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Abstract

A potential flow solution to the Navier-Stokes equations for a viscous

incompressible fluid is constructed for gravity waves on deep water.

Using this solution, it is shown that the amplitude of the wave decays

at one half of the rate originally found by Lamb [6]. The rate of decay

deduced from the exact analytical solution derived here is in exact

agreement with the direct calculation of Funada and Joseph [2]. The

physical consequence of the new rate of decay is discussed.

1. Introduction

Potential flows for which the velocity vector u = ∇φ are not, in general,
solutions of the Navier-Stokes equations for viscous incompressible fluids
unless it can be shown that ∇ × u = 0, as shown by Joseph [5]. For
such solutions the viscous term µ∇2u = µ∇∇2φ vanishes, but for an
incompressible fluid the viscous contribution to the stress does not always
vanish [9].

In the present paper, we give an alternative derivation to Joesph [5]
and similarly show the manner in which the viscosity of a viscous fluid in
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potential flow away from the boundary layers enters Prandtl’s boundary-
layer equations. To demonstrate this point, we will derive an analytical
solution for a viscous potential flow over a monochromatic wave. More-
over, following Joseph and Wang [4], we revisit Lamb’s [6] solution for
decaying free gravity waves and give an alternative solution for the vis-
cous potential flow and the viscous correction.

Lamb [6, Section 349] considered the effect of viscosity on water waves.
In that article, he constructed an analytical solution for a viscous flow
over a monochromatic surface wave

y = a cos(kx± σt), ak � 1 (1.1)

where a is the wave amplitude, k is the wavenumber and σ is the angular
frequency.

By neglecting the inertia terms in the Navier-Stokes equations and
assuming the elevation of the free surface

η = −k
n

(A− iC)eikx+nt, (1.2)

where A and C are constants, and n is an integer, he showed that since
the ratio

C

A
= ∓2νk2

σ
� 1 (1.3)

the motion is approximately irrotational with a velocity potential

φ = Ae−2νk2t+ky+i(kx±σt), (1.4)

where ν is the kinematic viscosity of the fluid.

In the footnote of the same article (p. 627) he showed that the corre-
sponding vorticity is given by

ω = ∓2σkae−2νk2t+βy cos{kx± (σt+ βy)}, (1.5)

where β = (σ/2ν)1/2 and a = kA/σ. Lamb argued that the vorticity di-
minishes rapidly from the surface downwards and ‘owing to the oscillatory
character of the motion, the sign of the vorticity which is being diffused
inwards from the surface is continually being reversed, so that beyond a
stratum of thickness comparable with 2π/β the effect is insensible, ...’.

The presence of a non-zero vorticity implies that the motion is not ir-
rotational. Thus, the question arises, what is the source of this vorticity?
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Is it solely due to the presence of viscosity? Or is it due to mathematical
approximations leading to a solution which yields a non-zero vorticity?
To answer these questions, we revisit Lamb’s problem and show that, by
a slight change in method of the solution, the effect of viscosity on wa-
ter waves yields a motion with exactly zero vorticity. We will construct
an exact analytical solution to the viscous, unsteady, two-dimensional,
incompressible Navier-Stokes equations governing the motion of a mono-
chromatic surface wave, of small steepness, on deep water. We satisfy the
kinematic and dynamic boundary conditions, as well as the tangential and
normal stress conditions, on the free surface whose profile is determined
by integrating the kinematic condition.

The method to be described here, for the solution of unsteady Navier-
Stokes equations, is very ad hoc and fundamentally simple – although
not always simple to execute. The method relies on disregarding the
inviolate nature of the equation(s) to be solved. The equations are then
decomposed into parts, which are equated to a common factor, in such
a manner that a general solution (containing the appropriate number of
arbitrary functions) can be constructed for at least one part. The form
of the arbitrary function(s) is then obtained by means of the requirement
that the other part be satisfied.

2. Boundary-layer Theory

In flows where the fluid speed is large enough the vorticity in the outer
layer is zero. In such circumstances, we would like to examine how the
viscosity in the viscous potential flow affect the boundary-layer equations.

To begin our analysis it is instructive to consider the Navier-Stokes
equations, and for simplicity in two dimensions, which may be expressed
in dimensionless form as, (Goldstein [3, p. 121]

ux + vy = 0, (2.1)

uux + vuy = −px +R−1uxx + uyy, (2.2)

R−1(uvx + vvy) = −py +R−2vxx +R−1vyy, (2.3)

where R is the Reynolds number.

In describing the Prandtl’s boundary-layer theory, Batchelor [1] argues
that “... the pressure is approximately uniform across the boundary layer;
and if it happens that the variation of p with x just outside the boundary
layer is known ... perhaps from the consideration of the inviscid flow
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equations in the region outside the boundary layer ... the pressure term
[in equation (2.2) above] can be regarded as given.”

Now assume the flow in the region outside the boundary layer is po-
tential, and let the dynamic viscosity in this region be µ 6= 0 with the
velocity U and pressure P being in the free stream. Thus in this region
there is a potential flow of a viscous fluid with ∇ × U = 0 (just as in the
case of inviscid flow) and consequently there exist a velocity potential Φ
such that ∇2Φ = 0.

For convenience we re-write equation (2.3) in the following form:

R−1(uvx + vvy) = −(p−R−1vy)y +R−2vxx

which indicates that the y derivative of

p−R−1vy (2.4)

is O(δ) across the boundary layer of thickness δ. Hence, in the outer region
we may write

P −R−1Vy = P −R−1Φyy (2.5)

which is the value of (2.4) at the edge of that layer. From the Bernoulli
equation, which also holds for a viscous fluid, we have

P = −1
2
U2 + const. (2.6)

Substituting (2.6) into (2.5) we get

−1
2
U2 + const−R−1Vy = p−R−1vy. (2.7)

Since at the wall vy = 0,

px = −UUx −R−1Vxy (2.8)

drives the flow in (2.2). Using the continuity equation for the flow in the
outer region we may express (2.8) in the following form:

px = −UUx +R−1Uxx (2.9)

and because in the outer region the flow is potential then in (2.9) U = Φx.

Finally, noting that at the wall uxx = 0 but Uxx 6= 0, we obtain the
modified Prandtl equation

uux + vuy = UUx −R−1Uxx + uyy (2.10)



VISCOUS POTENTIAL FLOW FOR WATER WAVES 17

for a steady flow. Compared to Joseph [5], it is much easier to see from
(2.10) that when the outer fluid is inviscid, the viscous term R−1Uxx van-
ishes and for high-Reynolds number flows this term is very small.

The derivation of equation (2.10) above, like its counterpart given by
Joseph [5], lead to the same conclusions as that arrived by him. However,
the present derivation, with the aid of the boundary-layer scaling, makes
the conclusions much more clearer.

As was also noted by Joseph [5], there are many cases of irrotational
flow in which viscous effects are important. Such examples include the
interfacial instability as well as decay of free gravity waves on water which
we will examine in detail next.

3. Exact Solution of the Unsteady Flow

We consider the unsteady viscous incompressible flow of a monochro-
matic surface wave propagating in positive x-direction with speed c = σ/k.
The wave elevation, η, is given by

η(x, t) = a cos(kx− σt), ak � 1 (3.1)

where k = 2π/λ is the wave number, λ is the wavelength and σ is the
angular frequency.

The equations of motion are governed by the Navier-Stokes equations,
which in two dimensions (taking the y-axis vertically upwards), may be
expressed in dimensionless form as

ut + uux + vuy = −px +R−1uxx + uyy, (3.2a)

R−1(vt + uvx + vvy) = −py +R−2vxx +R−1vyy, (3.2b)

ux + vy = 0, (3.2c)

where R is the Reynolds number. The method of solution which will
be employed here is very ad hoc in nature. The solution is obtained in
the following manner: we first construct a solution to the steady state
counterpart of equations (3.2) (reduced equations) by neglecting the x-
variation in the pressure. Having obtained such solution, u and v velocity
components are modified, through their arbitrary constants, so as to take
into account the unsteady nature of the full equations; the expression
for the pressure obtained for the reduced equations is not physical and
hence discarded. This is because this expression for the pressure is only a
function of y and the pressure for the full solution must vary with both x
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and y. Finally, the modified solutions for u and v, obtained for the reduced
equations, are substituted into (3.2a) and (3.2b) to obtain expressions
for the pressure gradients x and y, respectively. Upon integrating these
expressions and matching the arbitrary functions of integration we obtain
a full solution to the unsteady Navier-Stokes equations (3.2).

Introducing the stream function ψ defined by u = ψy, v = −ψx, and
neglecting the unsteady terms, equations (3.2) become

ψyψxy − ψxψyy = −px + ψyyy +R−1ψyxx, (3.3a)

py +R−1(ψxψxy − ψyψxx + ψxyy) = −R−2ψxxx. (3.3b)

We now set px = 0 and split equation (3.3a) into two parts, namely,

ψyψxy − ψxψyy = F (x, y, ψ, ψx, ψy, ψyy, ψxy, ψxx), (3.4a)

ψyyy +R−1ψyxx = F (x, y, ψ, ψx, ψy, ψyy, ψxy, ψxx) (3.4b)

in such a way that the general solution of at least one of these can be
developed. The form of the arbitrary functions is determined by requiring
that the other equation is also satisfied. There will then remain certain
arbitrary constants which we select in such a way that equation (3.3b) is
satisfied. Finally, we substitute the solutions in (3.2a) and (3.2b) and find
p(x, y, t) such that solutions satisfy (3.2a)-(3.2c).

It is clear that the choice made for F strongly influences the general
solution obtained, the labour involved and the final result. For our prob-
lem here the simplest choice namely F = 0 will suffice. With this choice
our system becomes

px = 0, (3.5)

ψyψxy − ψxψyy = 0, (3.6)

ψyyy +R−1ψyxx = 0 (3.7)

and py is defined by

py = −R−2ψxxx −R−1(ψxψyx − ψyψxx + ψxyy). (3.8)

The general solution of equation (3.6) has the explicit form, with arbi-
trary functions $ and χ,

ψ = $[y + χ(x)] (3.9)

although it is quite usual that the general solution is implicit. In such a
case the details of the computation are more complicated. Substituting
equation (3.9) into equation (3.7) we find, with z = y + χ(x) that

$′′′(z)[1 + α2(χ′)2] + α2$′′(z)χ′′(x) = 0, (3.10)
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where α2 = R−1 and prime indicates differentiation with respect to x. To
eliminate the x dependence and thus determine χ, we set

1 + α2(χ′)2 = Aα2χ′′, (3.11)

where A is an arbitrary constant. Equation (3.11) has the solution

χ(x) = −A ln cos(R1/2x/A+ C) + c1. (3.12)

Then $ satisfies
$′′′ + A−1$′′ = 0

or
$(z) = Γ + γAz + ε exp(−z/A). (3.13)

Finally we see that

ψ(x, y) = Γ + γAy − γA2 ln cos(R1/2x/A+ C)

+ εe−y/A cos(R1/2x/A+ C), (3.14)

where Γ, γ, A, C and ε are arbitrary constants.

Now equations (3.5) and (3.8) are satisfied if we set γ = 0. Hence, we
obtain

ψ = Γ + ε exp(−y/A) cos(R1/2x/A+ C), (3.15a)

u = −εA−1 exp(−y/A) cos(R1/2x/A+ C), (3.15b)

v = εA−1R1/2 exp(−y/A) sin(R1/2x/A+ C), (3.15c)

p = −1
2
(εA)−2 exp(−2y/A) +D. (3.15d)

4. Wave-induced Motion

Appealing to the restriction posed on the size of the wave (ka � 1),
we adopt the usual practice and linearize boundary conditions on y = η
and apply them instead on the free surface y = 0. Thus, the boundary
conditions to be satisfied are (c.f. Miles [7] and Sajjadi [8])

v = −ηx, ψ = η, on y = 0 (4.1a, b)

v → 0, as y →∞. (4.1c)

To determine the wave-induced velocities and pressure, we let ε =
a,A = R1/2k−1, C = −σt and Γ = 0 in (3.15), to obtain

ψ = a exp(−kyR−1/2) cos(kx− σt), (4.2a)

u = −akR−1/2 exp(−kyR−1/2) cos(kx− σt), (4.2b)
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v = ak exp(−kyR−1/2) sin(kx− σt), (4.2c)

p = −1
2
a−2k2R−1 exp(−2kyR−1/2) +D. (4.2d)

Clearly (4.2b) and (4.2c) satisfy the continuity equation (3.2c).

Substituting (4.2b) and (4.2c) into (3.2a) we have

px = akσR−1/2 exp(−kyR−1/2) sin(kx− σt)

or
p = −aσR−1/2 exp(−kyR−1/2) cos(kx− σt) + f(y). (4.3)

Substituting (4.2b) and (4.2c) into (3.2b) we get

py = akσR−1 exp(−kyR−1/2) cos(kx− σt)

+a2k3R−3/2 exp(−2kyR−1/2)

or
p = −aσR−1/2 exp(−kyR−1/2) cos(kx− σt)

−1
2
a2k2R−1 exp(−2kyR−1/2). (4.4)

Comparing (4.3) with (4.4) we see they are the same if

f(y) = −1
2
a2k2R−1 exp(−2kyR−1/2).

Hence the solution of the Navier-Stokes equations (3.2) is:

ψ = a exp(−kyR−1/2) cos(kx− σt), (4.5a)

u = −akR−1/2 exp(−kyR−1/2) cos(kx− σt), (4.5b)

v = ak exp(−kyR−1/2) sin(kx− σt), (4.5c)

p = −aσR−1/2 exp(−kyR−1/2) cos(kx− σt)

−1
2
a2k2R−1 exp(−2kyR−1/2). (4.5d)

Note that on y = 0
ψ = a cos(kx− σt)

and v = −ηx, also v → 0 as y →∞. Thus the above solution satisfies the
boundary condition (3.4a-c).

Finally the vorticity is given by

ω = −
(
∂2

∂y2
+R−1 ∂

2

∂x2

)
ψ. (4.6)

Substituting (4.5a) into (4.6) we see that ω = 0. This implies that the
wave-induced motion is irrotational without any approximation.
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5. Decay of Free Gravity Waves on Water

It is possible to have a progressive gravity wave of permanent form if the
viscosity of the liquid below air is identically zero. Lamb [6, Sections 348
and 349) performed an analysis of the effect of viscosity on these waves.
The wave decays and the decay rate may be obtained in two ways: by a
dissipation calculation or by a direct (stability) calculation using viscous
potential flow. This is analogous to the dissipation and direct calculation
of drag. The two decay rates are not the same.

Lamb also constructed an exact solution to this problem: it gives a
decay rate different from the two just mentioned; it reduces to the one
computed by the dissipation method for long waves (k � (g/ν2)1/3, where
k is the wavenumber) and to the one computed directly for short waves
(k � (g/ν2)1/3). The dissipation method yields an incorrect result for
short waves and the direct method using Viscous Potential Flow (VPF)
gives the wrong result for long waves.

Lamb’s exact solution also reveals the vorticity near the wave surface,
which provides explanations for the aforementioned discrepancies. At the
long wave limit, the vorticity is important in a thin boundary layer; thus
some kind of pressure correction is needed. We calculate this pressure
correction by the method given in Section 2; to arrive at a solution which
leads to the same decay rate as Lamb’s exact solution for long waves.

6. Dissipation Calculation (Lamb [6, Section 348])

When gravity is important and g = −eyg where y points upward and
ey is the unit normal in the y direction, the energy equation (2.1) becomes

d

dt

∫
V

ρ(1
2
u2 + gy) dV = P −D , (6.1)

where P is the power of traction and D is the dissipation (Joseph and
Wang [4]). In the present problem we look at functions periodic in x with
period λ with y = η(x, t) representing the free surface for −L ≤ y ≤ η,
and in the limit as L→∞. The gravity term then gives rise to a potential
energy ∫

V

ρgy dV =

∫ λ

0

ρgη2

2
dx. (6.2)

Lamb notes that when the viscosity is neglected, the progressive wave
may be represented by

φ = αceky cos k(x− ct), η = α sin k(x− ct), (6.3)
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where c =
√
g/k for inviscid potential flow is the wave velocity. In fact,

this relation between φ and η is satisfied only if α is independent of time.
Lamb noted that (6.3) will hold and the motion will persist, even with
viscosity, provided that the surface stresses calculated on the potential
flow are applied. In this case the dissipation in one period is

D = P = 2µk3α2c2λ. (6.4)

For a free wave, with P = 0,

d

dt

(∫
V

ρ
u2

2
dV +

∫ λ

0

ρgη2

2
dx

)
=

d

dt
(1

2
ρkα2c2λ) = −D = 2µk3α2c2λ.

(6.5)
Equation (6.5) implies that

dα

dt
= −2νk2α. (6.6)

Thus showing −2νk2 is the decay rate from the dissipation calculation.

7. Direct Calculation (Funada and Joseph [2])

The decay of free gravity waves can be treated as a stability problem
using the theory of VPF. The stability analysis is a special case of the
study of Kevin-Helmholtz stability given by Funada and Joseph [2]. Here,
the governing equations are

u = ∇φ, ∇2φ = 0, −∞ < y ≤ 0 (7.1)

ρφt = −p− ρgη dynamic condition

−p+ 2µφyy = 0 normal stress condition

ηt = φy kinematic condition

 on y = 0. (7.2)

Eliminating p and η from (7.2) and applying the potential

φ = Aeky+nt+ikx (7.3)

we obtain
n = −νk2 ± ik

√
g/k − ν2k2. (7.4)

Hence we see that the amplitude of the wave decays at a rate

dα

dt
= −νk2α (7.5)
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one half of the rate given by (6.6), see Sections 10-11 below. In this case,
the wave speed is given by

c =
√
g/k − ν2k2 (7.6)

which is slower than the inviscid wave speed
√
g/k for νk2 <

√
gk. Note

that, for very large values of k, νk2 �
√
gk waves do not propagate but

simply decay at a rate given by

dα

dt
= − g

2νk
. (7.7)

8. Exact Solution (Lamb [6, Section 349])

Lamb’s exact solution of the problem of decaying free gravity waves
differs from the solutions using viscous potential flow, given in Section 7,
in that the stress conditions

T (xy) = 0, T (yy) = γηxx (8.1)

are applied at the free surface (y = 0). (Here, the surface tension γ is not
relevant in our discussion here and is therefore neglected.)

The condition (8.1) cannot be satisfied by an irrotational flow. To
accommodate vorticity, Lamb introduces a stream function ψ and the
solution is given by

u = φx + ψy, v = φy − ψx, ρ−1p = −φt − gy (8.2)

provided
∇2φ = 0, ψt = ν∇2ψ. (8.3)

It is important to realize that pressure term enters into the stream function
equation as the pressure p depends on the viscosity through the velocity
potential. Lamb showed that the governing equations can be solved with
normal nodes

φ = −Aekyeikx+nt, ψ = −Cemyeikx+nt, m2 = k2 + n/ν (8.4)

provided
(n+ 2νk2)2 + gk + γ′k3 = 4ν2k3m, (8.5)

where γ′ = γ/ρ. When νk2 �
√
gk + γ′k3 (long waves) Lamb found that

n = −2νk2 ± i
√
gk + γ′k3. (8.6)
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The decay rate −2νk2 agrees with the dissipation approximation result
(6.6). When νk2 �

√
gk + γ′k3 (short waves) and with γ′ being neglected,

n = − g

2νk
(8.7)

which agrees with the decay rate (7.7) from the direct stability analysis
using VPF. This limit is applicable to a very for very viscous fluid and
negligible vorticity. Lamb emphasized that this limit “... represents a
slow creeping of the fluid towards a state of equilibrium with a horizontal
surface.”

The decay rate −νk2 given by (7.5) is one-half of the exact solution at
the long wave limit. This discrepancy is caused by the boundary layer at
the free surface, which is not accounted for in the direct stability analysis
when using VPF. The vorticity ω is given by

ω =
n

ν
Cemy+ikx+nt. (8.8)

At the long wave limit, however, the vorticity is important in a thin bound-
ary layer. Lamb estimated that the thickness of this boundary layer is
2π/χ, where χ = (

√
gk + γ′k3/2ν)1/2. The situation is different at the

short wave limit, where the magnitude of the vorticity is very small and
there is no sensible boundary layer. This explains why the decay rate aris-
ing from the direct calculation using VPF agrees with the exact solution
at the short wave limit.

9. Direct Calculation (Joseph and Wang [4])

At the long wave limit, we require, a pressure correction to the irrota-
tional pressure due to the vorticity layer. In this case, we can solve for
the viscous pressure correction from the linearized governing equation and
prove that it can be represented by harmonic series. Following Joseph and
Wang [4], we first divide the velocity and pressure in the boundary layer
near the interface into two parts

u = U + u, p = P + p, (9.1)

where the capital and small symbols denote potential solutions and viscous
corrections, respectively. The linearized governing equation for (u, p) is

ut = −ρ−1∇p + ν∇2u. (9.2)
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Taking the divergence of (9.2) we obtain ∇2p = 0. The solution of p can
be expressed as a Fourier series

−p =
∞∑

`=−∞

C`e
nt+`y+i`x. (9.3)

The zero shear stress condition at the free surface implies that uy ∼ O(1)
and it follows from the continuity equation that vy ∼ O(δ), where δ is the
boundary layer thickness. The normal stress balance at y = 0 is

−p+ 2µφyy = 0, (9.4)

where the surface tension and the term 2µvy have been neglected. Equa-
tion (9.4) can alternatively be written as

ρφt + ρgη − p + 2µφyy = 0. (9.5)

Substituting the expressions for φ from (7.3) and p from (9.3) into (9.5),
we have(

ρnA+ ρ
gk

n
A+ 2µk2A+ Ck

)
ent+ikx +

∑
` 6=k

C`e
nt+i`x = 0 (9.6)

and by orthogonality, we obtain

ρnA+ ρ
gk

n
A+ 2µk2A+ Ck = 0 and C` = 0 if ` 6= k. (9.7)

We now list the velocities and stresses at y = 0 evaluated on the potential:

u = ikAent+ikx, v = kAent+ikx

τ (yy) = 2µk2Aent+ikx, τ (xy) = 2iµk2Aent+ikx

 . (9.8)

The power of the pressure correction and power of the shear stress are

−
∫ λ

0

v∗p dx = CkAkλ, Ps =

∫ λ

0

u∗τ (xy) dx = 2µA2k3λ, (9.9)

where the asterisk denotes conjugate variables. It then follows that

Ck = 2µk2A and − p = 2µk2Aent+ky+ikx. (9.10)

Inserting the value of Ck into (9.7), we get

ρn+ ρ
gk

n
+ 4µk2 = 0 (9.11)
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and the solution for the potential is

φ = Aekye−2νk2teik(x±
√

g/k−4ν2k2t). (9.12)

The amplitude of the wave decays at a rate −2νk2 which agrees with the
dissipation result and Lamb’s exact solution for the long wave waves.

10. Irrotational Waves on Deep Water

Taking the y-axis to be drawn vertically upwards and assuming that
the motion is confined to the two-dimensional (x, y)-plane, we consider the
unsteady viscous incompressible flow of a monochromatic surface wave

y = a cos(kx− σt), ak � 1

on deep water, where k = 2π/λ is the wave number, λ is the wavelength
and σ is the angular frequency, propagating in positive x-direction with
speed c = σ/k.

We construct an analytical solution to the Navier-Stokes equations

Ut + U Ux + V Uy = −ρ−1Px + ν(Uxx + Uyy), (10.1a)

Vt + U Vx + V Vy = −ρ−1Py + ν(Vxx + Vyy), (10.1b)

Ux + Vy = 0, (10.1c)

where ρ and ν are the density and the kinematic viscosity of the fluid,
respectively, applicable for deep water waves.

Applying the technique described in Section 3 we obtain the solution
as (c.f. 2.15a)

ψ = ϑ+ ε exp(−y/A) cos(x/A+ C), (10.2)

where U = ψy and V = −ψx.

To determine the ‘normal modes’ which are periodic with respect to
x with a prescribed wavelength 2π/k we assume a time-factor by letting
ε = eNt, where N to be determined from the boundary conditions, and to
preserve the space factor eikx we let A = −k−1 and ϑ = 0. Thus (10.2)
becomes

ψ = eNteky cos(−kx+ C)

= eNteky[E cos kx+ F sin kx], (10.3)

where E = cosC and F = sinC. It is convenient to express (10.3) as

ψ = A ekyeikx+Nt, (10.4)
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where A = E−iF and with the understanding that the real part of (10.4)
is implied. Hence, from (10.4) we see at once that

U = A kekyeikx+Nt, (10.5a)

V = −A ikekyeikx+Nt. (10.5b)

Note that (10.5a) and (10.5b) satisfy the no slip boundary condition at
an infinite depth (i.e., as y → −∞).

Substituting (10.5) into (10.1a), integrating with respect to x, and into
(10.1b), integrating with respect to y, we obtain the following expression
for the pressure

P = ρA iNekyeikx+Nt. (10.6)

Clearly (10.5) and (10.6) satisfy (10.1a-c), and are therefore the exact
solution to the Navier-Stokes equations.

At this stage it is important to note that the vorticity ω = Vx − Uy,
for this motion, is identically zero. This implies, contrary to Lamb’s [6]
solution, the motion considered here is irrotational even in the presence
of viscosity. Consequently, we can introduce a velocity potential φ such
that U = ∇φ and from (10.5) we see that

φ = −iA ekyeikx+Nt. (10.7)

If η denotes the elevation at the free surface, we must have ηt = V on
y = η. Expanding this as a Taylor expansion about y = 0, we have to the
first order in Taylor expansion

∂η

∂t
=

(
V + η

∂V

∂y

)
y=0

. (10.8)

Substituting (10.5b) into (10.8) and integrating with respect to t, we ob-
tain

log(1 + kη) = −A ik2

N
exp{ikx+Nt}.

Expanding the logarithm as power series in η and neglecting the quadratic
terms in η we get

η = − k

N
A ieikx+Nt. (10.9)

The dynamic boundary condition at y = η is

P

ρ
=
∂φ

∂t
− gη, (10.10)
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where g is the acceleration due to gravity. If γ denote the surface tension,
the stress conditions at the surface y = η are:

T (yy) = γ
∂2η

∂x2
= −P + 2µ

∂V

∂y
, (10.11a)

T (xy) = µ

(
∂V

∂x
+
∂U

∂y

)
= 0, (10.11b)

where µ is the dynamic viscosity of the fluid. Eliminating p between
(10.10) and (10.11a), and Taylor expand the resulting equation about
y = 0, we have

gη −
(
∂φ

∂t
+
∂η

∂t

∂φ

∂y
+ η

∂2φ

∂t∂y

)
+ 2ν

(
∂V

∂y
+ η

∂2V

∂y2

)
= γ

∂2η

∂x2
. (10.12)

Also Taylor expanding (10.11b) about y = 0 we get

∂V

∂x
+
∂U

∂y
= −∂η

∂x

∂V

∂y
− η

(
∂2V

∂x∂y
+
∂2U

∂y2

)
. (10.13)

Note (10.12) and (10.13) are expanded version of (10.11a) and (10.11b) to
first order in Taylor expansion, respectively.

Substituting (10.5), (10.7) and (10.9) into (10.12) and (10.13), we ob-
tain, respectively

N − 2νk2 − σ2

N
= 2k2

(
1− νk2

N

)
iA eikx+Nt, (10.14)

2N = 3k2iA eikx+Nt, (10.15)

where σ2 = k(g + γ′k2) and γ′ = γ/ρ.

Taking the ratio (10.14) and (10.15) and solving for N , we obtain the
following quadratic equation, namely

N2 + 2νk2N + 3σ2 = 0. (10.16)

The roots of (10.16) are N = −νk2 ±
√
ν2k4 − 3σ2. Now as ν2k4 � 3σ2,

we see that N may be expressed as n± im with

n = −νk2 and m = ±
√

3σ2 − ν2k4 ≈ ±
√

3σ.

Finally letting A = ∓aσ∗/k, upon taking the real part, we obtain from
(10.9) approximately

η = ae−νk2t cos(kx± σ∗t), (10.17)
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where σ∗ =
√

3σ.
Comparing with Lamb’s [6, Section 349, eq. 21] we see that the free sur-

face (10.17) is practically identical to that previously obtained by Lamb.
Equation (10.17) shows the exponential damping factor is 1

2
of that of

Lamb which is in exact agreement with the direct calculation of Funda
and Joseph [2]. Note that, this physically indicates that the free surface
does not damps down quite as rapidly as that obtained by Lamb. Note
also the velocity potential

φ = −A ie−νk2t+ky+i(kx±σ∗t) (10.18)

obtained in the present case has also remarkable similarity with Lamb’s
[6, eq. 20], except (10.18) refers to a truly irrotational motion. It should
be noted that Lamb [6] constructed a solution using the Stokes equation,
thereby neglecting the inertia terms on the right-hand side of equations
(10.1a) and (10.1b).

It is interesting to note that the velocity potential given by (10.18) satis-
fies the Laplace equation ∇2φ = 0. The gradient of this potential, namely
u and v, together with the expression (10.6) for the pressure satisfy the
Navier-Stokes equations. This implies that under certain circumstances,
such as that presented here, a potential solution can also satisfy the full
Navier-Stokes equations.

11. Conclusions

An exact analytical solution to the Navier-Stokes solutions is con-
structed for an unsteady viscous incompressible flow governing the motion
of a monochromatic surface wave on deep water. The method adopted for
the solution of unsteady Navier-Stokes equations is based on an ad hoc
technique for solving non-linear partial differential equations. The method
is based on disregarding the inviolate nature of the equations. The equa-
tions are then decomposed into parts, which are equated to a common
factor, in such a manner that a general solution (containing the appropri-
ate number of arbitrary functions) was constructed for one part. The form
of the arbitrary functions are then obtained by means of the requirement
that the other part be satisfied. The results show that, contrary to Lamb
[6], the effect of viscosity on water of infinite depth leads to wave-induced
motion with identically zero vorticity. Furthermore, since the rate of de-
cay deduced here from the exact analytical solution is one half of the rate
derived by Lamb [6], the free surface profile damps down exponentially
in time at the rate one half of that originally given by Lamb. Moreover,
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the new rate of decay in exact agreement with the direct calculation of
Funada and Joseph [2].
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