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Abstract

Using a variational approach, we study a class of nonlinear elliptic
systems derived from a potential and involving the p-laplacian. Under
growth and regularity conditions on the nonlinearities f/ and g, we show
the existence of nontrivial solutions by applying a variant of the Mountain
Pass theorem.

1. Introduction

In this paper, we deal with the nonlinear elliptic system

—div(hy (x)| Vu |P2Vu) + a(x)| u )P 2u = f(x,u,v) in RV

B

(1.1)
—div(hy(x)| Vv |p_2Vv) +b(x)| v |p_2v =g(x,u,v) in RV,

where N >3, h; e L .(RY), h(x)=1, i=12 a,beCR"). We assume that
there exist ag, by > 0 such that
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a(x) = ag, b(x)=by, VxeRY,
a(x) > o, b(x) > o as |x|—> « (1.2)

We observe that there exists an extensive bibliography on the study of elliptic
systems (see [2, 6, 8] and the references therein). In particular, we mention the
article [5], where the problem (1.1) was studied with p = ¢ =2 and k) = hy =1.

In the article [4], the authors considered the system (1.1) for p = g = 2.

Let #'=H'(RY, R?) denote the Sobolev space of pairs w = (u, v) of
Ou v
axj' ’ 6xj

LP -functions u, v : RY — R with weak derivatives (j=L2,..,N)

alsoin L (RY), endowed with its usual norm
Pl = [Qwwl? +wi?yde = [ (Vul? 490 )P +]u]? ] v|?)ax

Throughout this paper, unless specified otherwise, all integrals are understood to be

taken over all of R™. To prove our main results, we introduce the following

hypotheses:

(H1) There exists a function F(x, w) e C'(RY x R?, R) such that

2_1;: flx, w),aa—F— g(x, w), forall xe R, w=(u,v)e R’

=
(H2) The nonlinearities f(x, w), g(x, w) e C'(RY x R?, R) with f(x, 0, 0)
= g(x,0,0) =0, forall x e RY, there exists a positive constant T( such that
| 9/ (s, w) | +] Ve, w) | < 7ol w]? 7,
forall x e R and w e R%.
(H3) There exists a constant i > p such that

0 < uF(x, w) < wVF(x, w),

forall x € RV, we R?\(0, 0). Consider the subspace

E:{(u, v)eHl(RN,Rz):jRN(|Vu |p+|Vv|p+a(x)|u|p+b(x)|v|p)dx<oo},
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then F is a banach space with the norm
[l = [ (vul? [ Vv )P +a)]ul? + b)] v]? s
By (1.2), it is clear that
Il > molwli (RY, R?) Wwe B my >0,
and the embeddings £ < H'(RY, R?) < L9(RV, R?), p < ¢ < p" are continuous.

Moreover, the embedding E <« L"(RN , Rz) is compact (see [4]). We now

introduce the space
H:{(u, v)eE:I N(hl(x)|Vu|p +hy(x)| V[P +a(x)|ul? +b(x)|v|p)dx<oo}
R

endowed with the norm

Pl = [y @ V) + ha(5) 917+ a) 1 ]” + 5] v

It can easily be shown that H is a banach space with the above norm.

Definition 1.1 (Weak solution). We say that (u, v) is a weak solution of (1.1) if
Ihl(x)| Vu |P2VuVe + ja(x)| u [P 2ugdx = f(x, u, v)odx,

J.hz(x)| Vv |p_2VvV\y + J‘b(x)| % |p_2v1udx = g(x, u, v)ydx,
forall ¢ = (o, v) € H.

2. Main Result

Our main result is stated as follows:

Theorem 2.1. Assuming that (1.2) and (H1)-(H3) are satisfied, then the system

(1.1) has at least one nontrivial weak solution in H.

It is clear that system (1.1) has a variational structure. Let J : H —> R be
defined by
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J00) = = [ @[ Vi P+ @[ Vo] + a)] | + 5] v[? )

—JF(x, u, v)dx
=T(w)— p(w) for w=(u, v) e H, 2.1
where

700 = [ 0| Vu |+ 1o ()| Vo[ + a)| |+ b0y ), 22)

p(w) = IF(x, u, v)dx. (2.3)

Clearly, the critical points of J correspond to the weak solutions of problem

(1.1). In general, due to h(x) € L},.(R"), the functional J may not belong to C'(H)

(in this paper, we do not completely care whether the functional J belongs to ! (H)

or not). This means that we cannot apply directly the Mountain Pass theorem by
Ambrosetti-Rabinowitz (see [2, 6]), our approach is based on a weak version of the
Mountain Pass theorem by Duc (see [7]).

Proposition 2.2. Under the assumptions of Theorem 2.1, the functional J(w),

w e H given by (2) is weakly continuously differentiable on H and

(). 0)= [ ()] Vil Vv + ()| Vo [Py

a0l Pug s B vl 2= [ (o + gl vy,

Jorall w=(u,v), ® = (9, y) € H.

By conditions (H1)-(H3) and the embedding H < E, it can be shown that the

functional P is well defined and of class C' (H). Moreover, we have
PO ) = [ (P )b+ gl v) v

forall w=(u, v), ® = (¢, ) € H.
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Next, we prove that T is continuous. Let {w, } be a sequence converging to w in

H(|wy |, = | wly), where w,, = (uy,, vy,), m =1,2, ... and w = (u, v). Then
1
|70~ 70) =‘;Uhl(x)(| Vi 7 = Vi |?) 5 ha(6)( ¥, 1P | 9 17)

v a@) 1y 7 =[Py b (v |7 =] v|P>]dx

1
= 1 by =1l |

Thus, T is continuous on H. Next, we prove that for all w = (u, v), ® = (¢, y)
eH

(J'(w), ¢) = I(hl (X)VuV + hy (x) VvV + a(x)ud + b(x) vy ) dx.
Indeed

(00, @) = L0+ 1) ‘ 3

= %{I(ﬁl(x”Vu + VY |+ hy(x)| Vv + V|

+a(x)|u+tp|P +b(x)|v+ty |p)dx}

t=0
= J.(hl (X)VuV + 1y (x) VvV + a(x)ud + b(x) vy )dx.
Thus, T is weakly differentiable on H. We can conclude that functional 7 is

weakly continuously differentiable on H. Finally, J is weakly continuously
differentiable on H.

Proposition 2.3. The functional J(w), we H given by (2.1) satisfies the

Palais-Smale condition.
Proof. Let {w,, = (u,,v,)} < H be a Palais-Smale sequence, i..,
| J(w,,)| < ¢, forallmand J'(w,,) > 0 as m — oo. For m large enough, we have

1, .
E|(J (Wi)s W) | < Wy, ||, and by

| Q- 1 1
41 g 2 0m) = ). ) 2 (= Lo
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This shows that {w,,} is bounded in H. This implies that there exists wy € H

such that at least in sequence; {w,,} converges to w, weakly in H and strongly in
L?. Using J'(w,,) — 0, we obtain
<J’(Wm) - J'(WO)» Wm — W0>

= Jhl(x)(| Vi, |72V, —| Vug |72 Vug ) Vi, — ug)dx
" j Iy (X) (| Vv [P35V, —| Vvg P72V )V (v, — vo )dx
 [[at) Gt 172t =1t 17~ 2t0) V0t =)
B0 v 177 =1t 17220 V(v = vo)

+I(f(x, Upys Vi) — f(x, u, v))dx — 0.

Due to the continuity of the Nemyteskiy operators u —> |u |[P"%u and
v |v[P?v from LP(Q) into Lp/(pfl)(Q), and H, the last three integrals
approach zero.

Observe that for all x;, x, € RN, and 1 < p <2,

|x1—xz|2

| xa]? 2 3|7 + pl g [P 3162 = 1) + e(p) -
(] +]x )77
and for p > 2,

— Xy — X P
|17 =[x [P+ pl g |72 3 (xy ﬂclﬂd[ﬂ%

Then for 2 < p, we have
1 1 1 -2/41
| WY PVug |7 = | WPV, 17+ p| PV, (P72 (WP,

| hll/qum - hll/quo |7
2Pt

x (hll/quo - hll/qum)+

)} 2771 )} )}
= J| hl/qum |? (hl/qum)(hl/qum - hl/quO)
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>4 J'| Py, —_j| 1P |P

+— | 1Y PV, - PV, P
p(2P! - ’

= J.hl (x)l Vi, |p*2 Vi, (vum - V”O)

1 1
2 [l Vun|? = [ ] Vaol + jhllvu ~Vug|?,

P

similarly
—j Iy (x)| Vg [P~ Vaug (Vaty, = Virg )

1

IJ‘ 1
>—— || Vu p+—jh Vu p+—-[h Vug — Vu,, |P.
LV l” s Pl s St P v Vi

Therefore
-2 -2
Jhl(x)(| Vi, |P ™ Vu, —| Vug|?™*Vug)V(u,, —ugy)
2 1| Vuy, — Vg |7,
- p2f” 1—1)'[

similarly we have

J.hz(x)(| Vv, |p_2va —| Vv |p_2Vv0)V(vm -vp)

>—th Vv, — Vv|?
JEYE | 7,
then
Ih1|Vum - Vuy|? +Ih2|va - Vyl? >0

and

J.a(x)|um —ug|? +b(x)| vy —vol?

< maxg, sup(a(x), b(x))j| Uy —ug|? +b(x)| v, —vol? =0,
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so we have
| Wi = wolly = _[h1| Vi, = Vug|? +-[h2lvvm - Vl?
+ a(x)l Upy — ”Olp + b(x)l Vm — VOlp - O’

therefore, we conclude that {w,} converges strongly to wy in H and J satisfies the

Palais-Smale condition on H.

To apply the Mountain Pass theorem, we shall prove the following proposition
which shows that the functional J has the Mountain Pass geometry:

Proposition 2.4. (i) There exist . > 0 and r > 0 such that J(w) > a, for all

we H and "W"H =r.
(ii) There exists wy € H such that | w||,, > r and J(wy) < 0.
From (H3), it is easy to see that
F(x, z) 2 min g F(x,s) |z >0, vxeRY and |z]21, zeR?, (24)
0 < F(x, z) < max| o) F(x, s)-|z[", vxe RY and 0<|z|<1, zeR?,
where max| | F(x, s) < C in view of (H2). It follows that

F(x, z)

lim‘ 2|0 = 0 uniformly for x € RV,

By using the embeddings H “> E <> LP(R", R?), with simple calculation,

we infer that inf] wly=r (w)=a > 0 for » > 0 small enough. This implies (i).
(ii) By (2.4), for each compact set Q — R” | there exists ¢ = ¢(Q) such that
F(x,z)>dz|" forall xeQ, |z]|>1.

Let 0= ¢ = (¢, y) e C'(RY, R?) having compact support, for ¢ > 0 large

enough, we have
1 1
s =70l - jF(x, @) <07 - t“cj| o dx,

where ¢ = ¢(Q), Q = (supp ¢ U supp y). Since p > p, (ii) is proved.
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Furthermore, the acceptable set

G =1{y € C([0, 1], H): y(0) = y(1) = &y},

where w is given in Proposition 2.4, is not empty. So, all the assumptions of the

Mountain Pass theorem are satisfied. Therefore, there exists u € H such that
Jw)=a > 0.

(1]

(2]
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