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Abstract 

Until now the problem of counting Latin rectangles nm ×  has been 
solved with an explicit formula for 3,2=m  and 4 only. In the present 

paper, an explicit formula is provided for the calculation of the number of 
Latin rectangles for any order m. The results attained up to now become 
particular cases of this new formula. Furthermore, putting ,nm =  the 

number of Latin squares of order n can also be obtained in an explicit 
form. 

0. Introduction 

A Latin rectangle nm ×  is a matrix with n rows and n columns the elements of 
which are chosen in [ ] { }nn ...,,1=  so that two elements are never the same, neither 

on the same row nor on the same column. It is said that such a Latin rectangle has 
order m. From the definition it follows that nm ≤  and that each row of a Latin 
rectangle is a permutation of [ ].n  

Furthermore, it is clear that it is always possible to standardize the first row 
making it the same as the permutation .21 n  In such a case, we say that we are 

dealing with a “reduced Latin rectangle”. 

If we call the number of Latin rectangles nm ×  with ( )nmL ,  and the number 
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of reduced Latin rectangles with the same dimension with ( ),, nmK  then it is clear 

that ( ) ( ).,!, nmKnnmL =  

The problem of counting Latin rectangles has engaged several generations of 
mathematicians, but the results reached up to now, as we will see later, are limited to 
certain special cases. 

With this paper, we intend to finally supply an explicit formula for the 
calculation of ( )nmK ,  for any value of the order m. 

The partial results attained up to now will result special cases of such a formula. 

The result obviously also allows the calculation of the number of Latin squares 
of order n, which represent the special case of nm ×  Latin rectangles in which m 
takes on its maximum admissible value n. 

1. A Brief Survey of Results 

A Latin rectangle consists of m permutations of [n] which, taken two by two, do 
not have fixed points. It is from this point of view that the problem was initially 
studied by Montmort, Euler and Lucas. 

It seems that the solution in the simplest case ,2=m  known as “derangement 

problem”, can be found going back to Montmort [6]. It consists of the number nD  of 

the permutations of [n] without fixed points given by: 

 ( )∑ −=
n

k
kn k

nD
0

!
!1  (1.1) 

and equivalent to ( ).,2 nK  

In 1891, Lucas expounded the famous “ménage problem” which consists of 
counting the ways of arranging n couples at a round table so that men and women 
alternate and no husband and wife are adjacent to one another. The problem, 
examined since 1878 by Tate, was also studied by Cayley and Muir, however no 
satisfactory results were reached. 

The solution to ménage problem is equivalent to the enumeration of all the 
permutations of [ ]n  which are discordant with both the permutations n21  and 

.132 n  The generalisation of the above mentioned problem – known as “the 

cyclical Touchard problem of index m” or “problem of m-discordant permutations” – 
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proposes the counting of all the permutations σ of [ ]n  so that: [ ],ni ∈∀  ( ) ii −σ  

( ).mod1...,,1,0 nm −≢  

It is also said that this problem is equivalent to the enumeration of the “very 
reduced Latin rectangles” of order ,1+m  the number of which is indicated with 

( ),, nmV  that have the first m permutations ,jσ  with [ ],mj ∈  in the canonical 

form: ( ) ( ).mod1 njiij −+=σ  

The solution in the simplest case 2=m  was found by Touchard [15] and 
consists of Touchard’s famous numbers ,nU  equivalent to ( ),,2 nV  expressed by: 

 ( ) ( )∑ −⎟
⎠
⎞

⎜
⎝
⎛ −

−
−=

n
k

kn kn
k

kn
kn

nU
0

!.
2

2
21  (1.2) 

For the subsequent case ( )nV ,3  recursive algorithms have been obtained by Riordan 

[12] and by Yamamoto [18]. However, an explicit formula was only provided in 
1967 by Moser [7]. In the case ( ),,4 nV  the biggest yet dealt with, there is only one 

recursive result by Whitehead [16] and possibly an explicit formula by Nechvatal [8] 
also in 1979. 

However, let us return to the more general and more complex problem of the 
calculation of ( ),, nmK  which represents the aim of this paper. 

The first attempts at the calculation of ( )nK ,3  go back to Jacob and to 

Kerawala [5], who found a recursive formula. The following tidy explicit formula 
for ( )nK ,3  is, on the other hand, attributed to Yamamoto (see [1] and [10]): 

 ( ) ( )∑
=++

⎟
⎠
⎞

⎜
⎝
⎛ ++

−=
ncba

cb
b
ba

c
annK .

23
!
!21!,3  (1.3) 

Furthermore, in 1944, Riordan obtained an expression of ( )nK ,3  in terms of 

Touchard’s numbers nU  and subsequently, in 1946 [11], the well-known formula: 

 ( ) ,,3
2

0
2∑

⎥⎦
⎤

⎢⎣
⎡

−−⎟
⎠
⎞

⎜
⎝
⎛=

n

knknkk UDD
k
n

nK  (1.4) 

(with )10 =U  which expresses ( )nK ,3  in terms of kD  and .kU  
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It is necessary to say that until now, in this line of research, no other progress 
has been achieved since, for ,3>m  it has not been possible to obtain ( )nmK ,  in 

terms of ( )niK ,  and ( )njV ,  with ., mji <  

The case of ( ),,4 nK  which is the most complex yet to be dealt with 

successfully, was only solved with an explicit formula in 1979, this was achieved 
independently by Nechvatal [8] and by Athreya et al. [1]. 

Subsequently, in 1980, Pranesachar [10] and Nechvatal [9], by different means, 
found a way to express ( )nmK ,  for any value of m by means of the Möbius function 

of the lattice of partitions of a set. The limit of these research works is that they take 
the calculation of ( )nmK ,  back to the enumeration of other combinatorial objects, 

such as the partitions of an integer, for which no explicit formulas are known, and 
thus do not allow an explicit formula for ( )nmK ,  to be obtained. A further tidy 

result of this type was achieved by Gessel in [3]. 

Until now, then, no explicit formula is known which permits the calculation of 
( )nmK ,  whatever the value of m. 

We would like to conclude this section remembering that another interesting 
line of research tried to get asymptotic expressions of ( )., nmK  The first significant 

paper of this kind is attributed to Erdös and Kaplansky [2] in 1946, subsequent 
results were obtained by Yamamoto in [17] and Stein in [14]. 

Finally, in recent years, Godsil and McKay [4] achieved an asymptotic valuation 
of ( )., nmV  

2. Notation and Preliminaries 

Very useful concepts in the study of permutations without fixed points are those 
of board and of rook polynomial. 

A board is a nonempty subset of PP ×  ( =P  set of positive ) ,integers  the 

elements of board are called squares. Considering a board C it is usually indicated 
with ( )Crk  the number of different ways of placing k non-attacking rooks on it. The 

rook polynomial of C in the symbolic variable x, that we will call ( ),CR  is given by 

( )∑k
k

k xCr .  
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If we write nS  for the set of all permutations of [ ],n  then every nS∈σ  can be 

thought of as a board, called the “graph” of σ, the squares of which are the couples 
( )( ) [ ]., niii ∈∀σ  It is furthermore obvious that m permutations, two by two without 

fixed points, make up a board of nm ⋅  squares, if in such a board the first 

permutation is the identical one ( ) ,1=σ i  it will hereon be indicated with ( ).mC  

We furthermore state, to have a greater number of symbols, that a number put 
up to the right of a symbol does not denote a raising to a power of the same, but it 

acts as a new symbol (therefore ,2a  it is not the square of a). When we want to 

indicate a raised to m, we write ( ) .ma  

We will call gC  the board, included in ( ),mC  formed by the gth permutation of 
( ) [ ]( ).mgC m ∈   Since, as has been mentioned previously, to speak about ( ),mC  it 

is the same as to speak about a reduced Latin rectangle of order m, we will refer 

often to gC  as the g-th line of ( )mC  (which is not to be confused with the gth row 

or column of ( )mC  like a board that are different things). We can even say that a 

subset of gC  has “grade” g. 

At this point let us remember a classic result which joins the rook polynomials 
to the permutations without fixed points. We consider the permutations as boards 
and, taking the board [ ] [ ],nnB ×⊆  we indicate with ( )BNs  the number of 

permutations of [n] which have exactly s squares in common with B. So giving us 
the following tidy relation: 

 ( ) ( ) ( ) ( )∑ −⎟
⎠
⎞

⎜
⎝
⎛−= −

n

s
k

sk
ks Brkn

s
k

BN !1  (2.1) 

for the proof of this see [13, Chapter 2.3]. 

Now, let us introduce some conventions in the use of symbols. The sets are 
always indicated with capital letters and the number of the elements which make 
them up with the corresponding lower case letter ( ).therefore Aa =  ( )AC  will be 

the complementary of the set A in the universe set. 

( )mT  will represent a generic system of independent rooks – that is which do 

not attack each other – put on ( )mC  and ,gT  with [ ],mg ∈  will be the part of the 
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system contained on the gth line of ( )mC  ( ( ) )gmg CTT ∩=  and thus it will be: 
( ) .21 mm TTTT ∪∪∪=  

Furthermore, if ( ),mCA ⊆  then we will say that ( )AR  is the projection for 

rows of A in ( ),mC  consisting of all the squares of ( )mC  which have any square of 
A in their own row ( ( )).obviously, AA R⊆  We will also say that ( )AgR  is the 

projection for rows of A on the g-th line of ( )mC  and we will put 

( ) ( ) ,g
g CAA ∩RR =  with the consequence that: ( ) ( ) ( ).1 AAA mRRR ∪∪=  

Similarly, speaking of columns instead of rows, we can define ( )AC  and ( ).AgC  

Finally, we define the set ( ) ( ) ( )AAA CRI ∩=  as the “impression” of A and 

the set ( ) ( ) ( )AAA CRO ∪=  as the “shadow” of A. Thus ( ( ) )mTO  will be the set 

of all the squares of ( )mC  subject to the attack of any rook of ( )mT  and which 

therefore cannot contain other independent rooks from those of ( ).mT  

To indicate the number of ways in which the set A can generally be arranged, 
considering the restrictions which have been imposed on it, we will write ( ).Aπ  So, 

we shall obtain that ( ) ( ( ) )., mCnmK π=  

As it is known, a partition in k blocks of a set A is formed by a collection of 

nonempty sets ,iA  with [ ],ki ∈  two by two disjoint and such that ∪
k

ii AA
1

.=  We 

will indicate with ( )∏ A  the set of the partitions of A; if ( )∏∈π A  and π has k 

blocks, we say that ;k=π  finally, we put [ ]( )∏ ∏=n n .  

Let us also remember that the refinement of two partitions 1π  and ,2π  with ,1π  

( )∏∈π ,2 A  is the partition of A consisting of all the nonempty intersections of 

some block of 1π  with some block of .2π  

If { }sxxX ...,,1=  is a set of variables, we put, for economy of space: 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

sxx
n

X
n

...,,1
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and furthermore: 

∑ ∑ ∏ ∏ ∏ ∏
∈ ∈ ∈

===
Xx Xx Xx

iii
i i i

xXxXxX !!;;  

and, ranging each ix  within its own domain: 

∑ ∑ ∑=
X x xs1

.  

We will indicate with ( ) ( ) ( )11 +−−= knnnn k  the falling factorial of n and 

with ( ) ( )11 −++= knnnn k  the raising factorial of n. Now, given that 

( ) !nn n =  we intend to put ¡nn n =  even if in other literature this symbolism has 

been used to indicate the subfactorial of n. 

Let us conclude this section with some recalls relative to the permutations of 
[ ].n  

If nS∈σ  and ( ) [ ],, niai i ∈∀=σ  then we can also say that σ corresponds to 

the word .1 naa  It is well known, see [13, p. 17] and following, that σ can be 

shared in an unambiguous way in the product of disjoint cycles on the elements of 
[n] and that it can have a “standard representation”, which we will indicate with 

,1 nss  writing a) the elements of each cycle with the largest element first and b) 

arranging the cycles in increasing order of their largest element. In such a case each 
cycle will start with a left-to-right maximum, i.e., with an element is  so that ji ss >  

for each .ij <  

Another way to describe σ can be achieved by indicating with ib  the number of 

elements j of its standard representation on the left of i with ij >  and defining 

( ) ( )nbbI ...,,1=σ  the “inversion table” of σ. In fact, it can be easily proved, see 

[13, Proposition 1.3.9], that between the nS∈σ  and the ( )σI  there is a bijection 

and furthermore that: ,0 inbi −≤≤  [ ].ni ∈∀  

3. The Associated Partitions 

In this section, we want to show how the computation of ( )nmK ,  can be taken 

back to the enumeration of a double system of partitions of [n]. 
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The first step in the argument is to reiterate the method of calculation by means 
of systems of independent rooks expressed by the formula (2.1). 

Let us suppose that we want to determine the number ( )nmK ,  of all the 

possible ( )mC  and that we have already counted all the possible arrangements of the 

first 1−m  lines ( ),1−mC  the number of ways in which ( )mC  can be arranged can be 

obtained easily, by means of the formula (2.1), once ( ( ) ),1−m
k Cr  for ,0=k  

,1..., −m  are known. 

In fact, if ( ) 1
11

1
11

1
11

−
−−

−
− = m

mm
m
m TTT ∪∪  is the independent generic system of 

rooks on ( )1−mC  and therefore ( ) ,1
11

1
11

1
11 kttt m

mm
m
m =++= −

−−
−
−  we will have that: 

 ( ) ( ) ( )
( )

( ( ) ) ( ( ) )∑ −
−

−
− π−−=π

−
−−

−

n
m
m

m
m

t
t

m TtnC
m
mm

m0

1
11

1
11 .!1

1
111

11
 (3.1) 

Now we are trying to calculate ( )1−π mC  with the same assumptions. Now 

( ) ( ( ) ) ( )1
11

11
11

1 −
−

−−
−

− −ππ=π m
m

mm
m

m TCTC  and, if we consider the generic ( )2
21

−
−

m
mT  

( ( ) )1
11

−
−⊆ m

mTI  and ( ) ( ),1
11

12
22

−
−

−−
− −⊆ m

m
mm

m TCT I  we will have that: 

( ) ( )
( )

( ( ) ( ) )
( )( )

!1
2
21

2
22

2
21 2

21
1
11

1 ∑ ∑
−
−

−
−

−
− −

−
−
−

− −−=π
m
m

m
m

m
m

t t

m
m

m
m

tm ttC  

( ( ) ) ( )
( )

( ( ) ( ) ) ( ( ) ).!1 2
22

2
22

1
11

2
21

2
22 −

−
−
−

−
−

−
− π−−−π⋅

−
− m

m
m
m

m
m

tm
m tttnT

m
m  (3.2) 

Repeating the argument for the subsequent line ,2−mC  we see that: 

( ) ( )2
22

2
11

2
22

2
11

2
21

2 −
−

−
−

−
−

−
−

−
−

− −= m
m

m
m

m
m

m
m

m
m

m TTTTTC ∩∪∪  

( ) ( ( ))2
22

2
11

2
21

22
11

2
22

−
−

−
−

−
−

−−
−

−
− −− m

m
m
m

m
m

mm
m

m
m TTTCTT ∪∪∪∪  (3.3) 

and, calling: ( ) ,3
31

−
−

m
mT  ( ) ,3

32
−
−

m
mT  ( ),3

33
−
−

m
mT  ( ),3

34
−
−

m
mT  ( )3

35
−
−

m
mT  the generic ( )3−mT  

included in the impression of each of the five components of the union of which at 
(3.3), we will be able to say, referring always to (2.1), that: 
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( ) ( ) ( )2
22

2
11

2
21

2 −
−

−
−

−
−

− −ππ=π m
m

m
m

m
m

m TTTC  

( ) ( ) ( 22
11

2
22

2
22

2
11

−−
−

−
−

−
−

−
− π−ππ⋅ mm

m
m

m
m

m
m
m CTTTT ∩  

)2
22

2
21

2
11

−
−

−
−

−
−− m

m
m
m

m
m TTT ∪∪  

( )
( )

( ( ) )
( )
∑
−
−

−
− −

−
−
− −−= ∑

3
3

5

1

3
3 !1 3

31
2

21
m
mi

m
mii

t

m
m

m
m

t tt  

( ( ) ) ( ( ) )!! 3
33

2
22

2
11

3
32

2
22

2
11

−
−

−
−

−
−

−
−

−
−

−
− −−−⋅ m

m
m

m
m
m

m
m

m
m

m
m tTTtTT ∩  

( ( ) ) ( ( )2
22

2
21

2
11

23
34

2
11

2
22 ! −

−
−
−

−
−

−−
−

−
−

−
− −−−⋅ m

m
m
m

m
m

mm
m

m
m

m
m TTTCtTT ∪∪  

( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ).! 3
35

3
34

3
33

3
32

3
31

3
35

−
−

−
−

−
−

−
−

−
−

−
− πππππ− m

m
m
m

m
m

m
m

m
m

m
m TTTTTt  (3.4) 

Continuing in this way in order to count all the possible arrangements of the line l, 
we should take all the possible subsets of rooks which are situated on it, considering 

the partition refinement of lC  consisting of all their nonempty intersections ,l
jT  

,...,,1 lpj =  and of the complementary of their union =lT0  ∪
lp

l
jj

l TC
1

−  and 

finally choosing 1+lp  systems of independent rooks ( ) ,1
1

−
−

l
ljT  ,...,,1,0 lpj =  with 

( ) ( ).1
1

l
j

l
lj TT I⊆−
−  

Then we will have: 

( ) ( ) ( )
( )

( ( ) ) ( ( ) )
( )

∏ ∑ ∏
−
−

−
− −

−
−
− π−−=π=π ∑

l

l
lj

llp
l

ljj
p

t

p
l
lj

l
lj

l
jj

tl
jj

l TttTC
0 0

1
1

1
1

1
1

0

1
1 !1  (3.5) 

and we can conclude that: 

( ) ( )∏ π=
m

l
l CnmK

2
,  

( )
( )

( ( ) ) ( ( ) )
( )
∑ ∏ ∏
−
−

−
− −

−
−
− π−−= ∑ ∑

1
1

2 0

1
1

2 0

1
1

1
1 .!1

l
lj

lm lp
l

ljjl

t

m p
l
lj

l
lj

l
jjl

t Ttt  (3.6) 
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The situation, therefore, seems to be somewhat complex, but an idea which allows us 

to control it is that of identifying any subset of ( )mC  by means of its two 

projections, for rows and for columns, on the main diagonal ( ) [ ]{ }.,,1 niiiC ∈=  

Given a set of grade g ,gA  we consider in fact ( )gA1R  and ( ).1
gAC  Now, if 

,1=g  then ( ) ( ) 11
1

1
1 AAA == CR  and projections and set coincide. If, on the 

other hand, ,1>g  then the set gA  determines ( )gA1R  and ( )gA1C  in one way 

only. Vice versa given 1
21 , CAA gg ⊆  with ,21 pAAA ggg ===  gA  will 

be one of the p! permutations of the square board ( ) ( ).21
gg AA CR ∩  Furthermore, if 

B is a board of forbidden positions for gA  and we set ( ) ( ),21
gg AABB CR ∩∩=  

we will have that: ( ) ( ) ( ) ( )∑ −−=π
p

k
k

k
g BrkpA

0
.!1  

In the light of this new approach, a system of independent rooks ( ) 1TT l =  
lT∪∪  determines the subsets ( )ii TR R=  and ( ),ii TC C=  for [ ],li ∈  and =0R  

( ( ( ) )) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∪

l
i

i
l RCTC

1
R  and ( ( ( ) )) .

1

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∪

l
i

i
l CCTCC C  Thus it characterizes 

two partitions, each one with 1+l  blocks, the { }iR  and the { },iC  with ,...,,0 li =  

the first for the set of the rows and the second for that of the columns. 

Now, if we return to the computation performed with (3.5) of all the possible 

arrangements of ( ),lC  we will have that ( )1
1

−
−

l
ljT  characterizes a partition in l blocks 

( ),11
i

lj
i

lj TR −− = R  with ,1...,,0 −= li  of the block ( )l
jTR  of the partition 

{ ( )},l
jTR  ,...,,0 lpj =  in 1+lp  blocks of the set of the rows. 

Consequently, if we put together all the elements of grade i of the various 

partitions i
ljR 1−  and we set ∪

lp
i

ljj
i
l RR

0
1,−=  then we will obtain that { },i

lR  with 

,1...,,0 −= li  is a partition in l blocks of the set of the rows of our board. Similarly, 

we can construct the partition { },i
lC  with ,1...,,0 −= li  of the set of columns. 
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Repeating this for each line from the mth to the second, we will eventually have 

1−m  couples of partitions of the set of the rows and of that of the columns: { },i
jR  

and { },i
jC  with mj ...,,2=  and .1...,,1,0 −= ji  

Intersecting each of these partitions with ,1C  we obtain as many partitions of 

( ){ }iiC ,1 =  with [ ].ni ∈  In such partitions, the projections for rows and for 

columns of the sets of grade 1, which belong to ,1C  obviously coincide. 

Calculating the number of all the possible arrangements of these ( )12 −m  

partitions, respecting the condition that the projections of the sets of grade 1 must 
coincide, is equivalent, from what has been said, to calculating the product 

( ( ) )∏ ∏ −
−π

m p
l
ljjl

l
T

2 0

1
1  which appears in (3.6). 

To do this, it is natural to consider the partition refinement of the 1−m  

{ }1CRi
j ∩  partitions and that of the 1−m  { }1CCi

j ∩  partitions. Putting by 

analogy ,10
1

0
1 CCR ==  the blocks of the refinement partitions will be given from: 

,11
1 11...,,

αα
−

α
αα

−= RRRR mm
m mm ∩∩∩   with [ ],10 mjjj ∈∀−≤α≤  and from 

11
1 11...,,

ββ
−

β
ββ

−= CCCC mm
m mm ∩∩∩  with similar limitations on the indices .jβ  

We will then have: 

 ( ( ) ) ( ) ( )∏ ∏ ∏ ∏
− −

βββααα
−
− ππ=π

m p j j
l
ljjl

l

mjmj CRT
2 0

1

0

1

0
...,,...,,

1
1 .11  (3.7) 

We will also say that the pair of partitions { }1...,, ααmR  and { }1...,, ββmC  of [ ]n  is 

“associated” with the collection of systems of independent rooks ( ) ,1
1

−
−

l
ljT  with 

ml ...,,2=  and ....,,0 lpj =  

4. The Blocks of the Associated Partitions 

Before being able to develop the calculation of (3.6) using (3.7), we must 
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examine closely the meaning of the indices 1...,, ααm  and 1...,, ββm  which 

respectively, mark the blocks 1...,, ααmR  and .1...,, ββmC  

In order to do this, we first of all define the concept of “covering”. Taking the 
index ,iα  with ,0>αi  we say that iα  “covers” iαα  and we write ii ααα  or 

( ) .ii αα=ακ  

From the definition it immediately follows that: 

(a) if ,0=αi  then it does not cover any other index, since 0α  does not exist; 

(b) if ,si αα  then .is <  

Thus, if ,0>αs  applying to it more times the function of covering κ, then we will 

always arrive at an index of value 0. 

On the contrary, taking an index lα  of value 0, we can consider all the indices 

sα  which have the property ls αα  ( ( )).isthat 1
lακ−  Repeating this procedure 

more times, we get all the indices which, with a finite number of applications of the 
function κ, finish in .lα  

If we suppose that 0=αh  and we put ( ) ,0
ss α=ακ  then we will be able to 

define { 0=α|α= hjhZ  and N∈∃k  so that ( ) }hj α=ακκ  which we will call 

the “component h” of the indices ....,, 1ααm  Furthermore, as ,01 =α  we will have 

that .1 ∅≠Z  

In this way, we obtain a partition of the set of indices { }1...,, ααm  in blocks 

made up from ,hZ  with [ ].mh ∈  

We will say that such a subdivision represents the structure of the indices 

1...,, ααm  and we will write that ( ) azzm ZZZ ∪∪∪ 211...,, =αασ  with 

.1 2 mzz a ≤<<<  We will also write ( ) lml Z=αασ 1...,,  and ( ) =ααζ 1...,,m  

number of the jα  which are equal to zero. It is clear that, if { }siiZ αα= ...,,1  is a 

component, then .0=α si  
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Moreover, we will put, to be brief ,1...,, ααα = mj RR  ,1...,, βββ = mj CC  =α j  

1...,, ααm  and ....,, 1ββ=β mj  

It is necessary to pay attention to the fact that hZ  is not only a subset [ ],mI ⊆  

but a subset of the indices ,jα  for ,Ij ∈  each with its own value. 

The following result allows to count the number of the jRα  at the base of the 

structure of their indices. 

Proposition 4.1. Let ( ) ZZm ∪11...,, =αασ  and .2 azz ZZZ ∪∪=  Then: 

(a) if we suppose Z to be variable, then the number of the possible sets of indices 

will be: !.1 z
z

m
⎟
⎠
⎞

⎜
⎝
⎛ −  

(b) if, on the other hand, we keep Z constant, then the possible jα  will be 

( )!.1 zm −−  

In fact, to determine Z we will have, first of all, have to choose the z places of its 

indices in the set { }m...,,2  and this can be done in ⎟
⎠
⎞

⎜
⎝
⎛ −

z
m 1  ways. Furthermore, if 

the selected indices are zjj αα ...,,1  ( ),with 1 zjj >>  then it can be seen that 

zjα  must be equal to 0, 1−α zj  can assume the values 0 and zjα  and so on. 

Therefore, the last index has only one possible value, the penultimate two values, 
etc., thus all the possible ways to attribute a value to zjj αα ...,,1  are 

!.21 zz =⋅⋅⋅  This proves (a). 

If, on the other hand, Z is fixed, then the places of the indices of 1Z  are also 

fixed. Now, the last index of 1Z  on the right 1α  can only have the value 0, the 

penultimate only 1 and thus, for an argument identical to the previous, the number of 
possible values of the zm −  indices is equal to ( ) =−−⋅⋅⋅⋅ zm 1211  

( )!.1 zm −−  Thus (b) too is proved. 

It is also possible to calculate the number of possible ,jα  in terms of the data of 

singular components with the following result, which we shall just state. 
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Proposition 4.2. If ( ) ,...,, 211 azzm ZZZ ∪∪∪=αασ  then 1Z  and ,izZ  

with ,...,,2 ai =  constitute a partition of the integer m in which the number of parts 

equal to s will be .sλ  The number of possible jα  with this structure will therefore be 

the same as: 

 .
!!!21

!

2121 m
mm
m

λλλλλλ
 (4.1) 

So, if ,ls αα  then we have that jRα  is a subset of ,11 ⎟
⎠
⎞

⎜
⎝
⎛ α

−∪x lx
lTR  with x 

that ranges in a subset of { },...,,1,0 lp  and thus it lies in the projection for rows on 

the first line of a set of rooks of grade lα  included in the impression of a set of 

rooks of grade .ls =α  If instead sα  does not cover ,lα  then the set of rooks of 

grade lα  is not included in the impression of the set of rooks of grade sα  and so the 

number of elements in their intersection varies according to the variation of the 
projection for rows or for columns. 

From this, it follows that if, using the symbolism of Section 3, we take ( )l
jT1R  

,
1

1
11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−∪
l

i
ljiTR  we see that it will be composed of the union of all the jRα  with 

the same lZ  component. Vice versa, if we fix the lZ  component and make the other 

jα  vary in all possible ways, we obtain a collection of sets jRα  the union of which 

will be equal to ( ) ( ( ) )1
111

−
−− l

lj
l
j TT RR  for some j. Furthermore, if ,1=l  since 

( )1
1

−
−

l
ljT  does not exist, the union of all the jRα  with the same 1Z  will be given by 

( )1
1 jTR  for some j. 

Naturally, the same argument is true for the sets jCβ  and the components of the 

indices .jβ  

5. The Enumeration of Latin Rectangles 

Now, let us try, applying the contents of the previous section, to give an explicit 
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form to (3.6) in terms of the data of the two associated partitions { }jRα  and { },jCβ  

and that is in terms of the sets of variables { }jrR α=  and { }.jcC β=  

First of all, we observe that, if ,1>l  ( ) ( ) ( )l
j

l
lj

l
j

l
lj

l
j TTTtt 1

1
1

1
1 R=−=− −

−
−
−  

( ( ) ) ( ) ( ( ) )1
111

1
11

−
−

−
− −=− l

lj
l
j

l
lj TTT RRR  but, following what was said before, 

( ) ( ( ) )1
111

−
−− l

lj
l
j TT RR  is formed, in such a case, from the union of all the sets jRα  

with the same lZ  component and vice versa. 

Therefore, if we put, [ ],ml ∈∀  ( ) { ( ) },ljll ZrZQ j =ασ|= α  ( ) { jj rcZQ l ββ |=
~  

( )}lZQ∈  and ( ) ( )∑= ,ll ZQZq  thus we have that, if ,1>l  { }lpj ...,,0∈  exists 

so that: 

 ( ) ( )1
1

−
−−= l

lj
l
jl ttZq  (5.1) 

and vice versa. 

Now, we will compute the product ( ( ) )∏ ∏ −
−

m p
l
ljjl

l
T

2 0

1
1  that, for (3.7), is the same 

as ( ) ( )∏ ∏
− −

βαβα ππ
1

0

1

0
.

j j

jjjj CR  

The first partition { }jRα  can be chosen in a completely arbitrary way and thus 

the number of its possible arrangements is given by the multinomial coefficient 

.⎟
⎠
⎞

⎜
⎝
⎛

R
n

 The second partition is, on the other hand, subject to some restrictions. 

First of all, for ,1>l  ( ) ( )l
j

l
lj TT I⊆−
−
1
1  and so ( ) ( ( ) ) ( )l

j
l
lj

l
j TTT 1

1
111 RCC =− −
−  

( ( ) ) ( )l
l
lj ZqT =− −
−
1
11R  and since, following the same reasoning as we have already 

done, ( ) ( ( ) ) ( ),~1
111 ∑=− −
− l

l
lj

l
j ZQTT CC  we have 

 ( ) ( )∑ = .~
ll ZqZQ  (5.2) 
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Furthermore, taking a generic set of rooks of grade l it is clear that ( ) =lT1C  

( ) .1
lTR  

Now, if ,1=l  then 1CT l ⊆  and even ( ) ( ),11
ll TT RC =  but, for the reasons 

stated in Section 4, ( )11 TR  is made up of the union of all the jRα  with the same 

,1Z  and the same argument is valid for ( ),1
1 TC  therefore: 

 
( )( )

∪ ∪
11 11Z Zj j

jj CR
=ασ =βσ

βα =  (5.3) 

and 

 ( ) ( )∑ = .~
11 ZqZQ  (5.4) 

Furthermore, the restrictions (5.2) and (5.4) imposed on jcβ  imply that, for ,l
jT  

with ,...,,0 lpj =  ( ) ( ) .11
l
j

l
j TT RC =  

This can be easily proved for complete induction on l considering that, if ,1=l  

then the result has already been expressed by (5.4), while, if 1>l  and we suppose 
that we have already proved this [ ],1−∈∀ lj  it follows from the consideration that: 

( ) ( ( ) )∑
−

−
−− −+=

1

1

1
1111 .

l
l
lj

l
j

i
lji

l
j TTTT RR  

Therefore, there are no other restrictions on ,jcβ  apart from those expressed by 

(5.2) and (5.4). 

If we now group the jCβ  sets on the basis of the value of their component ,1Z  

then (5.3) allows us to state that: 

 ( )
( )
( )∏ ∏

β
β ⎟

⎠
⎞

⎜
⎝
⎛=π

j
j

Z ZQ
Zq

C
1

1

1~  (5.5) 

on the condition, however, that the C variables also respect the restrictions imposed 
by (5.2). 

Let us finally examine the ( )1
1

−
−

l
ljt  which appears in (3.6) as exponents of –1. 
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Now, for (5.1), if ,1>l  ( ) ( )l
l
j

l
lj Zqtt −=−
−
1

1  for any lZ  and so ( )∑ =−
−

lp
l

ljj t
0

1
1  

( ) ( )∑ ∑ ∑−=−
l

l l

p

z z ll
l
jj ZqnZqt

0
.  Therefore, being ,...,,2 ml =  the exponent 

of –1 in (3.6) will be the same as ( ) ( )∑ ∑−−
m

z ll
l

Zqmn
2

.1  Furthermore, since, as 

we have already seen, ( )∑ ∑==
1

,1Z ZqRn  adding and subtracting n it can be 

expressed by: ( )∑ ∑−
m

z ll
l

Zqnm
1

.  

Finally, set { ( ) }oddjjrW αζ|= α  and considering that every jrα  variable 

compares ( )jαζ  times in ( )∑ ∑
m

z ll
l

Zq
1

,  we will have that the exponent of –1 can 

be substituted by ∑− ,Wnm  since the even multiples of jrα  can obviously be 

omitted. 

Using all these results in (3.6), we obtain the following remarkable result: 

Theorem 5.1. 

( ) ( ) ( ) ( )
( ) ( )

∑ ∑ ∏ ∏
∑

∑ ∑
=

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ll l

m

lZ ll

ZqZQ

m

Z
ll

Zqnm
CR Zq

R
n

nmK
~ 2

!1, 1  

( )
( )

( )
( )

( ) ( )
∏ ∑ ∑

∑ ∑

∑ ∏ ∏
∏ ∏

= =

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

1

0

~
!!

!

1

1 1~
Z nR ZqZQ

CR

Zql
Wnm

CR

ll

m

lZ l

ZQ
Zq

 

( ) ( )
( )( )

( ) ( )
∑ ∑ ∏ ∏

∏ ∏
∑ ∑= =

−

−

−=
nR ZqZQ

m

lZl

CR
mn

ll

l

CR

Zq

~

01

!!

!

1  

( ) ( ) ( ) ( )
( )

( )∑ ∑ ∏ ∏ ∏ −βζ
β⋅⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠
⎞

⎜
⎝
⎛−=

m

Cl

lZq
ZlCR

nm j
j

l
l c

ZQ
Zq

R
n

1

1
.~11  (5.6) 
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Here, by analogy with the preceding symbolism, we have set ∅=0Z  since 0α  

does not exist. Thus ( ) ∑ == nRZq 0  since the elements of ( ),0ZQ  not being 

subject to any restrictions, are all the elements of R. 

So, (5.6) is an explicit formula for the computation of ( )nmK ,  in 2m! variables 

R and C, while ( )lZq  with [ ]ml ∈  and ∑W  are sums of particular subsets of R. 

This therefore represents the result which we proposed to achieve with the 
present paper. 

The C variables, in contrast to the R variables, are not, however, between their 

independent since they must be subject to the restrictions ( ) ( )∑ = ll ZqZQ~  for 

[ ].ml ∈  

If we want to limit ourselves to considering only independent variables, then we 
can proceed as follows. 

For each lZ  component we indicate with ( )lZd  the jcβ  variable with ( )jl βσ  

lZ=  and all the indices jβ  which are different from those of lZ  equal to zero, and 

we put ( ){ }.lZdD =  

Now, ( ) ( )
( )
∑

−∈
β

β

−=
DZQc

ll
lj

jcZqZd
~

 and thus the variables of D can be 

obtained from those of .DC −  

Furthermore, if ( ) ,ljl Z=βσ  then ( )lZQc j
~

∈β  and so ( ).lZqc j ≤β  Thus, if 

we put ( ) ( ( ( ))),min jlqjlj βσ=μ ∅≠βσβ  then ,DCc j −∈∀ β  we will have that 

jjc ββ μ≤  and such a restriction guarantees that ( ) .0≥lZd  

Using this new symbolism (5.6) can be rewritten like this: 

 ( ) ( )
( )

( )∑ ∑ ∏ ∏
∏ ∏β

βα

μ
+

−
⎟
⎠
⎞

⎜
⎝
⎛−= ∑

n

m

lZl
Wnm

cr

j l

jj DDC

Zq

R
n

nmK
0 0

1

!!

!

1,  (5.7) 

with Rr j ∈α  and .DCc j −∈β  
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Now, if ,sZl =  then for Proposition 4.1, the possible ( )lZd  is ( )!.1−⎟
⎠
⎞

⎜
⎝
⎛ s

s
m

 

Furthermore, if ,1=s  then all the ( )lZd  coincide with the jcβ  which has all the 

indices at 0 and so, in such a case, instead of m
m

=⎟
⎠
⎞

⎜
⎝
⎛ !0

1
 we only have one distinct 

element and ( ) ( )∑ −−−⎟
⎠
⎞

⎜
⎝
⎛=

m

s ms
s
m

D
1

.1!1  

Thus, in (5.7), other than the m! independent variables R, there are the  

( )∑ −⎟
⎠
⎞

⎜
⎝
⎛−−+

m

s s
s
m

mm
1

!11!  independent variables .DC −  

6. Simplifications of the Formula 

We have seen that (5.7) needs ( )∑ −⎟
⎠
⎞

⎜
⎝
⎛−−+

m

s s
s
m

mm
1

!11!2  independent 

variables for the computation of ( )., nmK  

It is possible, though, to effect two types of elimination among these parameters 
which allow us to reduce their number considerably, even though this fact makes 
(5.7) lose its symmetry. This is obviously important when we would like to calculate 
concretely ( )nmK ,  for m and n prefixed. 

Let us therefore examine the two possible reductions of the independent 
variables R and .DC −  

(A) We consider jrα  and jcα  with ( ) 1=αζ j  and so with ( ) .1Zj =ασ  In 

such an assumption ( ( ))jq ασ  contains a unique element and so, for (5.4), =α jc  

jrα  and, in (5.7), !jcα  is simplified with ( ( )) !.! jrq j α=ασ  As far as jrα  is concerned 

instead, if we put: { ( ) },10 =αζ|= α jjrF  ∑= ,00 Ff  00 FRQ −=  and =0
~F  

{ },0Frc jj ∈| αα  then we will have that the variables of 0F  do not appear in any set 

( )lZQ  with 1>l  and that: 

∑ ∑∑ ∑∑ ⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠
⎞

⎜
⎝
⎛

R F Q F Q
Q

fn
F
f

f
n

QF
n

R
n

0 0 0 0
0

0

0

0

000 ,
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( )( )∑∑ ∏
−=

0 0

0

!!
!!1

00Q f

f

Qf
nm  (6.1) 

since, for Proposition 4.1, ( )!.10 −= mF  Furthermore the 0F  appears among the 

exponents of –1 with their total .0f  The ( )!12 −m  variables of 0F  and of 0
~F  can 

therefore be substituted by .0f  

(B) Let us now consider the jrα and jcα  with ( ) 1ZZhj ∪=ασ  (and so 

( ) )2=αζ j  and ( ) 1,min 1 =hzz  and put, [ ]:ms ∈∀  { ( ) 2=αζ|= α js jrF  and 

( ) },1=ασ js  ∑= ,ss Ff  ( ) ( ) ,sss FZQZQ −=  { }ss FrcF jj ∈|= αα
~  and 

( ) ( ) .sss fZqZq −=  First, we observe that, if ,sFr j ∈α  then it does not appear 

among the exponents of –1 since ( )jαζ  is even. Now, if ( ) ==ασ vvsj ZZZ ,∪  

1−m  and so ( )vZq  has only one element and, for (5.2) and (5.4), .jj rc αα =  

Therefore, in (5.7), if ,~
sFc j ∈α  then !jcα  is simplified with ( ) !.! jrZq v α=  

Moreover, [ ]:ms ∈∀  

( ) ( )( )∑ ∑ ∏∏
+

=
s sF F s

ss

s

s

F

Zqf

F

Zq

!

!

!

!
 

 
( )( ) ( )( ) ( )( )∑ +

−=⎟
⎠

⎞
⎜
⎝

⎛+
=

s

s

F s

ssf

s

s

s

ss
f

Zqf
m

F
f

f
Zqf

!
!

!2
!

!
 (6.2) 

since ( ) ,!2−= mFs  and so also the sF  and the sF~  are eliminated and substituted 

by .sf  We must, however, by careful because, if ,2=m  then 1F  and 2F  are equal. 

In conclusion, putting { }∪
m

ii RrcCFRR jj
0

, ∈|=−= αα  and { ( ( )) |ασ= jldD  

},Cc j ∈α  we have that (5.7) transforms itself into: 

( ) ( ) ( )( ) ( )( )∑∑∑ ∑
βμ

+
−

∑∑ −−−=
0

1
0

0 0
!2!11,

f f

n
ffWnm

DCR
s

j m
ssmmnmK  
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( )
⎟
⎠

⎞
⎜
⎝

⎛

−
⋅
∏ ∏ Rff

n

DDC m ,...,,!!
1

0
 

( )( ) ( )∏ ∏ ∏
−

+⋅
m m m

lZlsss ZqZqf l
1 1

2

2
!.!  (6.3) 

It is, however, possible to accomplish a further step to simplify (6.3). In fact, putting 

∑=
m

ss ff
1

,  we have that: 

( )( ) ( )
( )

( )∑ ∑∏ ∑ ∑∏ ⎟
⎠

⎞
⎜
⎝

⎛ +
=

+

1 11 1
!

!
!

f f

m

f f

m

s

ss
ss

s

ss
s

m m
Zq

Zqf
Zq

f
Zqf

 

( ) ( )∏ ∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−++=

m m

ssss

f

mZqfZq
1

1
1!  (6.4) 

and so (6.3) becomes: 

( ) ( ) ( )( )∑ ∑ ∑ ∑
βμ

+
− −−= ∑

n n n
fWnm

DCRff

j

mnmK
0 0 0 0

0
0 !11,  

( )( )
( )∏ ∏−

⎟
⎠
⎞

⎜
⎝
⎛−⋅

!!
1

,,
!2

0 DDCRff
n

m f  

( )

( )
( ) ( ) .!!

!1

!1

1

2

2 1
1

1 ∏ ∏ ∏
∑

∑ −

⎟
⎠
⎞

⎜
⎝
⎛ −+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−++

⋅
m m m

sslZlm
ss

m

ss

ZqZq
mZq

mZqf

l  (6.5) 

From the independent variables R we have so eliminated the ( )!1−m  of 0F  and the 

( )!2−m  of each ,sF  with [ ],ms ∈  and therefore, ( ) ( )!2!1! −−−−= mmmmR  

( ) ( )!.212! −−−= mmm  

The C variables have undergone the same reduction. However, it is necessary to 
add 0f  and f and subtract the ,D  which are as many as the components lZ  with 
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,11 −<< mZl  and so equal to ( )∑
−

−⎟
⎠
⎞

⎜
⎝
⎛2

2
!1

m

h h
h
m

 plus the jcα  with all the jα  

indices equal to zero (which is determined by the m equivalent restrictions ( ) =sZq  

( ( ) ( ))∑ − ss ZFZQ ~~  with [ ]),ms ∈  and thus: 

( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−−=− ∑

−

1!1!2!1!
2

2

m

h h
h
m

mmmmDC  

( ) ( ) ( )∑
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−=

2

2
!11!212!

m

h h
h
m

mmm  

( )∑ −⎟
⎠
⎞

⎜
⎝
⎛−−=

m

h h
h
m

m
2

!.11!  (6.6) 

The independent parameters of (6.5) are therefore all together: ( )12!2 −− mm  

( ) ( )∑ −⎟
⎠
⎞

⎜
⎝
⎛−++−

m

h h
h
m

mm
1

!.11!2  

7. The Simplest Cases 

Let us see what in concrete terms happens calculating the formulas obtained in 
Sections 5 and 6 for the first values of .4,3,2=m  

(A) .2=m  jrα  are of 12ααr  which can therefore assume the values 10r  and 

.00r  Furthermore, ,∅=− DC  0000 rc =  and 1010 rc =  and so, applying (5.7), we 

have: 

( ) ( ) ( )∑ ∑ ∑ −=⎟
⎠
⎞

⎜
⎝
⎛−= +

n n n
r

r
rn

rr r
n

cc
rr

rr
n

rnK
0 0 0 101000

1000

0010
00

2
!

!1
!!
!!

,
!1,2 10

10
10

0010  (7.1) 

which, for (1.1), is equivalent to .nD  

(B) .3=m  jrα  are of .123 αααr  As seen in Section 6, the { },, 1102100 rrF =  

{ },2001 rF =  { },1002 rF =  { }0103 rF =  and the homologous jcα  are eliminated. 

Furthermore, ( ) ( ) ( ) 000321 rZqZqZq ===  and 000000 rc =  and so, applying 
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(6.5), we have that: 

( ) ( )∑ ∑ ∑ ⎟
⎠
⎞

⎜
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⎛−= −−

n n n
ffrfn

rff rff
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nK
0 0 0 0000

3
,,

121,3 00000
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0
23
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!!

21 000

0

000  (7.2) 

and we find (1.3) again. 

(C) .4=m  jrα  are of .1234 ααααr  The { ,,,,, 211011101210221032100 rrrrrF =  

},3110r  { },, 220032001 rrF =  { },, 110031002 rrF =  { },, 201010103 rrF =  { ,01104 rF =  

}0210r  and the homologous jcα  are eliminated. Furthermore, ( ) +=′ 10001 rZq  

,1200r  ( ) ,010021001 rrZq +=′′  ( ) ,301000101 rrZq +=′′′  ( ) ,120002002 rrZq +=′  ( )2Zq ′′  

,21002000 rr +=  ( ) ,301030003 rrZq +=  and ( ) ,02002000300000001 rrrrZq +++=   

( ) ,10000100300000002 rrrrZq +++=  ( ) ,00101000200000003 rrrrZq +++=  ( )4Zq  

.0200001001000000 rrrr +++=   We besides have that: ,1200120010001000 crrc −+=  

,2100210001000100 crrc −+=  ,3010301000100010 crrc −+=  120002000200 rrc +=  

,1200c−  ,2100210020002000 crrc −+=  ,3010301030003000 crrc −+=  00000000 rc =  

,020020003000020020003000 cccrrr −−−+++  that: { ,,,, 0100210012001000 rrrrR =  

}000020003000020030100010 ,,,,, rrrrrr  and that: { }301021001200 ,, cccDC =−  and, 

applying (6.3), we obtain: 
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( ) ( )!! 1000010030000000202002000300000001 rrrrfrrrrf ++++++++⋅  

( ) ( ) ,!! 0200001001000000400101000200000003 rrrrfrrrrf ++++++++⋅ (7.3) 

that is the result already obtained by Pranesachar and others in [1]. If instead we 
apply (6.5), then we obtain: 

( ) ( )∑ ∑
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nRff DC

rrrrrrfnK
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( ) ( )!! 00101000200000001000010030000000 rrrrrrrr ++++++⋅  

( ) ( ) ( )!!! 01002100120010000200001001000000 rrrrrrrr +++++⋅  

( ) ( ) ( ) ( )!!!! 30103000210020001200020030100010 rrrrrrrr ++++⋅  

( )
⎟
⎠
⎞

⎜
⎝
⎛ ++++++++
⋅

f
rrrrrrrf 324 0010020010000100200030000000  (7.4) 

which is an improvement on the results known up to now, since it needs only 15 
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independent variables (the ten of ,R  the three of DC −  and the two f, )0f  as 

compared with the 18 of the formula of Pranesachar, Athreya and Singhi. 

8. Another Point of View 

In conclusion, we want to show how Theorem 5.1 can have another 
interpretation which sheds light on its combinatory nature in a more profound way. 

The circumstance — which would not have escaped a careful reader — that the 
elements of R and of C are as many as those of ,mS  and that is m!, is not casual. In 

fact, if we interpret the indices 1...,, ααm  and 1...,, ββm  as the inversion tables of 

one of the permutations of [m], putting ( ),bor 11 imiimib −+−+ β=α=  we will 

have two bijective maps between C and R and ,mS  since .0 1 imim −≤α≤ −+  

Furthermore, ( )jαζ  will be the same as the number of cycles of ,mS∈σ  

which corresponds in this way to .jrα  However it is not true – as could be thought – 

that the components lZ  of jα  correspond, in some way, to the cycles of the 

permutation σ corresponding to .jrα  

To achieve this result we must introduce a new concept. Let us take a ,mS∈σ  

written in its standard representation and put, [ ] ikmi ∈∀  equal to ,1 tn −+  where t 

is the element furthest on the right among those to the left of i satisfying it >  (or if 
,hsi =  ti smk −+= 1  with ht ss >  and t maximum); moreover we set 0=ik  if 

there are no elements greater than i on the left of i. We say that ( ) ( ...,,1kK =σ  )mk  

is the “covering table” of σ. It can be proved that the function ( )σK  is a bijection. 

Furthermore, it is clear that ,0 imki −≤≤  [ ],mi ∈∀  and that, if ,0=ik  i is a 

left-to-right maximum of the standard representation of σ. 

Now, if we put ,1 jmik −+α=  we have that, [ ],mi ∈∀  imki −≤≤0  and 

therefore that ( )mkk ...,,1  can be interpreted as the covering table of a ( ) ∈α jrS  

.mS  It can easily be proved that ( )jrS α  is a bijection between R and mS  and that, 

in this case too, ( )jαζ  is the number of the cycles of ( ).jrS α  Here however, if 

phhh sss ++1  are the elements of a cycle of σ written in its standard representation 
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and if we take ,...,,, 1 phhh sss kkk
++

 then we have that { ,, 111 +−+−+ αα hh smsm  

}phsm +−+α 1...,  constitute a component hsmZ −+1  of .jα  

In the light of this new bijective map, the results obtained previously can be 
expressed in a new combinatory language. In fact, we can now consider the new 
variables σr  and ,ϑc  the indices of which consist of elements of ( )mm SS ∈ϑσ,  

and again indicate their sets with R and C. Furthermore, writing mS∈σ|γ  to say 

that γ is a cycle of σ, we can put ( ) { }σγ=γ σrQ  and ( ) ( )∑ γ=γ ;Qq  

corresponding meaning, going from σr  to ,ϑc  will have ( )γQ~  and ( ).~ γq  In this 

way, (5.6) can be reformulated like this: 

( ) ( )
( )

( ) ( )
∑ ∑ ∏ ∏

∏
∑ ∑

∑
= γ=γ

σ|γ′+
γ
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nR qQ

Wnm
CR
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q
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~ !!

!
1,  

( ) ( )
( )( )

( ) ( )

,
!!

1
~

1 ∑ ∑ ∏ ∏
∏

∑ ∑= γ=γ

σ|γ−
γ−

−=
nR qQ

CR
mn

CR

q ¡
 (8.1) 

where W ′  indicates the set of all the σr  in which σ has an odd number of cycles. 

The simplifications of Section 6, which conduct us to (6.5), can also be read 
more clearly now. In fact, 0F  consists of all the σr  in which σ is made up of only 

one cycle of order m, while ,sF  with [ ],ms ∈  is formed of those σr  in which σ has 

a fixed point, made up of the element ,1 sm −+  and a cycle of order 1−m  which 

permutes the other elements of [ ].m  

Furthermore, (8.1) reminds somehow the result attained by Gessel [3]. 

9. The Latin Squares 

When ,nm =  we find ourselves facing the Latin squares, much more famous 
than the Latin rectangles for their applications in various branches of mathematics. 

The number of nn ×  Latin squares is usually indicated by ( ).nL  

If we put nm =  in (5.6) and in (8.1), and, abandoning the condition that the 
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first row is in standard form, we multiply everything by n!, we obtain the following 
elegant result which allows us to count of the number of Latin squares of any order. 

Theorem 9.1. 

( )
( )( )

( ) ( )
∑ ∑ ∏ ∏

∏ ∏
∑ = =

−

=
nR ZqZQ

n

Z ll

CR

ll

l

CR

Zq

nnL
~

0

!!
!

¡

 

( )( )

( ) ( )

.
!!

!
~

∑ ∑ ∏ ∏
∏

∑ = γ=γ

σ|γ
γ−

=
nR qQ

CR
CR

q
n

¡
 (9.1) 

In which the 2n! parameters R and C, and their totals ( )lZq  and ( )γq  

previously defined, appear. 
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