Far East Journal of Mathematical Sciences (FJMS)

Volume 38, Number 1, 2010, Pages 95-103
Published Online: March 10, 2010
This paper is available online at http://www.pphmj.com

© 2010 Pushpa Publishing House

COCLEFT EXTENSIONS OF MODULE COALGEBRA

REN BEI-SHANG, GUO YING-XUE and ZHANG WEI-WEI

College of Mathematical Sciences Guangxi Teachers Education University Nanning, Guangxi, 530001, P. R. China e-mail: gyx511314@sohu.com

Abstract

Using crossed coproducts, module coalgebra and cocleft extensions, this paper discusses the question about coalgebra cocleft extensions and isomorphism of crossed coproducts coalgebra.

1. Preliminaries

Let *H* be a Hopf algebra and *C* be its coalgebra over a field *K*.

Definition 1. Assume that C is also a weak left H-comodule, and that α is a linear map $\alpha: C \to H \otimes H$, $\alpha(c) = \sum \alpha_1(c) \otimes \alpha_2(c)$, $\forall c \in C$. Then as a vector space $C \times_{\alpha} H = C \otimes H$ with comultiplication Δ , $\Delta(c \times h) = \sum c_1 \times c_2^1 \alpha_1(c_3) h_1 \otimes c_2^2 \times \alpha_2(c_3) h_2$, $\rho(c) = \sum c^1 \otimes c^2$ is the *left H-comodule structure map*, $\forall c \in C$, $\forall h \in H$. Here we write $c \times h$ for the tensor $c \otimes h$. We say that $C \times_{\alpha} H$ is a *crossed coproduct* by using ρ and α if $\varepsilon(c \times h) = \varepsilon_C(c)\varepsilon_H(h)$ is its counit and $\overline{2010}$ Mathematics Subject Classification: 16W.

Keywords and phrases: crossed coproducts, module coalgebra, cocleft, coalgebra isomorphism.

Natural Science Foundation of Guangxi (0640070, 0991102); Innovation Project of Guangxi Graduate Education (200610603R03).

The Scientific Research Foundation of Guangxi Educational Committee (200911MS145).

Received October 16, 2009

coassociativity are satisfied. See also in [6], this is dual of definition of crossed products.

Definition 2. We call the linear map α *normal* if

$$\varepsilon_c(c)1_H = \sum \varepsilon_H(\alpha_1(c))\alpha_2(c) = \sum \alpha_1(c)\varepsilon_H(\alpha_2(c)).$$

See also in [6, Definition 2.1].

Remark 1. The linear map α is normal and S is the antipode of H. Then

$$\varepsilon_c(c)1_H = \sum S(\alpha_1(c))\alpha_2(c) = \sum \alpha_1(c)S(\alpha_2(c)).$$

Definition 3. A coalgebra *C* is a *right H-module coalgebra*, if

- (1) C is a right H-module via: $c \otimes h \mapsto c \cdot h$.
- (2) Δ and ε are right *H*-module maps: $\forall h \in H, \forall c \in C$,

$$\Delta(c\cdot h)=\sum c_1h_1\otimes c_2h_2,$$

$$\varepsilon_C(c \cdot h) = \varepsilon_C(c)\varepsilon_H(h).$$

See also in [5].

Definition 4. Let *B* be a right *H*-module. Then the invariants of *H* on *B* are the set ${}^HB = \{b \in B | b \cdot h = b\varepsilon(h), \forall h \in H\}.$

Similar to that in [4, Chapter 1, Definition 1.7.1].

Definition 5. Let $C \subset B$ be a K-coalgebra and H be a Hopf algebra. Then

- (1) $C \subset B$ is a right H-extension if B is a right H-module coalgebra with $^HB=C$,
- (2) the right *H*-extension $C \subset B$ is *H*-cocleft if there exists a coalgebra map $\mu: B \to H$ and $\varepsilon_H \mu = \varepsilon_B$ which is convolution invertible.

Dual of [4, Chapter 7, Definition 7.2.1].

2. Main Result

Theorem. An H-extension $C \subset B$ is H-cocleft $\Leftrightarrow B \cong C \times_{\alpha} H$.

See also in [3, Theorem 3].

Proposition 1. Let $C \subset B$ be a right H-extension, which is H-cocleft via: $\mu: B \to H$ and $\varepsilon_H \mu = \varepsilon_B$. Then there is a crossed coproduct action of C on H, given by

$$c \cdot h = \sum \mu(c_1) c_2^1 h \mu^{-1}(c_2^2)$$

and a convolution invertible map $\alpha: C \to H \otimes H$ given by

$$\alpha(c) = \sum \alpha_1(c) \otimes \alpha_2(c).$$

This action gives B the structure of an H-crossed coproduct over C. Moreover, the coalgebra isomorphism $\phi: C \times_{\alpha} H \to B$ given by

$$c \times_{\alpha} h \mapsto \sum c_1 \mu^{-1}(c_2) h$$

is both a left C-comodule and right H-module map, where

$$C \times_{\alpha} H$$
 is a right *H*-module via: $(c \otimes h) \cdot l = \sum cl_1 \otimes hl_2, \forall h, l \in H$.

To prove this, we need a technical lemma.

Lemma. Assume that $C \subset B$ is a right H-extension via: $W : C \otimes H \to C$, and that $C \subset B$ is H-cocleft via $\mu : B \to H$ with $\varepsilon_H \mu = \varepsilon_B$. Then

$$(1) \ \mu^{-1} \circ W = M\tau(\mu^{-1} \otimes S).$$

(2) $\forall b \in B$, there exists a map $P: B \to C$ which is both right H-module and coalgebra map, then $P(b) \in C = {}^H B$.

Proof. (1) First observe that since W is a coalgebra map, $\mu^{-1} \circ W$ is the inverse of $\mu \circ W$. Then let $\mu \circ W = M(\mu \otimes I)$

$$[(\mu \circ W) * (\mu^{-1} \circ W)](c \otimes h)$$

$$=M[(\mu\circ W)\otimes (\mu^{-1}\circ W)]\Delta(c\otimes h)$$

$$= M[M(\mu \otimes I) \otimes M\tau(\mu^{-1} \otimes S)] \bigg(\sum c_1 \times c_2^1 \alpha_1(c_3) h_1 \otimes c_2^2 \times \alpha_2(c_3) h_2 \bigg)$$

$$\begin{split} &= \sum \mu(c_1) c_2^1 \alpha_1(c_3) h_1 S(\alpha_2(c_3) h_2) \mu^{-1}(c_2^2) \\ &= \sum \mu(c_1) c_2^1 \alpha_1(c_3) h_1 S(h_2) S(\alpha_2(c_3)) \mu^{-1}(c_2^2) \\ &= \sum \mu(c_1) c_2^1 \alpha_1(c_3) \varepsilon(h) 1_H S(\alpha_2(c_3)) \mu^{-1}(c_2^2) \\ &= \sum \varepsilon(h) \mu(c_1) c_2^1 \alpha_1(c_3) S(\alpha_2(c_3)) \mu^{-1}(c_2^2) \\ &= \sum \varepsilon(h) \varepsilon(c_3) \mu(c_1) c_2^1 \mu^{-1}(c_2^2) \\ &= \sum \varepsilon(h) \varepsilon(c_2) c_1 1_H \\ &= \varepsilon(h) \varepsilon(c) 1_H \\ &= \varepsilon(c \otimes h) 1_H. \end{split}$$

So $\mu^{-1} \circ W$ is the right inverse of $\mu \circ W$, and so $\mu^{-1} \circ W$ by uniqueness of inverses.

(2) $P: B \to C$ is right H-module, $\forall b \in B, \ \forall h \in H$, we have: $b \cdot h \in B$, so we define that: $P(b \cdot h) \triangleq P(b)\varepsilon(h) \in C$.

And
$$PW(b \otimes h) = W(P \otimes I)(b \otimes h)$$
.

So
$$P(b \cdot h) = P(b) \cdot h = P(b)\varepsilon(h)$$
.

Then
$$P(b) \in C = {}^H B$$
.

Remark 2. Following the condition of this lemma, we also know that:

(1)
$$\mu(b \cdot h) = \mu(b)h$$

$$\mu^{-1}(b \cdot h) = S(h)\mu^{-1}(b).$$

(2)
$$\varepsilon_B = \varepsilon_C P = \varepsilon_H \mu$$
.

The lemma enables us to define an inverse to ϕ . Namely, define

$$\psi: B \cong C \times_{\alpha} H$$
 by $b \mapsto P(b_1) \times_{\alpha} \mu(b_2)$.

Now, let us prove the proposition. First, we show that φ and ψ are mutual inverse.

$$\psi\phi(c \otimes h)
= \psi\left(\sum c_{1}\mu^{-1}(c_{2})h\right)
= (P \otimes \mu)\Delta_{c}\left(\sum c_{1}\mu^{-1}(c_{2})h\right)
= (P \otimes \mu)\left(\sum c_{11}\mu^{-1}(c_{21})h_{1} \otimes c_{12}\mu^{-1}(c_{22})h_{2}\right)
= \sum P(c_{11}\mu^{-1}(c_{21})h_{1}) \otimes \mu(c_{12}\mu^{-1}(c_{22})h_{2})
= \sum P(c_{11})\varepsilon(\mu^{-1}(c_{21}))\varepsilon(h_{1}) \otimes \mu(c_{12})\mu^{-1}(c_{22})h_{2}
= \sum P(c_{11}) \otimes \mu(c_{12})\varepsilon(\mu^{-1}(c_{21})) \mu^{-1}(c_{22})\varepsilon(h_{1})h_{2}
= \sum c_{1} \otimes \mu(c_{2})\mu^{-1}(c_{3})h
= \sum c_{1} \otimes \varepsilon(c_{2})h
= c \otimes h.$$

On the other side, we have:

$$\phi \psi(b)
= \phi(P \otimes \mu) \Delta(b)
= \sum \phi(P(b_1) \otimes \mu(b_2))
= \sum P(b_1)_1 \mu^{-1}(P(b_1)_2) \mu(b_2)
= \sum P(b_1)_1 \varepsilon(\mu^{-1}(P(b_1)_2) \mu(b_2))
= \sum P(b_1)_1 \varepsilon(\mu^{-1}(P(b_1)_2)) \varepsilon(\mu(b_2))$$

$$= \sum P(b_1)_1 \varepsilon(P(b_1)_2) \varepsilon(\mu(b_2))$$

$$= \sum b_1 \varepsilon(\mu(b_2))$$

$$= \sum b_1 \varepsilon(b_2) = b.$$

So $\psi \phi = I_{C \times_{\alpha} H}$, $\phi \psi = I_B$.

Next, we prove that $\phi: c \times_{\alpha} h \mapsto \sum c_1 \mu^{-1}(c_2) h$ is a left *C*-comodule map. It means we need to check that $\rho_B \phi = (I \otimes \phi) \rho_{C \otimes H}$. Then, we have:

$$\rho_B \phi(c \otimes h)
= \rho_B \left(\sum_{c_1} c_1 \mu^{-1}(c_2) h \right)
= (P \otimes I) \Delta_B \left(\sum_{c_1} c_1 \mu^{-1}(c_2) h \right)
= \sum_{c_1} (P \otimes I) \left[(c_1 \mu^{-1}(c_2) h)_1 \otimes (c_1 \mu^{-1}(c_2) h)_2 \right]
= \sum_{c_1} P(c_1 \mu^{-1}(c_2) h)_1 \otimes (c_1 \mu^{-1}(c_2) h)_2
= \sum_{c_1} P(c_1)_1 \varepsilon (\mu^{-1}(c_2))_1 \varepsilon (h_1) \otimes (c_1)_2 (\mu^{-1}(c_2))_2 h_2
= \sum_{c_1} (c_1)_1 \otimes (c_1)_2 \varepsilon (\mu^{-1}(c_2))_1 (\mu^{-1}(c_2))_2 \varepsilon (h_1) h_2
= \sum_{c_1} c_1 \otimes c_2 \mu^{-1}(c_3) h
(I \otimes \phi) \rho_{C \otimes H}(c \otimes h)
= (I \otimes \phi) (\Delta_C \otimes I) (c \otimes h)
= \sum_{c_1} (I \otimes \phi) (c_1 \otimes c_2 \otimes h)
= \sum_{c_1} c_1 \otimes \phi(c_2 \otimes h)$$

$$=\sum c_1\otimes c_2\mu^{-1}(c_3)h.$$

So $\phi: c \times_{\alpha} h \mapsto \sum c_1 \mu^{-1}(c_2) h$ is a left C-comodule map.

At last, it is clear that ϕ is a right *H*-module map. This proves Proposition 1. \square

Proposition 2. Let $C \times_{\alpha} H$ be a crossed coproduct, and define the map

$$\gamma: C \times_{\alpha} H \to H$$
 by $\gamma(c \otimes h) = \varepsilon(c)h$.

Then γ is convolution invertible, with inverse $\gamma^{-1}(c \otimes h) = S(h)\varepsilon(c)$. In particular $C \hookrightarrow C \times_{\alpha} H$ is H-cocleft.

Proof. Set $\gamma^{-1}(c \otimes h) = S(h)\varepsilon(c)$. Then it is straightforward to verify that γ^{-1} is a right inverse for γ . For,

$$(\gamma * \gamma^{-1})(c \otimes h)$$

$$= M(\gamma \otimes \gamma^{-1})\Delta(c \otimes h)$$

$$= M(\gamma \otimes \gamma^{-1}) \left(\sum c_1 \times c_2^1 \alpha_1(c_3) h_1 \otimes c_2^2 \times \alpha_2(c_3) h_2 \right)$$

$$= \sum \varepsilon(c_1) c_2^1 \alpha_1(c_3) h_1 \otimes S(\alpha_2(c_3) h_2) \varepsilon(c_2^2)$$

$$= \sum \varepsilon(c_1) c_2^1 \varepsilon(c_2^2) \alpha_1(c_3) h_1 S(h_2) S(\alpha_2(c_3))$$

$$= \sum \varepsilon(c_1) c_2 \varepsilon(c_3) 1_H \varepsilon(h)$$

$$= \sum c_1 \varepsilon(c_2) 1_H \varepsilon(h) = \varepsilon(c) \varepsilon(h) 1_H = \varepsilon(c \otimes h) 1_H.$$

Similarly, we can check that γ is the right inverse of γ^{-1} . This proves Proposition 2. We have also proved theorem by combining Proposition 1 and Proposition 2.

Corollary 1. Let $C \times_{\alpha} H$ be a crossed coproduct, and $C \times_{\alpha} H \cong C \otimes H$ be left C-comodule. Then $C^{cop} \times_{\alpha} H^{cop} \to B^{cop}$ as left C^{cop} -comodule map, provided the antipode S of H is bijective.

Proof. First, from Proposition 2 we know that the map

$$\gamma: C \times_{\alpha} H \to H$$
 by $\gamma(c \otimes h) = \varepsilon(c)h$,

which is an invertible right *H*-module map, the module structure maps for $C \times_{\alpha} H$ and *H* are given by $f = (I \otimes M)$ and *M*, respectively.

Let \overline{S} denote the inverse of S and set $\mu = \overline{S}\gamma$. Note that μ is invertible under twist convolution with $\mu^{-1} = \overline{S}\gamma^{-1}$. It follows that if $B \cong C \times_{\alpha} H$, then B^{cop} is a right H^{cop} -module coalgebra which is cocleft via: $\mu: B^{cop} \to H^{cop}$. Thus, by Proposition 1, $C^{cop} \times_{\alpha} H^{cop} \to B^{cop}$ as left C^{cop} -comodule, where the map is given by

$$c^{cop} \times_{\alpha} h^{cop} \mapsto \sum c_2^{cop} \mu^{-1}(c_1^{cop}) h^{cop} = \sum c_2^{cop} \overline{S} \gamma^{-1}(c_1^{cop}) h^{cop}. \qquad \Box$$

Corollary 2. Let $C \times_{\alpha} H$ be a crossed coproduct. Then $C \times_{\alpha} H \to H \otimes C$ is right C-comodule map.

Proof. According to the theorem we know that $B \cong C \times_{\alpha} H$. We also know that

$$g: B \to H \otimes C$$
 by $g(b) = \sum \mu(b_1) \otimes P(b_2)$,

which is left C-comodule map, the comodule structure maps for B and $H \otimes C$ are given by $\rho_B = (I \otimes P)\Delta$ and $I \otimes \Delta$, respectively.

So $C \times_{\alpha} H \to H \otimes C$ is right C-comodule map, where the map is given by

$$g: c \times_{\alpha} h \mapsto \varepsilon(c_1)h \otimes P(c_2).$$

In other words, we need to check that: $(I \otimes \Delta)g = (g \otimes I)\rho_{C \times_{\alpha} H}$, then we have $\rho_{C \times_{\alpha} H}(c \otimes h) = \sum c_1 \otimes h \otimes P(c_2)$,

$$(I \otimes \Delta) g(c \otimes h)$$

$$= \sum (I \otimes \Delta) (\varepsilon(c_1) h \otimes P(c_2))$$

$$= \sum \varepsilon(c_1) h \otimes P(c_2) \otimes P(c_3)$$

and

$$(g \otimes I) \rho_{C \times_{\alpha} H}(c \otimes h)$$

$$= (g \otimes I) \left(\sum_{i=1}^{n} c_{1} \otimes h \otimes P(c_{2}) \right)$$

$$= \sum_{i=1}^{n} g(c_{1} \otimes h) \otimes P(c_{2})$$

$$= \sum_{i=1}^{n} \varepsilon(c_{1}) h \otimes P(c_{2}) \otimes P(c_{3}).$$

So $C \times_{\alpha} H \to H \otimes C$ is right *C*-comodule map.

References

- [1] Hai Bin Kan, Cohomologous transformations of cocycles for bialgebras (Chinese), Chinese Ann. Math. Ser. A 22(2) (2001), 141-150; translation in Chinese J. Contemp. Math. 22(2) (2001), 125-136
- [2] Jin Qi Li, [C, H]-Hopf modules and a structure theorem for H-module coalgebras, Chinese Ann. Math. Ser. A 16 (3) (1995), 312-319.
- [3] Gui-Long Liu, The structure of cocleft *H*-module coalgebra, Chinese Science Bull. 38(20) (1993), 1688-1688.
- [4] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993.
- [5] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1996.
- [6] Shuan Hong Wang, *H*-weak comodule coalgebras and crossed coproducts of Hopf algebras, Chinese Ann. Math. Ser. A 16(4) (1995), 471-479.