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Abstract

An exact analytical solution to the Navier-Stokes solutions is con-

structed for an unsteady viscous incompressible flow governing the

motion of a monochromatic surface wave on deep water which satisfies

surface boundary condition on z = η, where η is an unknown a priori

surface. It is shown that the wave-induced motion on a viscous liq-

uid considered here falls in the class of irrotational flow in which the

viscous effects are important.

1. Introduction

Lamb [7, Section 349] considers the effect of viscosity on water waves.
In that article, he constructs an analytical solution for a viscous flow over
a monochromatic surface wave

η = a cos(kx± σt), ak � 1 (1.1)

where a is the wave amplitude, k is the wavenumber and σ is the angular
frequency.
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By neglecting the inertia terms in the Navier-Stokes equations and
assuming the elevation of the free surface is given by

η = −k

n
(A− iC)eikx+nt, (1.2)

where A and C are constants, and n is an integer he shows that since the
ratio

C

A
= ∓2νk2

σ
� 1 (1.3)

the motion is approximately irrotational with a velocity potential

ϕ = Ae−2νk2t+kz+i(kx±σt), (1.4)

where ν is the kinematic viscosity of the fluid.

In the footnote of the same article (p. 627) he shows the corresponding
vorticity is given by

ω = ∓2σkae−2νk2t+βz cos{kx± (σt + βz)}, (1.5)

where β = (σ/2ν)1/2 and a = kA/σ. Lamb argues that the vorticity di-
minishes rapidly from the surface downwards and ‘owing to the oscillatory
character of the motion, the sign of the vorticity which is being diffused
inwards from the surface is continually being reversed, so that beyond a
stratum of thickness comparable with 2π/β the effect is insensible, ...’.

The presence of a non-zero vorticity implies that the motion is rota-
tional. Thus, the question arises, what is the source of this vorticity?
To answer this question it is necessary to examine the manner in which
the viscosity of a viscous liquid affects the potential flow away from the
boundary-layer [12].

In this paper, we will construct an exact analytical solution to the vis-
cous, unsteady, two-dimensional, incompressible Navier-Stokes equations
governing the wave-induced motion over a monochromatic surface water
wave. The solution obtained here is another example of viscous potential
flow as was first pointed out by Joseph and Wang [5].

The main purpose of the present study is to construct a complimentary
model to that constructed originally by Miles [8] and use the above men-
tioned solution to determine the growth of monochromatic surface wave.
In a pioneering paper, Miles constructed a model for an inviscid lami-
nar parallel shear flow with a velocity profile U(z) over a two-dimensional
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surface wave with wavenumber k and wave speed c

z = a cos k(x− ct) ≡ η(x, t). (1.6)

In this model, he neglects non-linear effects (of second order in ka) and,
in addition, first order (in ka) perturbations in the Turbulent Reynolds
stresses. With these idealizations imposed, he derives an average momen-
tum flux, from shear flow to the surface wave

F = πρ(−U ′′W 2/kU ′)c. (1.7)

In (1.7), ρ is density of the air; primes indicate differentiation with re-
spect to z; the overbar is an average taken over an integral number of
wavelengths; and the subscript c implies evaluation at the critical layer,
z = zc, where

U(zc) = c. (1.8)

Miles determines the z-component of the wave-induced velocity, W (x, z)
from the following boundary-value problem

LW = (U − c)∇2W − U ′′W = 0, (1.9)

W (x, 0) = (U − c)(∂η/∂x), W (x,∞) = 0. (1.10)

He argued that the corresponding average energy flux Fc (being of second
order in the amplitude) implies an exponential wave growth. In his inviscid
laminar model the energy transfer is concentrated in the critical layer,
having infinitesimal thickness, and embeds the singularity of (1.9) due to
the neglect of both non-linear and diffusive effects.

The method to be described here, for the solution of unsteady Navier-
Stokes equations, is very ad hoc and fundamentally simple – although
not always simple to execute. The method relies on disregarding the
inviolate nature of the equation(s) to be solved. The equations are then
decomposed into parts, which are equated to a common factor, in such
a manner that a general solution (containing the appropriate number of
arbitrary functions) can be constructed for at least one part. The form
of the arbitrary function(s) is then obtained by means of the requirement
that the other part be satisfied.

Using this solution we will show that the wave-induced motion has ex-
actly zero vorticity. We will also use our analytical solution to construct
an alternative model for the transfer of energy from the wind to water
waves. The model constructed here is based on Miles’ critical-layer the-
ory in which the effect of turbulence is implicitly included through the
prescribed wind velocity profile.
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2. Exact Solution to the Navier-Stokes Equations

We consider the unsteady viscous incompressible flow of a monochro-
matic surface wave propagating in positive x-direction with speed c = σ/k.
The wave elevation, η, is given by

η(x, t) = a cos(kx− σt), ak � 1 (2.1)

where k = 2π/λ is the wave number, λ is the wavelength and σ is the
angular frequency.

The equations of motion are governed by the Navier-Stokes equations,
which in two dimensions (taking the z-axis vertically upwards), may be
expressed in dimensionless form as, (see Goldstein [3, p.121])

Ut + U Ux + W Uz = −Px + R−1Uxx + Uzz, (2.2a)

R−1(Wt + U Wx + W Wz) = −Pz + R−2Wxx + R−1Wzz, (2.2b)

Ux + Wz = 0, (2.2c)

where R is the Reynolds number.

As was stated in the introduction, the method of solution employed
here is very ad hoc in nature. The solution is obtained in the following
manner: we first construct a solution to the steady state counterpart of
equations (2.2) (reduced equations) by neglecting the x-variation in the
pressure. Having obtained such solution, U and W velocity components
are modified, through their arbitrary constants, so as to take into account
the unsteady nature of the full equations; the expression for the pressure
obtained for the reduced equations is not physical and hence discarded.
This is because this expression for the pressure is only a function of z and
the pressure for the full solution must vary with both x and z. Finally, the
modified solutions for U and W , obtained for the reduced equations, are
substituted into (2.2a) and (2.2b) to obtain expressions for the pressure
gradients x and z, respectively. Upon integrating these expressions and
matching the arbitrary functions of integration we obtain a full solution
to the unsteady Navier-Stokes equations (2.2).

Introducing the stream function Ψ defined by U = Ψz, W = −Ψx, and
neglecting the unsteady terms, equations (2.2) become

ΨzΨxz −ΨxΨzz = −Px + Ψzzz + R−1Ψzxx, (2.3a)

Pz + R−1(ΨxΨxz −ΨzΨxx + Ψxzz) = −R−2Ψxxx. (2.3b)
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We now set Px = 0 and split equation (2.3a) into two parts, namely

ΨzΨxz −ΨxΨzz = F (x, z,Ψ ,Ψx,Ψz,Ψzz,Ψxz,Ψxx), (2.4a)

Ψzzz + R−1Ψzxx = F (x, z,Ψ ,Ψx,Ψz,Ψzz,Ψxz,Ψxx) (2.4b)

in such a way that the general solution of at least one of these can be
developed. The form of the arbitrary functions is determined by requiring
that the other equation is also satisfied. There will then remain certain
arbitrary constants which we select in such a way that equation (2.3b) is
satisfied. Finally, we substitute the solutions in (2.2a) and (2.2b) and find
P(x, z, t) such that solutions satisfy (2.2a)-(2.2c).

It is clear that the choice made for F strongly influences the general
solution obtained, the labour involved and the final result.1 For our prob-
lem here the simplest choice namely F = 0 will suffice. With this choice
our system becomes

Px = 0, (2.5)

ΨzΨxz −ΨxΨzz = 0, (2.6)

Ψzzz + R−1Ψzxx = 0 (2.7)

and Pz is defined by

Pz = −R−2Ψxxx −R−1(ΨxΨzx −ΨzΨxx + Ψxzz). (2.8)

The general solution of equation (2.6) has the explicit form, with arbi-
trary functions $ and χ,

Ψ = $[z + χ(x)] (2.9)

although it is quite usual that the general solution is implicit. In such a
case the details of the computation are more complicated. Substituting
equation (2.9) into equation (2.7) we find, with ξ = z + χ(x) that

$′′′(ξ)[1 + α2(χ′)2] + α2$′′(ξ)χ′′(x) = 0, (2.10)

where α2 = R−1 and prime indicates differentiation with respect to x. To
eliminate the x dependence and thus determine χ, we set

1 + α2(χ′)2 = Aα2χ′′, (2.11)

where A is an arbitrary constant. Equation (2.11) has the solution

χ(x) = −A ln cos(R1/2x/A + C) + c1. (2.12)

1Other choices of F have also been employed. However, it is found that the only suitable choice,
leading to the desired form of solution which satisfies the boundary conditions, is F = 0.
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Then $ satisfies

$′′′ + A−1$′′ = 0

or
$(ξ) = Γ + γAξ + ε exp(−ξ/A). (2.13)

Finally we see that

Ψ(x, z) = Γ + γAz − γA2 ln cos(R1/2x/A + C)

+ εe−z/A cos(R1/2x/A + C), (2.14)

where Γ, γ, A, C and ε are arbitrary constants.

Now equations (2.5) and (2.8) are satisfied if we set γ = 0. Hence we
obtain

Ψ = Γ + ε exp(−z/A) cos(R1/2x/A + C), (2.15a)

U = −εA−1 exp(−z/A) cos(R1/2x/A + C), (2.15b)

W = εA−1R1/2 exp(−z/A) sin(R1/2x/A + C), (2.15c)

P = −1
2
(εA)−2 exp(−2z/A) + D. (2.15d)

3. Wave-induced Motion

Appealing to the restriction posed on the size of the wave (ka � 1)
we adopt the usual practice and linearize boundary conditions on z = η
and apply them instead on the free surface z = 0. Thus, the boundary
conditions to be satisfied are (c.f. Miles [9])2

W = −ηx, Ψ = η, on z = 0 (3.1a, b)

W → 0, as z →∞. (3.1c)

To determine the wave-induced velocities and pressure, we let ε =
a, A = R1/2k−1, C = −σt and Γ = 0 in (2.15), to obtain

Ψ = a exp(−kzR−1/2) cos(kx− σt), (3.2a)

U = −akR−1/2 exp(−kzR−1/2) cos(kx− σt), (3.2b)

W = ak exp(−kzR−1/2) sin(kx− σt), (3.2c)

P = −1
2
a−2k2R−1 exp(−2kzR−1/2) + D. (3.2d)

Clearly (3.2b) and (3.2c) satisfy the continuity equation (2.2c).

2In what follows all variables are made non-dimensional.
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Substituting (3.2b) and (3.2c) into (2.2a) we have

Px = akσR−1/2 exp(−kzR−1/2) sin(kx− σt)

or
P = −aσR−1/2 exp(−kzR−1/2) cos(kx− σt) + f(z). (3.3)

Substituting (3.2b) and (3.2c) into (2.2b), we get

Pz = akσR−1 exp(−kzR−1/2) cos(kx− σt)

+ a2k3R−3/2 exp(−2kzR−1/2)

or

P =− aσR−1/2 exp(−kzR−1/2) cos(kx− σt)

− 1
2
a2k2R−1 exp(−2kzR−1/2). (3.4)

Comparing (3.3) with (3.4) we see they are the same if

f(z) = −1
2
a2k2R−1 exp(−2kzR−1/2).

Hence the solution of the Navier-Stokes equations (2.2) is:

Ψ = a exp(−kzR−1/2) cos(kx− σt), (3.5a)

U = −akR−1/2 exp(−kzR−1/2) cos(kx− σt), (3.5b)

W = ak exp(−kzR−1/2) sin(kx− σt), (3.5c)

P = −aσR−1/2 exp(−kzR−1/2) cos(kx− σt)

−1
2
a2k2R−1 exp(−2kzR−1/2). (3.5d)

Note that on z = 0

Ψ = a cos(kx− σt)

and W = −ηx, also W → 0 as z → ∞. Thus the above solution satisfies
the boundary condition (3.1a-c).

Finally the vorticity is given by

ω = −
(

∂2

∂z2
+ R−1 ∂2

∂x2

)
Ψ . (3.6)

Substituting (3.5a) into (3.6) we see that ω = 0. This implies that the
wave-induced motion is irrotational without any approximation.
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It is now instructive to identify the source of non-zero vorticity in-
ferred by Lamb’s solution. Lamb [7] essentially considers the same prob-
lem but linearizes the Navier-Stokes equations by neglecting the inertia
terms. Thus, he seeks a solution to the Stokes equations (see Lamb [7,
p.625]) which yields a non-zero vorticity (eqn 1.5 of Section 1). The veloc-
ity components used by Lamb to arrive at (1.5) are those given by (1.4) in
terms of a velocity potential ϕ (U = −ϕx and W = −ϕz). This velocity
components, being a solution of the Stokes equations, do not satisfy the
Navier-Stokes equations.3 Consequently we conclude that the source of
non-zero vorticity in Lamb’s solution is principally due to construction of
a solution to an approximate equations of motion. It is to be noted that
although the magnitude of the inertia terms are small compared to the
diffusion terms, and thus can be neglected, nevertheless their exclusion
leads to a solution which yields an approximate expression for the vortic-
ity whose magnitude may be negligibly small but not identically zero and
hence, by definition, such a motion is not irrotational.

4. The Growth of Surface Waves

If we consider the growth of monochromatic surface waves

η = a(t) cos(kx− σt), ak � 1 (4.1)

with a(0) = a0. Adopting the exact analytical solution for the Navier-
Stokes equation (derived in Sections 2 and 3), we may write

U = −a(t)kR−1/2 exp
(
−kzR−1/2

)
cos(kx− σt), (4.2)

W = a(t)k exp
(
−kzR−1/2

)
sin(kx− σt). (4.3)

Note that (4.2) and (4.3) are identical to (3.2b,c), except in the present
case the amplitude a is a function of time t, and still satisfy the continuity
equation (2.2c).

Substituting (4.2) and (4.3) in (2.2a) yields an expression for Px, whilst
substituting in (2.2b) gives an expression for Pz. Integrating the expres-
sion for Px with respect to x, integrating the expression for Pz with
respect to z, and comparing constant of integrations between the two, we
find the following expression for the pressure

P = R−1/2 [ȧ(t) sin(kx− σt)− a(t)σ cos(kx− σt)] exp
(
−kzR−1/2

)
− 1

2
a2(t)k2R−1 exp

(
−2kzR−1/2

)
, (4.4)

3In general not every solution of the Navier-Stokes equations satisfy the Stokes equations, and vice
versa.
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where a dot over a symbol indicates differentiation with respect to time.

Following Miles [8] we take the pressure on the undisturbed mean free
surface, z = 0, to be

Pa = (α + iβ)a(t) cos(kx− σt), (4.5)

where α + iβ is a dimensionless pressure coefficient4 which are in general
functions of both the wave speed c and the wavenumber k.

Substituting (4.5) into (4.4) we thus find the amplitude a(t) satisfies
the following initial value problem

−1
2
R−1k2a2(t) =

{
R−1/2 [iȧ(t) + σa(t)] + (α + iβ)a(t)

}
ei(kx−σt). (4.6)

Invoking the restriction ak � 1, posed on (4.1), we may neglect the left-
hand side of (4.6). Thus, we obtain

ȧ(t) = i
[
R1/2(α + iβ) + σ

]
a(t). (4.7)

Solving (4.7) subject to the initial condition a(0) = a0 we find the following
expression for the amplitude of the surface wave

a(t) = a0 exp
{
i
[
R1/2(α + iβ) + σ

]
t
}

. (4.8)

The expression (4.8) indicates that the amplitude of the surface wave grows
with time and the growth is a function of the energy-transfer parameters
α and β, the Reynolds number R and the angular frequency σ.

5. Evaluation of β

The energy-transfer parameter β is related to the rate of growth of
surface waves via (Miles [10])

Ė

E
= βσ

ρa

ρw

(
U∗

c

)2

(5.1)

where E is the wave energy, Ė represents its time derivative, ρa and ρw

denote the density of the air and the water respectively, U∗ is the friction
velocity and c is the wave phase speed.

According to Miles [8] critical layer mechanism

β = −π

(
w′′

c

kw′
c

)(
W 2

c

U2
1 η2

x

)
, (5.2)

4Not to be confused with β in Section 1 and with α in Section 2.
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where w = U−c, prime and the suffix x denote differentiation with respect
to z and x respectively, the subscript c denotes evaluation at the critical
point z = zc where U = c, and overbar signifies average over x. Following
Miles [8] we take

U = U1 log(z/z0) (5.3)

which for turbulent flow over water has the support of both theory and
experiment (Coles [1]; Hay [4]). In (5.3), z0 is a non-dimensional effective
roughness parameter, U1 = U∗/κ and κ is the von-Karman’s constant.

Substituting (4.3) and (5.3) into (5.2) we may express the result as

β = πξ−1
c exp

(
−2R−1/2ξc

)
, (5.4)

where

ξc = Ω

(
U1

c

)2

ec/U1 (5.5)

is the dimensionless critical height and Ω is the Charnock’s constant, being
typically O(10−3 − 10−2). The Reynolds number in (5.4) is the wave
Reynolds number taken as R = cλ/νw where νw is the viscosity of water.

The end result for β, obtained from (5.4) and (5.5) with κ = 0.4 and
Ω = gz0/U

2
1 = 2.3× 10−3 is plotted in Figure 1. Also plotted for compar-

ison are: the corresponding approximation for Miles’ [10] eddy-viscosity
and viscoelastic approximations; Miles’ [8] critical-layer approximation;
Sajjadi’s [11] rapid-distortion approximation for β ≡ βc + βv, where

βc = πgy0c
−2ec/U1L4

1[1− (4− π2/3)L−2
1 ],

βv = 2κ2L1; L1 = [U(η1)− c]/U1; kη1 = e−γ/2 = 0.281

(γ = 0.5772 is the Euler’s number) and Sajjadi’s [11] quasi-laminar ap-
proximation βc. Also plotted in Figure 1 are Townsend’s [13] result for
T ≡ − ln kz0 = 8 and Gent and Taylor’s [2] results for ka = 0.01 and
T = 8. As can be seen from this figure, the present result agrees well
with that of Miles’ [10] eddy-viscosity approximation and Sajjadi’s [11]
rapid-distortion theory.

Based on the present theory, (5.4) can serve as a simple formula in
operational wave models, such as WAM (Komen et al. [6]), for the evalu-
ation of the energy-transfer parameter from wind to surface waves.5 Note,

5WAM generation 4 and 5 use a parameterized form of Miles’ [7] critical-layer approximation.
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Figure 1: The energy-transfer parameter β, as calculated from: the present formulation
with Ω = gz0/U2

1 = 2.3× 10−3 (***); the rapid-distortion approximation, Sajjadi [11]
(× × ×); the quasi-laminar approximation, Sajjadi [11] (+++); the eddy-viscosity
approximation, Miles [10] (− − −); the critical-layer approximation Miles [8](...); the
viscoelastic approximation Miles [10](—); Townsend’s [13] numerical integration for
T ≡ ln(1/ky0) = 8 (•); Gent and Taylor’s [2] numerical integration for T = 8 and
ka = 0.01 (⊗).

although the present theory is based on the exact solution of the Navier-
Stokes equations, it is however essentially a quasi-laminar model in which
turbulence is implicitly included through the prescribed wind velocity
profile. However, it is interesting to note that the present model yields
larger values of β compared to Miles’ [8] critical-layer approximation and
is more in line with Miles’ [10] eddy-viscosity model and Sajjadi’s [11]
rapid-distortion theory.

6. Conclusions

An exact analytical solution to the Navier-Stokes solutions is con-
structed for an unsteady viscous incompressible flow governing the motion
of a monochromatic surface water. The solution obtained here yields a zero
vorticity and therefore is irrotational. This solution is another example of
viscous potential flow as was discussed by Joseph and Wang [5].
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The method adopted for the solution of unsteady Navier-Stokes equa-
tions is based on an ad hoc technique for solving non-linear partial dif-
ferential equations. The method is based on disregarding the inviolate
nature of the equations. The equations are then decomposed into parts,
which are equated to a common factor, in such a manner that a general
solution (containing the appropriate number of arbitrary functions) was
constructed for one part. The form of the arbitrary functions are then
obtained by means of the requirement that the other part be satisfied.

The analytical solution obtained here is also used to construct an al-
ternative expression for the energy-transfer parameter from the wind to
water waves within the classical critical-layer approximation of Miles’ [8]
quasi-laminar model which can be used in operational wave models.
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