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Abstract 

Spectral action balance equation is an equation that used to simulate short-
crested wind-generated waves in shallow water areas such as coastal 
regions and inland waters. This equation consists of two spatial 
dimensions, wave direction and wave frequency. In this paper, we 
introduce the splitting scheme and proved that it is consistent to the 
central spaces scheme with same accuracy. This numerical scheme was 
adopted to split the wave spectral action balance equation into four one-
dimensional problems, which for each small problem obtains the 
independently tridiagonal linear systems. Therefore, we can solve these 
systems by direct or iterative methods at the same time which is very fast 
when performed by a multi-core computer. The numerical results of these 
two methods are very close as shown in the numerical experiments. 

1. Introduction 

A third-generation model is a number of advanced spectral wind-wave models. 
It has been developed such as WAM model of the WAMDI Group [5], in which all 
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processes of wave generation, dissipation and nonlinear wave-wave interactions are 
accounted for explicitly. WAM model considers problems on oceanic scales, and 
make use of explicit propagation schemes in geographical and spectral spaces. 
Tolman [6] developed model based on spectral action balance equation, 
WAVEWATCH model incorporates all relevant wave-current interaction 
mechanism, including changes of absolute frequencies due to unsteadiness of depth 
and currents. The model explicitly accounts for growth and decay of wave energy 
and for nonlinear resonant wave-wave interactions. Booij et al. [1] and Ris et al. [4] 
summarized the research attainment in the wave energy, dissipation and nonlinear 
wave-wave interactions, and developed the third-generation for coastal region in 
shallow water, SWAN (Simulating WAve Nearshore) model, which can be applied 
in coastal zones, lakes and estuaries. The model uses the spectral action balance 
equation to represent the process of wave shoaling, refraction, bottom friction, 
depth-induced wave breaking, whitecapping, wind input and nonlinear wave-wave 
interactions reasonably. 

For the numerical treatment of the spectral action balance equation, we use the 
finite difference method with backward time central spaces. The discretization yields 
a system of linear equation banded-9 that needs to be solved. This system can be 
solved with a Gauss-Seidel iterative method. 

In recent years, computers’ evolution is going dramatically fast. Computers have 
been improved a lot and become much more powerful. One of the new types of 
computers is a multi-processing computer. So, we should develop algorithms that 
support and could be suitable for this evolution. In this paper, we introduce the 
method of fractional steps (see Yanenko [8]) for solving spectral action balance 
equation. This method splits the original four-dimensional space problem into a set 
of one-dimensional space problems. At each step, one has to solve m independent 
one-dimensional space systems of linear equations where m is the number of one-
dimensional space problems in appropriate direction. Therefore, we can solve each 
of these systems of linear equations at every step by m independent parallel 
processors. This method is preferable for multi-processing computers. 

2. Finite Difference Approximation for Spectral Action Balance Equation 

We consider the wave spectral action balance equation which described the 
wave characteristic: 
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where Ω and Γ are domains in geographical and spectral ,2R  Ω∂  is boundary of Ω, 

Γ∂  is boundary of Γ, ( )θσ,,,0 yxN  is an initial value, and n is a normal direction 

of each variable, which ( )tyxN ,,,, θσ  is the action density as a function of 

relative frequency σ, direction θ, horizontal coordinates x and y, and time t. 
,xc  ,yc  σc  and θc  are propagation velocities in ,x−  ,y−  σ−  and θ−  directions, 

respectively. The first term of the left-hand side of equation (1) represents the local 
rate of change of action density in time, the second and the third term represent 
propagation of action density in geographical space, with propagation velocities xc  

and yc  in x and y spaces, respectively. The fourth term represents shifting of relative 

frequency due to variations in depths and currents with propagation velocity σc  in σ 

space. The fifth term represents depth-induced and current-induced refractions with 
propagation velocity θc  in θ space. And the right hand side the term S is the source 

term. More details are given in Booij et al. [1] and Ris et al. [4]. 

We choose a rectangular grid with constant mesh sizes xΔ  and yΔ  in x- and y- 

directions, respectively. The spectral space is divided into elementary bins with a 
constant directional resolution θΔ  and a constant relative frequency resolution 

.σσΔ  We denote the grid counters as ,1 xNi ≤≤  ,1 yNj ≤≤  σ≤≤ Nl1  and 

θ≤≤ Nm1  in x-, y-, σ- and θ- spaces, respectively. All variables are located at 

points ( ).,,, mlji  By the finite difference approximation using the backward time 

central geographical and spectral spaces, we obtain the following approximation of 
equation (1): 
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where n is a time-level with tΔ  a time step. We can approximate [ ] ,
2
1+ixNc  

[ ] ,
2
1−ixNc  [ ] ,

2
1+jyNc  [ ] ,

2
1−jyNc  [ ] ,

2
1+σ lNc  [ ] ,

2
1−σ lNc  [ ]

2
1+θ mNc  and [ ]

2
1−θ mNc  

by using 

,
2

1

2
1

+
+

+
= kk

k

NN
N     ,

2
1

2
1

−
−

+
= kk

k

NN
N     where    .,,, mljik =  (3) 

Substituting this equation into (2) and rearranging them, then we have the 
following equation: 
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where ;...,,2,1 xNi =  ;...,,2,1 yNj =  ;...,,2,1 σ= Nl  ....,,2,1 θ= Nm  

From Figure 1, we can see that the structure of the coefficient matrix of the 
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linear system of the spectral action balance equation be in the form of banded-9 
diagonal. This linear system can be solved by any direct and iterative method under 
the diagonal dominant condition, that is, for each row of the coefficient matrix, the 
sum of absolute off diagonal entry must be less than the absolute main diagonal. 

Now, we are analyzing the criteria of σΔΔΔΔ ,,, yxt  and θΔ  for existent and 

uniqueness solution of this linear system. Let us consider the diagonal dominant 
condition 
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,cond≡  (5) 

where ;...,,2,1 xNi =  ;...,,2,1 yNj =  ;...,,2,1 σ= Nl  ....,,2,1 θ= Nm  

Next, we try to simplify these stability criteria, by letting 
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Substituting the notation (6) into the equations (5) and (6), yields 
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therefore 

 ( ) { } .1,,,max4 <Δ θσ MMMMt yx  (9) 

Thus the condition of tΔ  that satisfies the diagonal dominant condition of the linear 
system is as following: 

 { } .,,,max4
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3. Fractional-step Method 

In the previous section, the central difference scheme of the spectral action 
balance equation was described with a very huge coefficient matrix that needs to be 
solved by any direct and iterative method that takes a lot of computer capacity and 
operation count. 

In this section, we will design a new numerical scheme that reduces the size of 
the original problem by splitting the original problem into 4 smaller problems. For 
each smaller problem can be solved easier than the original problem and takes less 
computer’s resource. This method is called “fractional-step method.” 

Let us consider the spectral action balance equation on a domain Γ×Ω  with 
boundary :Γ∂×Ω∂  
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and we introduce the splitting scheme 
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Now, we will prove that (13)-(16) are consistent with (12) by rearranging the 
equations (13)-(16), yields 
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where I is the identity approximation operator. To eliminate 4
1+k

N  in (17) and (18), 
we multiply the equation (18) by ( )xI Λτ+  and adding the result to (17), then we 

obtain 
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substituting (24) and (25) into (23), yields 
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Therefore, the scheme (27) and the equivalent scheme (13)-(16) approximate the 
spectral action balance equation with the same accuracy ( )τO  as the scheme (12). 

For the stability criteria for each system, we must choose the type of approximate 
operators σΛΛΛ ,, yx  and .θΛ  Here, we choose these approximate operators as 

central difference approximation and apply the central difference approximation 
with the equations (13)-(16), yields 
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From the splitting scheme, we get four-tridiagonal systems and solve these 
systems under the diagonal dominant condition, by considering 
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Thus the condition of τ that satisfies the diagonal dominant of the linear system of 
splitting scheme is the following: 

 .,,,min
⎭
⎬
⎫

⎩
⎨
⎧ θΔσΔΔΔ<τ

θσ MMM
y

M
x

yx
 (35) 

4. Numerical Experiments 

In this section, we collect some results calculated using the scheme in the last 
two sections. We wish to emphasize the diversity of the possible applications. 

We begin with spectral action balance equation: 
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and source term: 

( ( ) ( ) ) ,200,,,,0 212122 =θσ ++ θσ NNyxS  

( ) .0,,,,,0,,,, >Γ×Ω∈θσ∀=θσ tyxyxtS  

In this experiment, we simulate a spectral action balance equation in a square 
domain. The physical configuration consists of a square container filled with wave 
energy. The central difference and splitting scheme are presented. First, we set the 
initial values of N as zero for every node in the domain .Γ×Ω  At the initial time, 
we filled the wave energy into the bottom-left of the domain. At first time step, the 
energy peaked at that grid point and after that it moves along the direction field of 
the propagation velocities. The numerical results by these two methods are very 
similar as shown in Figures 2 and 3. 

5. Conclusions and Discussions 

We have analyzed the splitting schemes for numerical solution of the spectral 
action balance equation (1) with time splitting. This method has first-order accuracy 
in time and second-order accuracy in geographical and spectral spaces. This 
numerical scheme was adopted to split the wave spectral action balance equation 
into four one-dimensional problems, which for each small problem obtains the 
independently tridiagonal linear systems. Therefore, we can solve these systems by 
direct or iterative methods at the same time which is very fast when performed by a 
multi-core computer. The numerical results of these two methods are very close as 
shown in the numerical experiments. 
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Figure 1. The structural coefficient matrix of the spectral action balance equation by 
central difference scheme. 
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Figure 2. Numerical results for every 30 time step by using central difference 
scheme. 
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Figure 3. Numerical results for every 30 time step by using splitting scheme. 


