,∞→k  

( ) ( ) ,0
22

2 →λ=
ρλ

∞
ρ

∞
kBLkBLk ff  
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( ) ( ) ,0
22

→λ=
ρλ

∞
ρ

∞
kBLkBLk AA  

( ) ( ) ,0
22

2 →λ=
ρλ

∞
ρ

∞
kBLkBLk BB  

( ) ( ) .0divdiv
22

2 →λ=
ρλρ k

qq BLkBLk AA  

Thus we have 

 
( ) ( )

2
2

2
22

1
ρλρ

ψ
α

=ψ
kBLkBLk  

( ) ( )

( )
.

1
0

1
0

2

2

C
OdSP

OdxP

B
m
kx

m
k

B
kx

nm
k

≤
λ+λ

⎥
⎦

⎤
⎢
⎣

⎡
λ+ρλ

=

∫
∫

∂

α+

α+

 

Here the constant C can be chosen uniformly in .kλ  Therefore, applying Lemma 3.1 

with 2=p  to (5.8), there exists a constant C independent of k such that 

( ) ( )ρρ
ψ∇ρ+ψρ BLkBLkD 2222  

{ ( ) ( ) ( ) ( ) .div
2

2
2

2 2 CiyfC BLkkkkBLk ≤ψ−ψρ+ψ≤
ρρ

A  

Thus since { }kψ  is uniformly bounded in ( )ρBW 2,2  for any fixed ,0>ρ  passing 

to a subsequence (still denoted by { }),kψ  0ψ→ψk  weakly in ( )nW R2,2
loc  and 

strongly in ( )nW R2,1
loc  as .∞→k  We see that 0ψ  is harmonic and 0

0
xψ=ψ  

.0ψ=  We note that ( ).k
j
mkkk xy ψ∈λ= S  

Claim. ( ) ( ) .suplim00 myy kk k =≥ ψ∞→ψ OO  

In fact, choose 0>t  small enough, then as ,∞→k  

 ( )
( )
( )tyH

tyrI
tyM

k

k
k

k

k
k ,

,
,

ψ

ψ
ψ =  

{ }
( )

( )∫
∫

∂
ψ

ψ−ψ∇
=

kt

kt
k

yB
tk

yB
kkk

dS

dxfr

2

22
A
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( )

( )

( ).,02
0

2
0

0

0

0 tyM
dS

dxr

yB
t

yB

t

t
ψ

∂

=
ψ

ψ∇
→

∫
∫

 

From the proof of Lemma 4.1, there exists ,0r  λ independent of k such that for any 

00 rtr ≤≤<  and k, 

( ) { ( )}.,,1max, tyMeryMe k
t

k
r

kk ψ
λ

ψ
λ ≤  

If we fix k, t and let ,0→r  we have 

( ) ( ) { ( )}.,,1max,lim
0

tyMeryMeym k
t

k
r

rk kkk ψ
λ

ψ
λ

→ψ ≤== O  

Next, for fixed t, letting ,∞→k  we have 

{ ( )}.,,1max 00 tyMem t
ψ

λ≤  

Finally, letting ,0→t  we have 

{ ( )}.,1max 00 ym ψ≤ O  

Since ,2≥m  we see that ( ) .00 my ≤ψO  Thus the claim holds. 

From the uniqueness of limit, for original sequence { },ky  

( ) ( ).suplim 00 yym k
k k ψψ

∞→
≤= OO  

On the other hand, since 0ψ  is non-zero homogeneous polynomial of degree m, 

( ) .00 my ≤ψO  Thus ( ) my =ψ 00O  and so .00 0 lly x =∈  From this, we have 

 ,as0,Angle 00 ∞→→ klxx xk  (5.9) 

where 0,Angle 0 xk lxx  denotes the angle of the vector 0xxk  and the subspace 

.0xl  Therefore, for any ( )ψ∈ j
mx S0  and any ( ),1,0∈ε  there exists ( )ε= ,0xrr  

0>  such that 

 ( ) ( ) ( ) ( ),000 xrr
j
m lCxBxB ε⊂ψ ∩∩L  (5.10) 
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where 

( ) { ( ) }.,dist; 00 00 xzlxzzlC x
n

x −ε≤−∈=ε R  

That is to say, 

( ) ( ) ( ) .00 ∅=ψ ε
C

xr
j
m lCxB ∩∩L  

Let ,kP  0P  be blow-up polynomials of ψ at ,kx  ,0x  respectively. Then from [11, 

Lemma 4.1], 0PPk →  uniformly in ( )( ).01BCm  Since 

( ) { ( ) ,10for0; −≤α≤=∈== α mxPDxPl kkk x
n

x
j
mx RL  

there exists β with m=β  such that ( ) },0≠β xPD kx  

0xx ll k →  as subspaces in ,nR  i.e., if we denote the orthogonal projections from 

nR  to kxl  and 0xl  by 
kxlΠ  and ,

0xlΠ  respectively, then ( ) −Π=
kxk lxx lld :, 0  

0
0

→Π xl  as ,∞→k  where ⋅  is the usual operator norm for linear maps. Here 

we note that r in (5.10) can be chosen uniformly with respect to ( )ψ∈ j
mx L  in a 

neighbourhood of 0x  (cf. [11, Step 2 in the proof of Theorem 5.1]). That is to say, 

for any ( )ψ∈ j
mx L0  and any ( ),1,0∈ε  there exists ( ) 0, 0 >ε= xrr  such that 

( ) ( ) ( ) ( )xrr
j
m lCxBxB ε⊂ψ ∩∩L   for all  ( ) ( ).0xBx r

j
m ∩ψ∈ L  

Therefore, by [19, Lemma 15.13], if ε is small enough, ( ) ( )xBr
j
m ∩ψL  is contained 

in a j-dimensional Lipschitz graph, i.e., there exists a Lipschitz function 00: xlxf +  

nR→  such that 

 (( ) ( )) ( ) ( ).000 0 xBxBlxf r
j
mrx ∩∩ ψ⊃+ L  (5.11) 

We may assume that 00 =x  and choose the coordinate system ( )xxx ′′′= ,  such 

that 

( ) .,, 00 00
jn

x
jn

x
n xlxxlx −− ∈′′+∈′⊕+= RRR  
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Then by (5.9), we see that ( )xfx ′=′′  is differentiable at 0x′  and ( ) ,00 =′xDf  

where ( )., 000 xxx ′′′=  Since 0x  is arbitrary in ( ) ( ),0 uxB j
mr L∩  ( )xf ′  is 

differentiable near .0x′  Again using (5.9), when ( ) ( )000 ,, xxxxxx kkk ′′′=→′′′=  in 

( ) ( ),0 uxB j
mr L∩  0xxk llx k →+  as linear subspaces in ,nR  so we have ( )kxDf ′  

( ) 00 =′→ xDf  as .∞→k  Thus f is 1C  function near .0x′  

Finally, we show that for ,2≥m  ( )ψ−2n
mL  is on a countable union of ( )2−n -

dimensional α,1C  manifolds for some .10 <α<  

Let ( )ψ∈= −2
00 n

mx L  and 00 xx P=ψ  be the homogeneous, harmonic blow-

up of ψ at 0x  of degree m. Then ( ) 2dim 0 −= nPxmL  and ,0 φ+ψ=ψ x  

( ) α+≤φ mxCx  with .2 qn−=α  Thus we can write ( )0
2

x
n PL+= RR  and 

0xψ  is a harmonic polynomial of degree m on .2R  Using the polar coordinate 

( )θ,r  in ,2R  we can write 

θ=ψ mrm
x cos0  

for some rotation. Denote ( ),, 21 xxx =  where ,21 R∈x  .22 −∈ nx R  For any ∈x  

( )ψ−2n
mS  close to ,0x  we have ( ) 0=ψ∇ x  as .2≥m  Thus ( )xxxx

ψ∇−=ψ∇ 01  

and ( ) ( )111
001 xmxx xxx

ψ=ψ∇⋅  as 0xψ  is homogeneous of degree m. Here we 

need the following lemma due to [12]. 

Lemma 5.8. There exists a constant 0>C  such that 

( ) ,02
1

0 Ω∈−≤φ∇ α+− xBxforxxC R
m  

where .2 qn−=α  

Proof. We may assume that .00 =x  By Lemma 5.2, for any ,1 qp ≤<  

 ( ) ,2 pnm
BL Cr

r
p +α+−≤ψΔ  (5.12) 

where .2 qn−=α  Let Γ be the fundamental solution of the Laplace operator Δ. 
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Define 

( ) ( ) ( )∫ <ξ
ξξψΔξ−Γ=φ

R
dxx ,~  

( ) ( )∑
=β

β
β

β
ξ−Γ=ξΓ

k
k

xDx ,
!

,  

( ) ( ) ( )∫ ∑<ξ =

ξξψΔξΓ=
R

m

k
k

m dxxP
0

.,~  

Then by the construction, we see that 

( ) ( ) ( ) ( ) ( ) ( )∫ ∑<ξ =

ξξψΔ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξΓ−ξ−Γ=−φ=φ

R

m

k
k

m dxxxPxx .,~~

0
 

Here we note that 

 ( ) ,2−β+
β ≤Γ nx

CxD  (5.13) 

where ( )., β= nCC  We shall show that ( ) α+−≤φ∇ 1mxCx  in .RB  We simply 

write .ψΔ=f  We put 

( ) ( ) ( ) ( )∫ ∑<ξ =

ξξ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξΓ∂−ξ−Γ∂=φ∂

R

m

k
kxxj dfxxx jj

0
,  

( ),
3

1
∑
=

=
l

l xJ  

where 

( ) ( ) ( )∫ <ξ
ξξξ−Γ∂=

x
x dfxxJ j2

1 ,  

( ) ( ) ( )∫ ∑<ξ =

ξξξΓ∂−=
x

m

k
kx dfxxJ j2 1

2 ,,  

( ) ( ) ( ) ( )∫ ∑<ξ< =

ξξ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξΓ∂−ξ−Γ∂=

Rx

m

k
kxx dfxxxJ jj2 0

3 .,  
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Put ( ).1−=′ ppp  Then by (5.13) and the Hölder inequality, we have 

( ) ( )∫ ≤ξ −
ξ

ξ−

ξ
≤

x n d
x

fxJ
2 11  

( ) ( ) .1
1

2

1

2 1

p

x

p
p

x pn dfd
x ⎭

⎬
⎫

⎩
⎨
⎧

ξξ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ξ
ξ−

≤ ∫∫ ≤ξ

′

≤ξ ′−
 

If ,ξ−=ζ x  then x3≤ζ  in the integration domain. By (5.12), we have 

( ) .1
1

α+−≤ mxCxJ  

Next, by (5.13) and the Hölder inequality, 

 ( ) ( )∑ ∫
= ≤ξ −+

− ξ
ξ

ξ
≤

m

k x kn
k dfxxJ

1 2 2
1

2  

( )∑ ∑∫
=

∞

= ≤ξ< −+
− ξ

ξ

ξ
=

m

k i xx kn
k

ii
dfx

1 0 222 2
1  

( )∑ ∑ ∫
=

∞

=

′

≤ξ< ′−+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ξ

ξ≤
m

k i

p

xx pkn
k

ii
dx

1 0

1

222 2
1  

( )
p

x

p
i

df
1

22 ⎭
⎬
⎫

⎩
⎨
⎧

ξξ× ∫ ≤ξ
 

( )

∑ ∑
=

∞

=

−α+−′+−+−
− ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛≤

m

k i

pnm

i

pnkn

i
k xxx

1 0

22
1

22
 

∑∑
=

∞

=

α+−
α+−

α+− ≤⎟
⎠
⎞

⎜
⎝
⎛=

m

k i

m
i

km
m xCx

1 0

11 .
2

1  

Finally, we estimate ( ).3 xJ  Since 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξΓ−ξ−Γ∂ ∑

=

m

k
kx xxj

0
,  

( )∑
+=β

β
β

β
θ−ξΓ∂=

1
!

m
x

xxDj  



SEMI-LINEAR ELLIPTIC EQUATION 175 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

θ−ξ
+

θ−ξ
≤ −++

+

1

1

mn

m

mn

m

x
x

x
xC  for some .10 <θ<  

Since ,2ξ≤x  .2ξ≥θ−ξ x  Therefore, we have 

( ) ( )
⎪⎩

⎪
⎨
⎧

ξ
ξ

ξ
≤ ∫ <ξ< +

+

Rx mn
m dfxCxJ

2

1
3  

( )
⎪⎭

⎪
⎬
⎫
ξ

ξ

ξ
+ ∫ <ξ< −+Rx mn

m dfx
2 1  

 { ( ) ( )},: 2,31,3
1 xJxxJxC mm += +  

where 

( ) ( )∫ <ξ< + ξ
ξ

ξ
=

Rx mn dfxJ
2

1,3 ,  

( ) ( )∫ <ξ< −+ ξ
ξ

ξ
=

Rx mn dfxJ
2 12,3 .  

As the similar arguments as the estimate of ( ),2 xJ  we can see that 

( ) α+−≤ 2
1,3 xCxJ   and  ( ) .1

2,3
α+−≤ xCxJ  

This completes the proof of Lemma 5.8. ~ 

Since 0xψ  is a non-zero homogeneous polynomial in 2R  and 001 =ψΔ xx
 in 

,2R  it is easily seen that 

( ) 11
01

−≤ψ∇ m
xx

xCx  

for some 0>C  (cf. [12, Lemma 5.2]). From this and Lemma 5.8, we have 

( ) ( ) α+−− ≤φ∇=ψ∇≤ 1
1

111 11
01

m
xx

m xCxCxCx  

for some ,01 >C  i.e., ( ).11
2

1 −α+≤ mxCx  This implies that f in (5.11) is in fact 

a ( )1,1 −α mC  class function. Since ( )0xmm =  is bounded from above, this completes 

the proof of Proposition 5.7. ~ 
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Corollary 5.9. There exists the following decomposition of the singular set of ψ, 

( ) ( ) ( )ψψ=ψ GBS ∪  

with ( )( ) ,02 =ψ− BHn  where 2−nH  is the ( )2−n -dimensional Hausdorff measure, 

and ( )ψG  is on a countable union of α,1C  class ( )2−n -dimensional manifolds for 

some ( ).1,0∈α  Moreover, for any ( ),ψ∈ Gx  the ( )2−n -dimensional density 

function is equal to one, i.e., 

( )( ) .1,2 =ψΘ − xn G  

Proof. We put 

( ) ( )∪ 3

0
,

−

=
ψ=ψ

n

j
jSB  

( ) ( ).2 ψ=ψ −nSG  

Taking Proposition 5.7 into consideration and applying [7, Theorem 3.2.19], it 

suffices to check that ( )ψ−2nS  is 2−nH  measurable. Since ( )xψO  is an upper 

semi-continuous in Ω, 

( ) { ( ) }2;2 −≥Ω∈=ψ ψ
− nxxn OS  

is a closed set, so ( ) ( )ψ=ψ− GS 2n  is a Borel set. Since the Hausdorff measure is a 

Borel measure, ( )ψG  is 2−nH  measurable. ~ 

6. Structure of the Nodal Set 

In this section, we study the nodal set of non-trivial solution ψ of (1.1). We 
already saw that 

( ) { ( ) }1; ≥Ω∈=ψ ψ xx ON  

( )∪
1

.
≥

ψ=
m

mL  

Clearly, ( )ψ1L  is locally a ( )1−n -dimensional submanifold if ψ is 1C  function. As 
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before, we define 

( ) { ( ) ( ) }jy ymm
j
m =ψψ∈=ψ LLL dim;   for  1...,,1,0 −= nj  

and 

( ) ( )∪
1

.
≥

ψ=ψ
m

j
m

j LN  

Then we see that 

( ) ( )∪
1

0
.

−

=

ψ=ψ
n

j

jNN  

Then we have the following: 

Theorem 6.1. (i) ( )ψjN  is on a countable union of j-dimensional 1C  manifolds 

for .1...,,1,0 −= nj  

(ii) In particular, ( )ψ−1nN  is on a countable union of ( )1−n -dimensional 
α,1C  manifolds with .2 qn−=α  

Proof. (i) follows from the same arguments as the proof of Proposition 5.7. For 

the proof of (ii), let ( )ψ∈= −1
10 0 nx L  and P be the homogeneous blow-up of ψ at 

.00 =x  Then ( ) .1dim 1 −= nPL  If we write ( ),1 Pn L×= RR  P is a monomial 

of degree one in .R  We may assume that .1xP =  Thus we can write ( ) +=ψ 1xx  

( )xφ  in ΩRB  and ( ) α+≤ψ 1xCx  in .RB  If we write ( ) ×∈′= Rxxx ,1  

( ),1 PL  we see that .1
1

α+≤ xCx  As in the preceding section, it follows that 

( )ψ−1
1
nL  is on a ( )1−n -dimensional α,1C  graph. ~ 

We have the decomposition of the nodal set as in Section 5. 

Corollary 6.2. (i) We can decompose the nodal set of ψ as follows: 

( ) ( ) ( ),ψψ=ψ EDN ∪  

where ( )( ) 01 =ψ− DHn  and ( )ψE  is on a union of countable α,1C  manifolds. 
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(ii) For any ( ),ψ∈ Ex  

( )( ) ,1,1 =ψΘ − xn E  

where ( )( )xn ,1 ψΘ − E  is the ( )1−n -dimensional density function. 
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