COCLEFT EXTENSIONS OF MODULE COALGEBRA

REN BEI-SHANG, GUO YING-XUE and ZHANG WEI-WEI

College of Mathematical Sciences
Guangxi Teachers Education University
Nanning, Guangxi, 530001, P. R. China
e-mail: gyx511314@sohu.com

Abstract

Using crossed coproducts, module coalgebra and cocleft extensions, this paper discusses the question about coalgebra cocleft extensions and isomorphism of crossed coproducts coalgebra.

1. Preliminaries

Let H be a Hopf algebra and C be its coalgebra over a field K.
Definition 1. Assume that C is also a weak left H-comodule, and that α is a linear map $\alpha: C \rightarrow H \otimes H, \alpha(c)=\sum \alpha_{1}(c) \otimes \alpha_{2}(c), \forall c \in C$. Then as a vector space $C \times{ }_{\alpha} H=C \otimes H$ with comultiplication $\Delta, \Delta(c \times h)=\sum c_{1} \times c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes c_{2}^{2}$ $\times \alpha_{2}\left(c_{3}\right) h_{2}, \quad \rho(c)=\sum c^{1} \otimes c^{2}$ is the left H-comodule structure map, $\forall c \in C$, $\forall h \in H$. Here we write $c \times h$ for the tensor $c \otimes h$. We say that $C \times_{\alpha} H$ is a crossed coproduct by using ρ and α if $\varepsilon(c \times h)=\varepsilon_{C}(c) \varepsilon_{H}(h)$ is its counit and 2010 Mathematics Subject Classification: 16W.

Keywords and phrases: crossed coproducts, module coalgebra, cocleft, coalgebra isomorphism.

Natural Science Foundation of Guangxi (0640070, 0991102); Innovation Project of Guangxi Graduate Education (200610603R03).

The Scientific Research Foundation of Guangxi Educational Committee (200911MS145).
Received October 16, 2009
coassociativity are satisfied. See also in [6], this is dual of definition of crossed products.

Definition 2. We call the linear map α normal if

$$
\varepsilon_{c}(c) 1_{H}=\sum \varepsilon_{H}\left(\alpha_{1}(c)\right) \alpha_{2}(c)=\sum \alpha_{1}(c) \varepsilon_{H}\left(\alpha_{2}(c)\right)
$$

See also in [6, Definition 2.1].
Remark 1. The linear map α is normal and S is the antipode of H. Then

$$
\varepsilon_{c}(c) 1_{H}=\sum S\left(\alpha_{1}(c)\right) \alpha_{2}(c)=\sum \alpha_{1}(c) S\left(\alpha_{2}(c)\right)
$$

Definition 3. A coalgebra C is a right H-module coalgebra, if
(1) C is a right H-module via: $c \otimes h \mapsto c \cdot h$.
(2) Δ and ε are right H-module maps: $\forall h \in H, \forall c \in C$,

$$
\begin{aligned}
& \Delta(c \cdot h)=\sum c_{1} h_{1} \otimes c_{2} h_{2}, \\
& \varepsilon_{C}(c \cdot h)=\varepsilon_{C}(c) \varepsilon_{H}(h) .
\end{aligned}
$$

See also in [5].
Definition 4. Let B be a right H-module. Then the invariants of H on B are the set ${ }^{H} B=\{b \in B \mid b \cdot h=b \varepsilon(h), \forall h \in H\}$.

Similar to that in [4, Chapter 1, Definition 1.7.1].
Definition 5. Let $C \subset B$ be a K-coalgebra and H be a Hopf algebra. Then
(1) $C \subset B$ is a right H-extension if B is a right H-module coalgebra with ${ }^{H} B=C$,
(2) the right H-extension $C \subset B$ is H-cocleft if there exists a coalgebra map $\mu: B \rightarrow H$ and $\varepsilon_{H} \mu=\varepsilon_{B}$ which is convolution invertible.

Dual of [4, Chapter 7, Definition 7.2.1].

2. Main Result

Theorem. An H-extension $C \subset B$ is H-cocleft $\Leftrightarrow B \cong C \times_{\alpha} H$.

See also in [3, Theorem 3].
Proposition 1. Let $C \subset B$ be a right H-extension, which is H-cocleft via: $\mu: B \rightarrow H$ and $\varepsilon_{H} \mu=\varepsilon_{B}$. Then there is a crossed coproduct action of C on H, given by

$$
c \cdot h=\sum \mu\left(c_{1}\right) c_{2}^{1} h \mu^{-1}\left(c_{2}^{2}\right)
$$

and a convolution invertible map $\alpha: C \rightarrow H \otimes H$ given by

$$
\alpha(c)=\sum \alpha_{1}(c) \otimes \alpha_{2}(c)
$$

This action gives B the structure of an H-crossed coproduct over C. Moreover, the coalgebra isomorphism $\phi: C \times{ }_{\alpha} H \rightarrow B$ given by

$$
c \times_{\alpha} h \mapsto \sum c_{1} \mu^{-1}\left(c_{2}\right) h
$$

is both a left C-comodule and right H-module map, where

$$
C \times{ }_{\alpha} H \text { is a right } H \text {-module via: }(c \otimes h) \cdot l=\sum c l_{1} \otimes h l_{2}, \quad \forall h, l \in H .
$$

To prove this, we need a technical lemma.
Lemma. Assume that $C \subset B$ is a right H-extension via: $W: C \otimes H \rightarrow C$, and that $C \subset B$ is H-cocleft via $\mu: B \rightarrow H$ with $\varepsilon_{H} \mu=\varepsilon_{B}$. Then
(1) $\mu^{-1} \circ W=M \tau\left(\mu^{-1} \otimes S\right)$.
(2) $\forall b \in B$, there exists a map $P: B \rightarrow C$ which is both right H-module and coalgebra map, then $P(b) \in C={ }^{H} B$.

Proof. (1) First observe that since W is a coalgebra map, $\mu^{-1} \circ W$ is the inverse of $\mu \circ W$. Then let $\mu \circ W=M(\mu \otimes I)$

$$
\begin{aligned}
& {\left[(\mu \circ W) *\left(\mu^{-1} \circ W\right)\right](c \otimes h) } \\
= & M\left[(\mu \circ W) \otimes\left(\mu^{-1} \circ W\right)\right] \Delta(c \otimes h) \\
= & M\left[M(\mu \otimes I) \otimes M \tau\left(\mu^{-1} \otimes S\right)\right]\left(\sum c_{1} \times c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes c_{2}^{2} \times \alpha_{2}\left(c_{3}\right) h_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum \mu\left(c_{1}\right) c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} S\left(\alpha_{2}\left(c_{3}\right) h_{2}\right) \mu^{-1}\left(c_{2}^{2}\right) \\
& =\sum \mu\left(c_{1}\right) c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} S\left(h_{2}\right) S\left(\alpha_{2}\left(c_{3}\right)\right) \mu^{-1}\left(c_{2}^{2}\right) \\
& =\sum \mu\left(c_{1}\right) c_{2}^{1} \alpha_{1}\left(c_{3}\right) \varepsilon(h) 1_{H} S\left(\alpha_{2}\left(c_{3}\right)\right) \mu^{-1}\left(c_{2}^{2}\right) \\
& =\sum \varepsilon(h) \mu\left(c_{1}\right) c_{2}^{1} \alpha_{1}\left(c_{3}\right) S\left(\alpha_{2}\left(c_{3}\right)\right) \mu^{-1}\left(c_{2}^{2}\right) \\
& =\sum \varepsilon(h) \varepsilon\left(c_{3}\right) \mu\left(c_{1}\right) c_{2}^{1} \mu^{-1}\left(c_{2}^{2}\right) \\
& =\sum \varepsilon(h) \varepsilon\left(c_{2}\right) c_{1} 1_{H} \\
& =\varepsilon(h) \varepsilon(c) 1_{H} \\
& =\varepsilon(c \otimes h) 1_{H}
\end{aligned}
$$

So $\mu^{-1} \circ W$ is the right inverse of $\mu \circ W$, and so $\mu^{-1} \circ W$ by uniqueness of inverses.
(2) $P: B \rightarrow C$ is right H-module, $\forall b \in B$, $\forall h \in H$, we have: $b \cdot h \in B$, so we define that: $P(b \cdot h) \triangleq P(b) \varepsilon(h) \in C$.

And $P W(b \otimes h)=W(P \otimes I)(b \otimes h)$.
So $P(b \cdot h)=P(b) \cdot h=P(b) \varepsilon(h)$.
Then $P(b) \in C={ }^{H} B$.

Remark 2. Following the condition of this lemma, we also know that:
(1) $\mu(b \cdot h)=\mu(b) h$

$$
\mu^{-1}(b \cdot h)=S(h) \mu^{-1}(b)
$$

(2) $\varepsilon_{B}=\varepsilon_{C} P=\varepsilon_{H} \mu$.

The lemma enables us to define an inverse to ϕ. Namely, define

$$
\psi: B \cong C \times_{\alpha} H \quad \text { by } b \mapsto P\left(b_{1}\right) \times_{\alpha} \mu\left(b_{2}\right) .
$$

Now, let us prove the proposition. First, we show that ϕ and ψ are mutual inverse.

$$
\begin{aligned}
& \psi \phi(c \otimes h) \\
= & \psi\left(\sum c_{1} \mu^{-1}\left(c_{2}\right) h\right) \\
= & (P \otimes \mu) \Delta_{c}\left(\sum c_{1} \mu^{-1}\left(c_{2}\right) h\right) \\
= & (P \otimes \mu)\left(\sum c_{11} \mu^{-1}\left(c_{21}\right) h_{1} \otimes c_{12} \mu^{-1}\left(c_{22}\right) h_{2}\right) \\
= & \sum P\left(c_{11} \mu^{-1}\left(c_{21}\right) h_{1}\right) \otimes \mu\left(c_{12} \mu^{-1}\left(c_{22}\right) h_{2}\right) \\
= & \sum P\left(c_{11}\right) \varepsilon\left(\mu^{-1}\left(c_{21}\right)\right) \varepsilon\left(h_{1}\right) \otimes \mu\left(c_{12}\right) \mu^{-1}\left(c_{22}\right) h_{2} \\
= & \sum P\left(c_{11}\right) \otimes \mu\left(c_{12}\right) \varepsilon\left(\mu^{-1}\left(c_{21}\right)\right) \mu^{-1}\left(c_{22}\right) \varepsilon\left(h_{1}\right) h_{2} \\
= & \sum c_{1} \otimes \mu\left(c_{2}\right) \mu^{-1}\left(c_{3}\right) h \\
= & \sum c_{1} \otimes \varepsilon\left(c_{2}\right) h \\
= & c \otimes h .
\end{aligned}
$$

On the other side, we have:

$$
\begin{aligned}
& \phi \psi(b) \\
= & \phi(P \otimes \mu) \Delta(b) \\
= & \sum \phi\left(P\left(b_{1}\right) \otimes \mu\left(b_{2}\right)\right) \\
= & \sum P\left(b_{1}\right)_{1} \mu^{-1}\left(P\left(b_{1}\right)_{2}\right) \mu\left(b_{2}\right) \\
= & \sum P\left(b_{1}\right)_{1} \varepsilon\left(\mu^{-1}\left(P\left(b_{1}\right)_{2}\right) \mu\left(b_{2}\right)\right) \\
= & \sum P\left(b_{1}\right)_{1} \varepsilon\left(\mu^{-1}\left(P\left(b_{1}\right)_{2}\right)\right) \varepsilon\left(\mu\left(b_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum P\left(b_{1}\right)_{1} \varepsilon\left(P\left(b_{1}\right)_{2}\right) \varepsilon\left(\mu\left(b_{2}\right)\right) \\
& =\sum b_{1} \varepsilon\left(\mu\left(b_{2}\right)\right) \\
& =\sum b_{1} \varepsilon\left(b_{2}\right)=b
\end{aligned}
$$

So $\psi \phi=I_{C \times_{\alpha} H}, \phi \psi=I_{B}$.
Next, we prove that $\phi: c \times_{\alpha} h \mapsto \sum c_{1} \mu^{-1}\left(c_{2}\right) h$ is a left C-comodule map. It means we need to check that $\rho_{B} \phi=(I \otimes \phi) \rho_{C \otimes H}$. Then, we have:

$$
\begin{aligned}
& \rho_{B} \phi(c \otimes h) \\
= & \rho_{B}\left(\sum c_{1} \mu^{-1}\left(c_{2}\right) h\right) \\
= & (P \otimes I) \Delta_{B}\left(\sum c_{1} \mu^{-1}\left(c_{2}\right) h\right) \\
= & \sum(P \otimes I)\left[\left(c_{1} \mu^{-1}\left(c_{2}\right) h\right)_{1} \otimes\left(c_{1} \mu^{-1}\left(c_{2}\right) h\right)_{2}\right] \\
= & \sum P\left(c_{1} \mu^{-1}\left(c_{2}\right) h\right)_{1} \otimes\left(c_{1} \mu^{-1}\left(c_{2}\right) h\right)_{2} \\
= & \sum P\left(c_{1}\right)_{1} \varepsilon\left(\mu^{-1}\left(c_{2}\right)\right)_{1} \varepsilon\left(h_{1}\right) \otimes\left(c_{1}\right)_{2}\left(\mu^{-1}\left(c_{2}\right)\right)_{2} h_{2} \\
= & \sum\left(c_{1}\right)_{1} \otimes\left(c_{1}\right)_{2} \varepsilon\left(\mu^{-1}\left(c_{2}\right)\right)_{1}\left(\mu^{-1}\left(c_{2}\right)\right)_{2} \varepsilon\left(h_{1}\right) h_{2} \\
= & \sum c_{1} \otimes c_{2} \mu^{-1}\left(c_{3}\right) h \\
& (I \otimes \phi) \rho_{C \otimes H}(c \otimes h) \\
= & (I \otimes \phi)\left(\Delta_{C} \otimes I\right)(c \otimes h) \\
= & (I \otimes \phi)\left(\Delta_{C}(c) \otimes h\right) \\
= & \sum(I \otimes \phi)\left(c_{1} \otimes c_{2} \otimes h\right) \\
= & \sum c_{1} \otimes \phi\left(c_{2} \otimes h\right)
\end{aligned}
$$

$$
=\sum c_{1} \otimes c_{2} \mu^{-1}\left(c_{3}\right) h
$$

So $\phi: c \times_{\alpha} h \mapsto \sum c_{1} \mu^{-1}\left(c_{2}\right) h$ is a left C-comodule map.
At last, it is clear that ϕ is a right H-module map. This proves Proposition 1.
Proposition 2. Let $C \times{ }_{\alpha} H$ be a crossed coproduct, and define the map

$$
\gamma: C \times_{\alpha} H \rightarrow H \quad \text { by } \quad \gamma(c \otimes h)=\varepsilon(c) h
$$

Then γ is convolution invertible, with inverse $\gamma^{-1}(c \otimes h)=S(h) \varepsilon(c)$. In particular $C \hookrightarrow C \times_{\alpha} H$ is H-cocleft.

Proof. Set $\gamma^{-1}(c \otimes h)=S(h) \varepsilon(c)$. Then it is straightforward to verify that γ^{-1} is a right inverse for γ. For,

$$
\begin{aligned}
& \left(\gamma * \gamma^{-1}\right)(c \otimes h) \\
= & M\left(\gamma \otimes \gamma^{-1}\right) \Delta(c \otimes h) \\
= & M\left(\gamma \otimes \gamma^{-1}\right)\left(\sum c_{1} \times c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes c_{2}^{2} \times \alpha_{2}\left(c_{3}\right) h_{2}\right) \\
= & \sum \varepsilon\left(c_{1}\right) c_{2}^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes S\left(\alpha_{2}\left(c_{3}\right) h_{2}\right) \varepsilon\left(c_{2}^{2}\right) \\
= & \sum \varepsilon\left(c_{1}\right) c_{2}^{1} \varepsilon\left(c_{2}^{2}\right) \alpha_{1}\left(c_{3}\right) h_{1} S\left(h_{2}\right) S\left(\alpha_{2}\left(c_{3}\right)\right) \\
= & \sum \varepsilon\left(c_{1}\right) c_{2} \varepsilon\left(c_{3}\right) 1_{H} \varepsilon(h) \\
= & \sum c_{1} \varepsilon\left(c_{2}\right) 1_{H} \varepsilon(h)=\varepsilon(c) \varepsilon(h) 1_{H}=\varepsilon(c \otimes h) 1_{H} .
\end{aligned}
$$

Similarly, we can check that γ is the right inverse of γ^{-1}. This proves Proposition 2. We have also proved theorem by combining Proposition 1 and Proposition 2.

Corollary 1. Let $C \times{ }_{\alpha} H$ be a crossed coproduct, and $C \times_{\alpha} H \cong C \otimes H$ be left C-comodule. Then $C^{c o p} \times_{\alpha} H^{c o p} \rightarrow B^{c o p}$ as left $C^{c o p}$-comodule map, provided the antipode S of H is bijective.

Proof. First, from Proposition 2 we know that the map

$$
\gamma: C \times_{\alpha} H \rightarrow H \quad \text { by } \gamma(c \otimes h)=\varepsilon(c) h
$$

which is an invertible right H-module map, the module structure maps for $C \times{ }_{\alpha} H$ and H are given by $f=(I \otimes M)$ and M, respectively.

Let \bar{S} denote the inverse of S and set $\mu=\bar{S} \gamma$. Note that μ is invertible under twist convolution with $\mu^{-1}=\bar{S} \gamma^{-1}$. It follows that if $B \cong C \times{ }_{\alpha} H$, then $B^{C O p}$ is a right $H^{C O P}$-module coalgebra which is cocleft via: $\mu: B^{C O P} \rightarrow H^{C O P}$. Thus, by Proposition 1, $C^{c o p} \times_{\alpha} H^{c o p} \rightarrow B^{c o p}$ as left $C^{c o p}$-comodule, where the map is given by

$$
c^{c o p} \times_{\alpha} h^{c o p} \mapsto \sum c_{2}^{c o p} \mu^{-1}\left(c_{1}^{c o p}\right) h^{c o p}=\sum c_{2}^{c o p} \bar{S}^{-1}\left(c_{1}^{c o p}\right) h^{c o p}
$$

Corollary 2. Let $C \times_{\alpha} H$ be a crossed coproduct. Then $C \times_{\alpha} H \rightarrow H \otimes C$ is right C-comodule map.

Proof. According to the theorem we know that $B \cong C \times_{\alpha} H$. We also know that

$$
g: B \rightarrow H \otimes C \text { by } g(b)=\sum \mu\left(b_{1}\right) \otimes P\left(b_{2}\right)
$$

which is left C-comodule map, the comodule structure maps for B and $H \otimes C$ are given by $\rho_{B}=(I \otimes P) \Delta$ and $I \otimes \Delta$, respectively.

So $C \times_{\alpha} H \rightarrow H \otimes C$ is right C-comodule map, where the map is given by

$$
g: c \times_{\alpha} h \mapsto \varepsilon\left(c_{1}\right) h \otimes P\left(c_{2}\right)
$$

In other words, we need to check that: $(I \otimes \Delta) g=(g \otimes I) \rho_{C \times} H$, then we have $\rho_{C \times_{\alpha} H}(c \otimes h)=\sum c_{1} \otimes h \otimes P\left(c_{2}\right)$,

$$
\begin{aligned}
& (I \otimes \Delta) g(c \otimes h) \\
= & \sum(I \otimes \Delta)\left(\varepsilon\left(c_{1}\right) h \otimes P\left(c_{2}\right)\right) \\
= & \sum \varepsilon\left(c_{1}\right) h \otimes P\left(c_{2}\right) \otimes P\left(c_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (g \otimes I) \rho_{C \times_{\alpha} H}(c \otimes h) \\
= & (g \otimes I)\left(\sum c_{1} \otimes h \otimes P\left(c_{2}\right)\right) \\
= & \sum g\left(c_{1} \otimes h\right) \otimes P\left(c_{2}\right) \\
= & \sum \varepsilon\left(c_{1}\right) h \otimes P\left(c_{2}\right) \otimes P\left(c_{3}\right) .
\end{aligned}
$$

So $C \times_{\alpha} H \rightarrow H \otimes C$ is right C-comodule map.

References

[1] Hai Bin Kan, Cohomologous transformations of cocycles for bialgebras (Chinese), Chinese Ann. Math. Ser. A 22(2) (2001), 141-150; translation in Chinese J. Contemp. Math. 22(2) (2001), 125-136
[2] Jin Qi Li, [C, H]-Hopf modules and a structure theorem for H-module coalgebras, Chinese Ann. Math. Ser. A 16 (3) (1995), 312-319.
[3] Gui-Long Liu, The structure of cocleft H-module coalgebra, Chinese Science Bull. 38(20) (1993), 1688-1688.
[4] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993.
[5] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1996.
[6] Shuan Hong Wang, H-weak comodule coalgebras and crossed coproducts of Hopf algebras, Chinese Ann. Math. Ser. A 16(4) (1995), 471-479.

