

Published Online: March 11, 2010

This paper is available online at http://www.pphmj.com

© 2010 Pushpa Publishing House

EXISTENCE OF WEAK SOLUTIONS FOR A CLASS OF NONUNIFORMLY ELLIPTIC EQUATIONS OF

p-LAPLACIAN TYPE IN R^N

G. A. AFROUZI, Z. NAGHIZADEH and S. MAHDAVI

Department of Mathematics Faculty of Basic Sciences Mazandaran University Babolsar, Iran

e-mail: afrouzi@umz.ac.ir

Abstract

Using a variational approach, we study a class of nonlinear elliptic systems derived from a potential and involving the p-laplacian. Under growth and regularity conditions on the nonlinearities f and g, we show the existence of nontrivial solutions by applying a variant of the Mountain Pass theorem.

1. Introduction

In this paper, we deal with the nonlinear elliptic system

$$\begin{cases} -div(h_1(x)|\nabla u|^{p-2}\nabla u) + a(x)|u|^{p-2}u = f(x, u, v) & \text{in} \quad \mathbb{R}^N, \\ -div(h_2(x)|\nabla v|^{p-2}\nabla v) + b(x)|v|^{p-2}v = g(x, u, v) & \text{in} \quad \mathbb{R}^N, \end{cases}$$
(1.1)

where $N \ge 3$, $h_i \in L^1_{loc}(\mathbb{R}^N)$, $h_i(x) \ge 1$, $i = 1, 2, a, b \in C(\mathbb{R}^N)$. We assume that there exist a_0 , $b_0 > 0$ such that

2010 Mathematics Subject Classification: 35J60, 35B30, 35B40.

Keywords and phrases: weak solutions, nonuniformly elliptic equations, variational approach. Received February 16, 2009

$$a(x) \ge a_0, \ b(x) \ge b_0, \quad \forall x \in \mathbb{R}^N,$$

 $a(x) \to \infty, \ b(x) \to \infty \text{ as } |x| \to \infty.$ (1.2)

We observe that there exists an extensive bibliography on the study of elliptic systems (see [2, 6, 8] and the references therein). In particular, we mention the article [5], where the problem (1.1) was studied with p = q = 2 and $h_1 = h_2 = 1$. In the article [4], the authors considered the system (1.1) for p = q = 2.

Let $H^1 = H^1(R^N, R^2)$ denote the Sobolev space of pairs w = (u, v) of L^P -functions $u, v : R^N \to R$ with weak derivatives $\frac{\partial u}{\partial x_j}$, $\frac{\partial v}{\partial x_j}$ (j = 1, 2, ..., N) also in $L^P(R^N)$, endowed with its usual norm

$$\|w\|^p = \int (|\nabla w|^p + |w|^p) dx = \int (|\nabla u|^p + |\nabla v|^p + |u|^p + |v|^p) dx.$$

Throughout this paper, unless specified otherwise, all integrals are understood to be taken over all of \mathbb{R}^N . To prove our main results, we introduce the following hypotheses:

(H1) There exists a function $F(x, w) \in C^1(\mathbb{R}^N \times \mathbb{R}^2, \mathbb{R})$ such that

$$\frac{\partial F}{\partial u} = f(x, w), \frac{\partial F}{\partial v} = g(x, w), \text{ for all } x \in \mathbb{R}^N, \ w = (u, v) \in \mathbb{R}^2.$$

(H2) The nonlinearities f(x, w), $g(x, w) \in C^1(\mathbb{R}^N \times \mathbb{R}^2, \mathbb{R})$ with f(x, 0, 0) = g(x, 0, 0) = 0, for all $x \in \mathbb{R}^N$, there exists a positive constant τ_0 such that

$$|\nabla f(x, w)| + |\nabla g(x, w)| \le \tau_0 |w|^{p-1},$$

for all $x \in R^N$ and $w \in R^2$.

(H3) There exists a constant $\mu > p$ such that

$$0 < \mu F(x, w) \le w \nabla F(x, w),$$

for all $x \in \mathbb{R}^N$, $w \in \mathbb{R}^2 \setminus (0, 0)$. Consider the subspace

$$E = \left\{ (u, v) \in H^{1}(\mathbb{R}^{N}, \mathbb{R}^{2}) : \int_{\mathbb{R}^{N}} (|\nabla u|^{p} + |\nabla v|^{p} + a(x)|u|^{p} + b(x)|v|^{p}) dx < \infty \right\},$$

then E is a banach space with the norm

$$\|w\|_{E}^{p} = \int_{\mathbb{R}^{N}} (|\nabla u|^{p} + |\nabla v|^{p} + a(x)|u|^{p} + b(x)|v|^{p}) dx.$$

By (1.2), it is clear that

$$\|w\|_{E} \ge m_0 \|w\|_{H^1}(R^N, R^2) \quad \forall w \in E, \quad m_0 > 0,$$

and the embeddings $E \hookrightarrow H^1(\mathbb{R}^N, \mathbb{R}^2) \hookrightarrow L^q(\mathbb{R}^N, \mathbb{R}^2), p \leq q \leq p^*$ are continuous.

Moreover, the embedding $E \hookrightarrow L^q(\mathbb{R}^N, \mathbb{R}^2)$ is compact (see [4]). We now introduce the space

$$H = \left\{ (u, v) \in E : \int_{R^{N}} (h_{1}(x) |\nabla u|^{p} + h_{2}(x) |\nabla v|^{p} + a(x) |u|^{p} + b(x) |v|^{p}) dx < \infty \right\}$$

endowed with the norm

$$||w||_{H}^{p} = \int_{\mathbb{R}^{N}} (h_{1}(x)|\nabla u|^{p} + h_{2}(x)|\nabla v|^{p} + a(x)|u|^{p} + b(x)|v|^{p}) dx.$$

It can easily be shown that *H* is a banach space with the above norm.

Definition 1.1 (Weak solution). We say that (u, v) is a weak solution of (1.1) if

$$\int h_1(x) |\nabla u|^{p-2} \nabla u \nabla \varphi + \int a(x) |u|^{p-2} u \varphi dx = f(x, u, v) \varphi dx,$$

$$\int h_2(x) \left| \left. \nabla v \right|^{p-2} \nabla v \nabla \psi + \int b(x) \left| \left. v \right|^{p-2} v \psi dx = g(x,\,u,\,v) \psi dx,$$

for all $\phi = (\varphi, \psi) \in H$.

2. Main Result

Our main result is stated as follows:

Theorem 2.1. Assuming that (1.2) and (H1)-(H3) are satisfied, then the system (1.1) has at least one nontrivial weak solution in H.

It is clear that system (1.1) has a variational structure. Let $J: H \to R$ be defined by

$$J(w) = \frac{1}{p} \int (h_1(x) |\nabla u|^p + h_2(x) |\nabla v|^p + a(x) |u|^p + b(x) |v|^p) dx$$

$$- \int F(x, u, v) dx$$

$$= T(w) - p(w) \text{ for } w = (u, v) \in H,$$
(2.1)

where

$$T(w) = \frac{1}{p} \int (h_1(x) |\nabla u|^p + h_2(x) |\nabla v|^p + a(x) |u|^p + b(x) |v|^p) dx, \qquad (2.2)$$

$$p(w) = \int F(x, u, v) dx. \tag{2.3}$$

Clearly, the critical points of J correspond to the weak solutions of problem (1.1). In general, due to $h(x) \in L^1_{loc}(\mathbb{R}^N)$, the functional J may not belong to $C^1(H)$ (in this paper, we do not completely care whether the functional J belongs to $C^1(H)$ or not). This means that we cannot apply directly the Mountain Pass theorem by Ambrosetti-Rabinowitz (see [2, 6]), our approach is based on a weak version of the Mountain Pass theorem by Duc (see [7]).

Proposition 2.2. Under the assumptions of Theorem 2.1, the functional J(w), $w \in H$ given by (2) is weakly continuously differentiable on H and

$$\langle J'(w), \phi \rangle = \int_{\mathbb{R}^N} (h_1(x)|\nabla u|^{p-2} \nabla u \nabla \phi + h_2(x)|\nabla v|^{p-2} \nabla v \nabla \psi$$
$$+ a(x)|u|^{p-2} u \phi + b(x)|v|^{p-2} v \psi) dx - \int (f(x, u, v) \phi + g(x, u, v) \psi) dx,$$

By conditions (H1)-(H3) and the embedding $H \hookrightarrow E$, it can be shown that the functional P is well defined and of class $C^1(H)$. Moreover, we have

$$\langle P'(w), \phi \rangle = \int_{\mathbb{R}^N} (f(x, u, v)\phi + g(x, u, v)\psi) dx,$$

for all $w = (u, v), \Phi = (\phi, \psi) \in H$.

for all $w = (u, v), \Phi = (\phi, \psi) \in H$.

Next, we prove that T is continuous. Let $\{w_n\}$ be a sequence converging to w in $H(\|w_m\|_H \to \|w\|_H)$, where $w_m = (u_m, v_m)$, m = 1, 2, ... and w = (u, v). Then

$$|T(w_n) - T(w)| = \left| \frac{1}{p} \left(\int h_1(x) (|\nabla u_m|^p - |\nabla u|^p) + h_2(x) (|\nabla v_m|^p - |\nabla v|^p) + a(x) (|u_m|^p - |u|^p) + b(x) (|v_m|^p - |v|^p) \right) dx \right|$$

$$= \frac{1}{p} |\|w_m\|_H - \|w\|_H | \to 0.$$

Thus, T is continuous on H. Next, we prove that for all w = (u, v), $\Phi = (\phi, \psi)$ $\in H$

$$\langle J'(w), \phi \rangle = \int (h_1(x) \nabla u \nabla \phi + h_2(x) \nabla v \nabla \psi + a(x) u \phi + b(x) v \psi) dx.$$

Indeed

$$\langle J'(w), \Phi \rangle = \frac{d}{dt} J(w + t\Phi) \Big|_{t=0}$$

$$= \frac{d}{dt} \left[\int (h_1(x) | \nabla u + t\nabla \phi | + h_2(x) | \nabla v + t\nabla \psi | + a(x) | u + t\phi |^p + b(x) | v + t\psi |^p) dx \right] \Big|_{t=0}$$

$$= \int (h_1(x) \nabla u \nabla \phi + h_2(x) \nabla v \nabla \psi + a(x) u \phi + b(x) v \psi) dx.$$

Thus, T is weakly differentiable on H. We can conclude that functional T is weakly continuously differentiable on H. Finally, J is weakly continuously differentiable on H.

Proposition 2.3. The functional J(w), $w \in H$ given by (2.1) satisfies the Palais-Smale condition.

Proof. Let $\{w_m = (u_m, v_m)\} \subset H$ be a Palais-Smale sequence, i.e., $|J(w_m)| \le c$, for all m and $J'(w_m) \to 0$ as $m \to \infty$. For m large enough, we have $\frac{1}{\mathfrak{u}} |\langle J'(w_m), w_m \rangle| \le \|w_m\|_H$ and by

$$c + \| w_m \|_H \ge J(w_m) - \frac{1}{\mu} \langle J'(w_m), w_m \rangle \ge \left(\frac{1}{p} - \frac{1}{\mu} \right) \| w_m \|_H^p.$$

This shows that $\{w_m\}$ is bounded in H. This implies that there exists $w_0 \in H$ such that at least in sequence; $\{w_m\}$ converges to w_0 weakly in H and strongly in L^p . Using $J'(w_m) \to 0$, we obtain

$$\langle J'(w_m) - J'(w_0), w_m - w_0 \rangle$$

$$= \int h_1(x) (|\nabla u_m|^{p-2} \nabla u_m - |\nabla u_0|^{p-2} \nabla u_0) \nabla (u_m - u_0) dx$$

$$+ \int h_2(x) (|\nabla v_m|^{p-2} \nabla v_m - |\nabla v_0|^{p-2} \nabla v_0) \nabla (v_m - v_0) dx$$

$$+ \int a(x) (|u_m|^{p-2} u_m - |u_0|^{p-2} u_0) \nabla (u_m - u_0) dx$$

$$+ \int b(x) (|v_m|^{p-2} v_m - |u_0|^{p-2} v_0) \nabla (v_m - v_0) dx$$

$$+ \int (f(x, u_m, v_m) - f(x, u, v)) dx \to 0.$$

Due to the continuity of the Nemyteskiy operators $u \to |u|^{p-2}u$ and $v \to |v|^{p-2}v$ from $L^p(\Omega)$ into $L^{p/(p-1)}(\Omega)$, and H_2 the last three integrals approach zero.

Observe that for all $x_1, x_2 \in \mathbb{R}^N$, and 1 ,

$$|x_2|^p \ge |x_1|^p + p|x_1|^{p-2}x_1(x_2 - x_1) + c(p)\frac{|x_1 - x_2|^2}{(|x_1| + |x_2|)^{2-p}}$$

and for $p \ge 2$,

$$|x_2|^p \ge |x_1|^p + p|x_1|^{p-2}x_1(x_2 - x_1) + c(p)\frac{|x_2 - x_1|^p}{2^{p-1} - 1}.$$

Then for $2 \le p$, we have

$$\begin{split} \left| \ h_{1}^{1/p} \nabla u_{0} \ \right|^{p} & \geq \left| \ h_{1}^{1/p} \nabla u_{m} \ \right|^{p} + \left| p \right| \ h_{1}^{1/p} \nabla u_{m} \ \right|^{p-2} \left(h_{1}^{1/p} \nabla u_{m} \right) \\ & \times \left(h_{1}^{1/p} \nabla u_{0} - h_{1}^{1/p} \nabla u_{m} \right) + \frac{\left| \ h_{1}^{1/p} \nabla u_{m} - h_{1}^{1/p} \nabla u_{0} \ \right|^{p}}{2^{p-1} - 1} \\ & \Rightarrow \int \left| \ h_{1}^{1/p} \nabla u_{m} \ \right|^{p-2} \left(h_{1}^{1/p} \nabla u_{m} \right) \left(h_{1}^{1/p} \nabla u_{m} - h_{1}^{1/p} \nabla u_{0} \right) \end{split}$$

$$\begin{split} & \geq \frac{1}{p} \int | \ h_1^{1/p} \nabla u_m \ |^p - \frac{1}{p} \int | \ h_1^{1/p} \nabla u_0 \ |^p \\ & + \frac{1}{p(2^{p-1} - 1)} \int | \ h_1^{1/p} \nabla u_m - h_1^{1/p} \nabla u_0 \ |^p \\ & \Rightarrow \int h_1(x) | \ \nabla u_m \ |^{p-2} \nabla u_m (\nabla u_m - \nabla u_0) \\ & \geq \frac{1}{p} \int h_1 | \ \nabla u_m \ |^p - \frac{1}{p} \int h_1 | \ \nabla u_0 \ |^p + \frac{1}{p(2^{p-1} - 1)} \int h_1 | \ \nabla u_m - \nabla u_0 \ |^p \,, \end{split}$$

similarly

$$\begin{split} & - \int h_1(x) |\nabla u_0|^{p-2} \nabla u_0 (\nabla u_m - \nabla u_0) \\ & \geq - \frac{1}{p} \int h_1 |\nabla u_m|^p + \frac{1}{p} \int h_1 |\nabla u_0|^p + \frac{1}{(p(2^{p-1} - 1))} \int h_1 |\nabla u_0 - \nabla u_m|^p. \end{split}$$

Therefore

$$\int h_{1}(x) (|\nabla u_{m}|^{p-2} \nabla u_{m} - |\nabla u_{0}|^{p-2} \nabla u_{0}) \nabla (u_{m} - u_{0})$$

$$\geq \frac{2}{p(2^{p-1} - 1)} \int h_{1} |\nabla u_{m} - \nabla u_{0}|^{p},$$

similarly we have

$$\int h_{2}(x) (|\nabla v_{m}|^{p-2} \nabla v_{m} - |\nabla v_{0}|^{p-2} \nabla v_{0}) \nabla (v_{m} - v_{0})$$

$$\geq \frac{2}{p(2^{p-1} - 1)} \int h_{2} |\nabla v_{m} - \nabla v_{0}|^{p},$$

then

$$\int h_1 |\nabla u_m - \nabla u_0|^p + \int h_2 |\nabla v_m - \nabla v_0|^p \to 0$$

and

$$\int a(x) |u_m - u_0|^p + b(x) |v_m - v_0|^p$$

$$\leq \max_{\Omega} \sup(a(x), b(x)) \int |u_m - u_0|^p + b(x) |v_m - v_0|^p \to 0,$$

so we have

$$\| w_m - w_0 \|_H = \int h_1 |\nabla u_m - \nabla u_0|^p + \int h_2 |\nabla v_m - \nabla v_0|^p$$
$$+ a(x) |u_m - u_0|^p + b(x) |v_m - v_0|^p \to 0,$$

therefore, we conclude that $\{w_n\}$ converges strongly to w_0 in H and J satisfies the Palais-Smale condition on H.

To apply the Mountain Pass theorem, we shall prove the following proposition which shows that the functional J has the Mountain Pass geometry:

Proposition 2.4. (i) There exist $\alpha > 0$ and r > 0 such that $J(w) \ge \alpha$, for all $w \in H$ and $\|w\|_H = r$.

(ii) There exists $w_0 \in H$ such that $||w||_H > r$ and $J(w_0) < 0$.

From (H3), it is easy to see that

$$F(x, z) \ge \min_{|s|=1} F(x, s) \cdot |z|^{\mu} > 0, \ \forall x \in \mathbb{R}^N \text{ and } |z| \ge 1, \ z \in \mathbb{R}^2,$$
 (2.4)

$$0 < F(x, z) \le \max_{|s|=1} F(x, s) \cdot |z|^{\mu}, \ \forall x \in \mathbb{R}^{N} \ \text{and} \ 0 < |z| \le 1, \ z \in \mathbb{R}^{2},$$

where $\max_{|s|=1} F(x, s) \le C$ in view of (H2). It follows that

$$\lim_{|z| \to 0} \frac{F(x, z)}{|z|^2} = 0$$
 uniformly for $x \in \mathbb{R}^N$.

By using the embeddings $H \hookrightarrow E \hookrightarrow L^p(\mathbb{R}^N, \mathbb{R}^2)$, with simple calculation, we infer that $\inf_{\|w\|_H = r} J(w) = \alpha > 0$ for r > 0 small enough. This implies (i).

(ii) By (2.4), for each compact set $\Omega \subset \mathbb{R}^N$, there exists $c = c(\Omega)$ such that

$$F(x, z) > c|z|^{\mu}$$
 for all $x \in \Omega$, $|z| \ge 1$.

Let $0 \neq \phi = (\phi, \psi) \in C^1(\mathbb{R}^N, \mathbb{R}^2)$ having compact support, for t > 0 large enough, we have

$$J(t\phi) = \frac{1}{p}t^p \|\phi\|_H^p - \int F(x,t\phi)dx \le \frac{1}{p}t^p \|\phi\|_H^p - t^\mu c \int |\phi|^\mu dx,$$

where $c = c(\Omega)$, $\Omega = (\text{supp } \phi \cup \text{supp } \psi)$. Since $\mu > p$, (ii) is proved.

Furthermore, the acceptable set

$$G = \{ \gamma \in C([0, 1], H) : \gamma(0) = \gamma(1) = \omega_0 \},\$$

where w_0 is given in Proposition 2.4, is not empty. So, all the assumptions of the Mountain Pass theorem are satisfied. Therefore, there exists $u \in H$ such that $J(u) \ge \alpha > 0$.

References

- A. Ambrosetti, J. G. Azorero and I. Peral, Existence and multiplicity results for some nonlinear elliptic equations, a survey, Rendiconti di Matematica Serie VII 20 (2000), 167-198.
- [2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 4 (1973), 349-381.
- [3] H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1984), 313-345.
- [4] N. T. Chung, Existence of weak solutions for a nonuniformly elliptic nonlinear system in \mathbb{R}^n , Electron. J. Differential Equations 2008, No. 119, 10 pp.
- [5] D. G. Costa, On a class of elliptic systems in \mathbb{R}^n , Electron. J. Differential Equations 1994, No. 07, 14 pp. (electronic).
- [6] D. G. de Figueiredo, Semilinear elliptic systems, Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, A. Ambrosetti, K.-C. Chang and I. Ekeland, eds., 1997, pp. 125-152.
- [7] D. M. Duc, Nolinear singular elliptic equations, J. London. Math. Soc. 40(2) (1989), 420-440.
- [8] N. M. Stavrakakis and N. Zographopoulos, Multiplicity and regularity results for some quasilinear elliptic systems on \mathbb{R}^n , Nonlinear Anal. TMA 50 (2002), 55-69.