EXTENSIONS OF MATROIDS TO UNIFORM MATROIDS

F. MAFFIOLI and N. ZAGAGLIA SALVI

Dipartimento di Elettronica ed Informazione
Politecnico di Milano
P.zza L. da Vinci, 32

20133 Milano, Italy
e-mail: maffioli@elet.polimi.it
Dipartimento di Matematica
Politecnico di Milano
P.zza L. da Vinci 32

20133 Milano, Italy
e-mail: norzag@mate.polimi.it

Abstract

Let M be a matroid of rank r on an n-set, which is not direct sum of other matroids. In this paper, we prove that it is possible to determine a sequence of bases $B_{1}, B_{2}, \ldots, B_{h}$ of M and a sequence of matroids $M_{1}, M_{2}, \ldots, M_{h}$, where M_{i}, for $1 \leq i \leq h$, coincides with the base matroid $\left(M_{i-1}\right)_{B_{i}}$ and $M_{0}=M$, such that last matroid coincides with the uniform matroid $U_{r, n}$. This process is called the extension of M to $U_{r, n}$.

1. Introduction

Let $M=(E, \mathcal{F})$ be a matroid on a set E, having \mathcal{F} as its family of independent sets.

2010 Mathematics Subject Classification: 05B35, 90C27.
Keywords and phrases: matroid, base, base matroid, direct sum of matroids.
This work is partially supported by MIUR (Ministero dell'Istruzione, dell’Università e della Ricerca).

Received November 16, 2009

Let Ξ denote the set of all closed sets of M. Then

$$
\mathcal{F}=\{S \subseteq E:|S \cap \theta| \leq r(\theta), \forall \theta \in \Xi\}
$$

The terminology from matroid theory may be obtained from [8].
In [3], the notion of a set saturated with respect to a base has been introduced.
Definition 1. A set $\theta \subseteq E$ is said to be saturated with respect to a base B of M, or B-saturated, if

$$
|\theta \cap B|=r(\theta)
$$

Thus, any B-saturated closed set θ satisfies the relation

$$
c l(\theta \cap B)=\theta
$$

in other words θ coincides with the closure of its intersection with B.
We simply call θ saturated when it is clear from the context whose base is considered. Denoted by Ξ_{B} the set of all the closed sets of M, saturated with respect to a base B, we consider the family

$$
\mathcal{F}_{B}=\left\{S \subseteq E:|S \cap \theta| \leq r(\theta), \forall \theta \in \Xi_{B}\right\}
$$

and the pair

$$
M_{B}=\left(E, \mathcal{F}_{\mathcal{B}}\right)
$$

Using a theorem of Edmonds and Fulkerson [4], in [3] it is proved that $M_{B}=\left(E, \mathcal{F}_{\mathcal{B}}\right)$ is a matroid, named base matroid, which in particular turns out to be a transversal matroid.

An application of these matroids is in the field of inverse combinatorial optimization problems, indeed various inverse problems have been addressed in the recent literature [1, 3].

The main aim of this paper is to prove the following result.
Let M be a matroid of rank r on an n-set, not direct sum of other matroids. Then there exist a sequence of bases $B_{1}, B_{2}, \ldots, B_{h}$ of M and a sequence of matroids $M_{1}, M_{2}, \ldots, M_{h}$, where M_{i}, for $1 \leq i \leq h$, coincides with the base matroid $\left(M_{i-1}\right)_{B_{i}}$ and $M_{0}=M$, such that last matroid M_{h} coincides with the uniform matroid $U_{r, n}$.

2. Base Matroids

First recall some properties of the base matroids.
From the definition an independent set S of \mathcal{F} satisfies the condition $|S \cap \theta| \leq r(\theta)$, for every $\theta \in \Xi$. In particular, if $\theta \in \Xi_{B}$, then S is a set of $\mathcal{F}_{\mathcal{B}}$. It implies that

$$
\mathcal{F} \subseteq \mathcal{F}_{\mathcal{B}}
$$

The above relation implies that M is isomorphic to $M_{B}, M \simeq M_{B}$, if and only if

$$
\mathcal{F}=\mathcal{F}_{\mathcal{B}}
$$

The inclusion is proper when a dependent set of M turns out to be independent in M_{B} and in this case, M is not isomorphic to M_{B}.

If B is a base of M, then it belongs to $\mathcal{F}_{\mathcal{B}}$ and has maximal cardinality. Then it is also a base of $\mathcal{F}_{\mathcal{B}}$, thus, we have that $r(M)=r\left(M_{B}\right)$. In this context in [6] it is proved that

Lemma 1. Let M be a matroid and B be one of its bases. Then $M \simeq M_{B}$ if and only if every circuit of M is also circuit of M_{B}.

In [6] a circuit C of M is said to be independent with respect to a base B or B-independent if

$$
|\operatorname{cl}(C) \cap B|<|C|-1
$$

The circuit C is dependent with respect to B or B-dependent if it is not independent with respect to B, that is,

$$
|\operatorname{cl}(C) \cap B|=|C|-1
$$

Thus, $\operatorname{cl}(C)$ is saturated with respect to B.
Lemma 2. Let C be a circuit of M having cardinality $r+1$. Then C is B-dependent, for every base B of M.

Proof. If C has cardinality $r+1$, then $c l(C)$ is isomorphic to M and $|\operatorname{cl}(C) \cap B|=|C|-1$, thus, C is B-dependent, for every base B.

A consequence is that in the case of a uniform matroid, previous result is satisfied for every circuit. Moreover, in [6] it is proved the following result.

Proposition 1. Let M be a uniform matroid. Then for every base B of M it is $M \simeq M_{B}$.

In [5] the problem of characterizing a rank- n matroid M isomorphic to M_{B} for every base B of M is studied. It is proved that this condition is equivalent to say that for every circuit C, there exists a closed B-saturated set θ, such that

$$
|\theta \cap C|>r(\theta)
$$

It implies that $\theta=\operatorname{cl}(C)$, and $r(\theta)=|C|-1$. The condition that $\operatorname{cl}(C)$ is B-saturated implies

$$
|c l(C) \cap B|=|C|-1,
$$

and C is B-dependent. Note that for every matroid M on E, the set E turns out to be B-saturated for every base B.

Recall the definition of direct sum of matroids. A matroid M on a ground set E, whose family of independent sets is \mathcal{F}, is direct sum of the matroids $M_{1}, M_{2}, \ldots, M_{s}$ on disjoint sets $E_{1}, E_{2}, \ldots, E_{S}$, respectively, when $E_{1}, E_{2}, \ldots, E_{S}$ is a partition of E and $\mathcal{F}=\left\{I_{1} \cup \cdots \cup I_{s}: I_{i} \in \mathcal{F}\left(M_{i}\right), 1 \leq i \leq s\right\}$, where $\mathcal{F}\left(M_{i}\right)$ is the family of independent sets of M_{i}. Next theorem states the characterization about matroids isomorphic to their base matroids proved in [5].

Theorem 1. Let M be a matroid on a ground set E. Then M is isomorphic to M_{B}, for every base B, if and only if M is either uniform or direct sum of uniform matroids.

3. Extension of Matroids

In this section, we consider the problem of studying the possible repetition of the passage from a matroid M to one of its base matroids. Let M be a matroid of rank r and B be one of its bases. From Theorem 1, it follows that if M is not isomorphic to M_{B}, then there exists a circuit C of M which is B-independent. It follows that C turns out to be an independent set of M_{B}.

Now we may apply the same previous considerations to M_{B}. Thus, if M_{B} is not isomorphic to $\left(M_{B}\right)_{B^{\prime}}$ in relation to a base B^{\prime} of M_{B}, then there is a circuit H of M_{B} which is B^{\prime}-independent.

First consider the case of $B^{\prime}=B$.
Lemma 3. Let B be a base of M. Then $M_{B} \cong\left(M_{B}\right)_{B}$.
Proof. If a circuit C of M_{B} is B-independent, then it would have been B-independent in M and then not a circuit of M_{B}. It follows that the collection of circuits B-dependent of M coincide with the same collection of M_{B} and the matroids M_{B} and $\left(M_{B}\right)_{B}$ are isomorphic.

Notice that the circuits of M_{B} are the B-dependent circuits of M; moreover, a base of M_{B} can be either a base of M, or a subset of E which contains a B-independent circuit of M.

Now we consider the problem of establishing when a circuit C, having cardinality lesser than $r+1$, turns out to be B-dependent for every base B. In other words, our aim is to characterize a circuit C of rank $m<r$, such that

$$
|\operatorname{cl}(C) \cap B|=m,
$$

for every base B.
This condition implies that every base B may be represented as union of two disjoint independent sets I_{1} and I_{2} of cardinality m and $r-m$, respectively, and $I_{1}=\operatorname{cl}(C) \bigcap B$.

This situation is satisfied when $c l(C)$ is a separator of M [8]. Then also $E-\operatorname{cl}(C)$ is a separator of M. Indeed

$$
r(c l(C))+r(E-c l(C))=r(M)
$$

because

$$
|c l(C) \cap B|+|(E-c l(C)) \cap B|=|B|
$$

In this case $\operatorname{cl}(C)$ and $E-\operatorname{cl}(C)$ are components of M [7]. Moreover, denoted $T_{1}=\operatorname{cl}(C), T_{2}=E-\operatorname{cl}(C), M$ is direct sum of $M \mid T_{1}$ and $M \mid T_{2}$, where $M \mid T_{1}$ and $M \mid T_{2}$ are the restrictions of M to T_{1} and T_{2}.

It follows that if M is not direct sum of other matroids, then a separator cannot exist.

As consequence every circuit C has to be independent with respect to at least one base B.

Then in M_{B} the elements of C form an independent set.
Now consider a circuit H of M_{B}. By Lemma 2, H is also a circuit of M, denote by B^{\prime} a base of M with respect to which H is independent. Then in $\left(M_{B}\right)_{B^{\prime}}$ the elements of H form an independent set.

We may continue until to exhaust all the circuits of M of rank lesser than r. We obtain a sequence $B_{1}, B_{2}, \ldots, B_{h}$ of bases and in correspondence a sequence of matroids $M_{1}, M_{2}, \ldots, M_{h}$, where $M_{i}=\left(M_{i-1}\right)_{B_{i}}, 1 \leq i \leq h$ and $M_{0}=M$, such that in the last matroid M_{h} all the possible circuits have rank r, thus, it coincides with the uniform matroid $U_{r, n}$.

We call the process from M to $U_{(r, n)}$ an extension of M to $U_{(r, n)}$.
These considerations imply the following result.
Theorem 2. Let $M=(E, \mathcal{F})$ be a matroid, of rank n on the n-set E, which is not direct sum of other matroids. Then there exist a suitable sequence of bases $B_{1}, B_{2}, \ldots, B_{h}, h \geq 1$, of M and a sequence $M_{1}, M_{2}, \ldots, M_{h}$ of matroids, where $M_{i}=\left(M_{i-1}\right)_{B_{i}}$, for $1 \leq i \leq h$ and $M_{0}=M$, such that last matroid M_{h} coincides with the uniform matroid $U_{r, n}$.

References

[1] M. Cai, Inverse problems of matroid intersection, J. Comb. Optim. 3(4) (1999), 465-474.
[2] R. Cordovil, D. Forge and S. Klein, How is a chordal graph like a supersolvable binary matroid?, Discrete Math. 288(1-3) (2004), 167-172.
[3] M. Dell'Amico, F. Maffioli and F. Malucelli, The base-matroid and inverse combinatorial optimization problems, Discrete Appl. Math. 128(2-3) (2003), 337-353.
[4] J. Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. 69B (1965), 147-153.
[5] F. Maffioli and N. Zagaglia Salvi, On some properties of base-matroids, Discrete Appl. Math. 154(9) (2006), 1401-1407.
[6] F. Maffioli and N. Zagaglia Salvi, A characterization of the base-matroids of a graphic matroid, Contributions to Discrete Mathematics, to appear.
[7] F. Maffioli and N. Zagaglia Salvi, On binary matroids not isomorphic to their base matroids, Ars Combinatoria, to appear.
[8] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.

