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Abstract 

Using a variational approach, we study a class of nonlinear elliptic 
systems derived from a potential and involving the p-laplacian. Under 
growth and regularity conditions on the nonlinearities f and g, we show 
the existence of nontrivial solutions by applying a variant of the Mountain 
Pass theorem. 

1. Introduction 

In this paper, we deal with the nonlinear elliptic system 
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where ,3≥N  ( ),1 N
loci RLh ∈  ( ) ,1≥xhi  ( ).,,2,1 NRCbai ∈=  We assume that 

there exist 0, 00 >ba  such that 
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( ) ( ) ,,, 00
NRxbxbaxa ∈∀≥≥  

( ) ( ) .as, ∞→∞→∞→ xxbxa  (1.2) 

We observe that there exists an extensive bibliography on the study of elliptic 
systems (see [2, 6, 8] and the references therein). In particular, we mention the 
article [5], where the problem (1.1) was studied with 2== qp  and .121 == hh  

In the article [4], the authors considered the system (1.1) for .2== qp  

Let ( )211 , RRHH N=  denote the Sobolev space of pairs ( )vuw ,=  of 

RRvuL NP →:,functions-  with weak derivatives ( )Nj
x
v

x
u

jj
...,,2,1, =

∂
∂

∂
∂  

also in ( ),NP RL  endowed with its usual norm 

( ) ( )∫ ∫ ++∇+∇=+∇= .dxvuvudxwww ppppppp  

Throughout this paper, unless specified otherwise, all integrals are understood to be 

taken over all of .NR  To prove our main results, we introduce the following 
hypotheses: 

(H1) There exists a function ( ) ( )RRRCwxF N ,, 21 ×∈  such that 

( ) ( ) ( ) .,,allfor,,,, 2RvuwRxwxgv
Fwxfu

F N ∈=∈=
∂
∂=

∂
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(H2) The nonlinearities ( ) ( ) ( )RRRCwxgwxf N ,,,, 21 ×∈  with ( )0,0,xf  

( ) ,00,0, == xg  for all ,NRx ∈  there exists a positive constant 0τ  such that 

( ) ( ) ,,, 1
0

−τ≤∇+∇ pwwxgwxf  

for all NRx ∈  and .2Rw ∈  

(H3) There exists a constant p>µ  such that 

( ) ( ),,,0 wxFwwxF ∇≤µ<  

for all ,NRx ∈  ( ).0,0\2Rw ∈  Consider the subspace 

( ) ( ) ( ( ) ( ) ) ,:,, 21
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then E is a banach space with the norm 

( ( ) ( ) )∫ ++∇+∇=
NR

ppppp
E dxvxbuxavuw .  

By (1.2), it is clear that 

( ) ,0,, 0
2

0 1 >∈∀≥ mEwRRwmw N
HE  

and the embeddings ( ) ( ) ∗≤≤ pqpRRLRRHE NqN ,,, 221   are continuous. 

Moreover, the embedding ( )2, RRLE Nq  is compact (see [4]). We now 

introduce the space 

( ) ( ( ) ( ) ( ) ( ) )








∞<++∇+∇∈= ∫ NR

pppp dxvxbuxavxhuxhEvuH 21:,  

endowed with the norm 

( ( ) ( ) ( ) ( ) )∫ ++∇+∇=
NR

ppppp
H dxvxbuxavxhuxhw .21  

It can easily be shown that H is a banach space with the above norm. 

Definition 1.1 (Weak solution). We say that ( )vu,  is a weak solution of (1.1) if 

( ) ( ) ( ) ,,,22
1∫ ∫ ϕ=ϕ+ϕ∇∇∇ −− dxvuxfdxuuxauuxh pp  

( ) ( ) ( ) ,,,22
2∫ ∫ ψ=ψ+ψ∇∇∇ −− dxvuxgdxvvxbvvxh pp  

for all ( ) ., H∈ψϕ=φ  

2. Main Result 

Our main result is stated as follows: 

Theorem 2.1. Assuming that (1.2) and (H1)-(H3) are satisfied, then the system 
(1.1) has at least one nontrivial weak solution in H. 

It is clear that system (1.1) has a variational structure. Let RHJ →:  be 
defined by 
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( ) ( ( ) ( ) ( ) ( ) )∫ ++∇+∇= dxvxbuxavxhuxh
p

wJ pppp
21
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( )∫− dxvuxF ,,  

( ) ( ) ( ) ,,for HvuwwpwT ∈=−=  (2.1) 

where 

( ) ( ( ) ( ) ( ) ( ) ) ,1
21∫ ++∇+∇= dxvxbuxavxhuxh

p
wT pppp  (2.2) 

( ) ( )∫= .,, dxvuxFwp  (2.3) 

Clearly, the critical points of J correspond to the weak solutions of problem 

(1.1). In general, due to ( ) ( ) ,1 N
loc RLxh ∈  the functional J may not belong to ( )HC1  

(in this paper, we do not completely care whether the functional J belongs to ( )HC1  

or not). This means that we cannot apply directly the Mountain Pass theorem by 
Ambrosetti-Rabinowitz (see [2, 6]), our approach is based on a weak version of the 
Mountain Pass theorem by Duc (see [7]). 

Proposition 2.2. Under the assumptions of Theorem 2.1, the functional ( ) ,wJ  

Hw ∈  given by (2) is weakly continuously differentiable on H and 

( ) ( ( ) ( )∫ ψ∇∇∇+φ∇∇∇=φ′ −−
NR

pp vvxhuuxhwJ 2
2

2
1,  

( ) ( ) ) ( ) ( )( ) ,,,,,22 ∫ ψ+φ−ψ+φ+ −− dxvuxgvuxfdxvvxbuuxa pp  

for all ( ) ( ) .,,, Hvuw ∈ψφ=Φ=  

By conditions (H1)-(H3) and the embedding ,EH   it can be shown that the 

functional P is well defined and of class ( ).1 HC  Moreover, we have 

( ) ( ( ) ( ) ) ,,,,,, ∫ ψ+φ=φ′
NR

dxvuxgvuxfwP  

for all ( ) ( ) .,,, Hvuw ∈ψφ=Φ=  
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Next, we prove that T is continuous. Let { }nw  be a sequence converging to w in 

( ),HHm wwH →  where ( ) ...,2,1,, == mvuw mmm  and ( )., vuw =  Then 
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Thus, T is continuous on H. Next, we prove that for all ( ) ( )ψφ=Φ= ,,, vuw  

H∈  

( ) ( ( ) ( ) ( ) ( ) ) ., 21∫ ψ+φ+ψ∇∇+φ∇∇=φ′ dxvxbuxavxhuxhwJ  

Indeed 
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( ( ) ( ) ( ) ( ) ) .21∫ ψ+φ+ψ∇∇+φ∇∇= dxvxbuxavxhuxh  

Thus, T is weakly differentiable on H. We can conclude that functional T is 
weakly continuously differentiable on H. Finally, J is weakly continuously 
differentiable on H. 

Proposition 2.3. The functional ( ) ,wJ  Hw ∈  given by (2.1) satisfies the 
Palais-Smale condition. 

Proof. Let ( ){ } Hvuw mmm ⊂= ,  be a Palais-Smale sequence, i.e., 

( ) ,cwJ m ≤  for all m and ( ) 0→′ mwJ  as .∞→m  For m large enough, we have 
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This shows that { }mw  is bounded in H. This implies that there exists Hw ∈0  

such that at least in sequence; { }mw  converges to 0w  weakly in H and strongly in 

.pL  Using ( ) ,0→′ mwJ  we obtain 

( ) ( ) 00 , wwwJwJ mm −′−′  
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Due to the continuity of the Nemyteskiy operators uuu p 2−→  and 

vvv p 2−→  from ( )ΩpL  into ( )( ),1 Ω−ppL  and 2H  the last three integrals 

approach zero. 

Observe that for all ,, 21
NRxx ∈  and ,21 << p  
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similarly 
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so we have 

∫ ∫ ∇−∇+∇−∇=− p
m

p
mHm vvhuuhww 02010  

( ) ( ) ,000 →−+−+ p
m

p
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therefore, we conclude that { }nw  converges strongly to 0w  in H and J satisfies the 

Palais-Smale condition on H. 

To apply the Mountain Pass theorem, we shall prove the following proposition 
which shows that the functional J has the Mountain Pass geometry: 

Proposition 2.4. (i) There exist 0>α  and 0>r  such that ( ) ,α≥wJ  for all 

Hw ∈  and .rw H =  

(ii) There exists Hw ∈0  such that rw H >  and ( ) .00 <wJ  

From (H3), it is easy to see that 

( ) ( ) ,,1and,0,min, 2
1 RzzRxzsxFzxF N

s ∈≥∈∀>⋅≥ µ
=  (2.4) 

( ) ( ) ,,10and,,max,0 2
1 RzzRxzsxFzxF N

s ∈≤<∈∀⋅≤< µ
=  

where ( ) CsxFs ≤= ,max 1  in view of (H2). It follows that 

( ) .foruniformly0,lim 20
N

z Rx
z

zxF ∈=→  

By using the embeddings ( ),, 2RRLEH Np  with simple calculation, 

we infer that ( ) 0inf >α== wJrw H
 for 0>r  small enough. This implies (i). 

(ii) By (2.4), for each compact set ,NR⊂Ω  there exists ( )Ω= cc  such that 

( ) .1,allfor, ≥Ω∈> µ zxzczxF  

Let ( ) ( )21 ,,0 RRC N∈ψϕ=φ≠  having compact support, for 0>t  large 
enough, we have 

( ) ( ) ,1,1 ∫ ∫ µµ φ−φ≤φ−φ=φ dxctt
p

dxtxFt
p

tJ p
H

pp
H

p  

where ( ) ( ).suppsupp, ψϕ=ΩΩ= ∪cc  Since ,p>µ  (ii) is proved. 
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Furthermore, the acceptable set 

[ ]( ) ( ) ( ){ },10:,1,0 0ω=γ=γ∈γ= HCG  

where 0w  is given in Proposition 2.4, is not empty. So, all the assumptions of the 

Mountain Pass theorem are satisfied. Therefore, there exists Hu ∈  such that 
( ) .0>α≥uJ  
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