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Abstract

This paper considers an infinite buffer single server accessible and non-
accessible batch service queue with single and multiple exponential
vacations, which has a wide range of applications in several arecas
including manufacturing and communication systems. The inter-arrival
times are general independent and identically distributed random variables
and the service times are exponential. We provide a recursive method,
using the supplementary variable technique and treating the remaining
inter-arrival time as the supplementary variable, to develop the steady-
state queue length distributions at pre-arrival and arbitrary epochs. Some
numerical results are presented in the form of self explanatory tables and
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graphs. Moreover, some queueing models discussed in the literature are
derived as special cases of our model.

1. Introduction

Bulk-service queues have attracted much attention due to practical applicability
in the field of communication systems, lift operations, cargo loading and unloading
problems, etc. These queues and other variants of general bulk-service queues have
been studied by many authors, see Medhi [17, 18], Chaudhry and Templeton [6],
Baba [1], Neuts [19], Gold and Tran-Gia [8], Chaudhry and Gupta [5], and
Hébuterne and Rosenberg [13]. Further, the customers arriving one at a time must
wait in the queue until a sufficient number of customers are accumulated in the
queue in order to utilize the server effectively. The server has pre-specified
minimum and maximum threshold capacities of service. The concept of accessibility
into batches during service has been considered by Gross et al. [11], Kleinrock [15],
Sivasamy [21] and Goswamii et al. [9]. The infinite buffer queue with accessible and
non-accessible batch service rule has been studied by Sivasamy [22], where the
arrivals and service times are exponentially distributed. In discrete-time systems, the
same type of model has been studied by Goswami et al. [9] with finite and infinite
buffers.

In most of the queueing models, on completion of service to the existing
customers, the server stays in the empty system awaiting for a new arrival. But there
are situations where if the server after completing the service of a customer finds the
queue empty, then it goes away for a length of time called vacation. This time may
be utilized by the server to carry out some additional work. On return from a
vacation if it finds one or more customers waiting, it takes them for service on a one-
by-one basis until the system empties, after which time it takes another vacation.
However, if, on return from a vacation, it finds no customer waiting, then in the case
of single vacation, it remains dormant until at least one customer arrives, whereas in
the case of multiple vacation it immediately proceeds for another vacation and
continues in this manner until it finds at least one waiting customer upon return from
a vacation. Queueing models with server vacations are characterized by the fact that
the idle time of the server may be utilized for some other jobs.

Vacation models have applications in modelling of computer systems, data
communication networks, traffic concentrators and other related areas. The queues
with vacation have also attracted many researchers due to their wide importance in
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the areas of manufacturing, computer communication systems, etc. In the past,
several authors have studied queueing systems with vacations, Tian et al. [23],
Chaterjee and Mukerjee [4], etc. Chae et al. [3] obtained queue length and waiting

time in terms of probability generating function for the continuous-time GI/M/1

queueing model with single vacation. Chae and Kim [2] obtained the length of a
busy period, the number of customers served during busy period, and the residual
inter-arrival time at the instant the busy period ends. The batch service queues with
single and multiple exponential vacations have been studied by Sikdar [21], where

inter-arrival time of customers and service time of batches are, respectively,
exponentially and arbitrarily distributed. The batch service GI/M (a.b) /1 queue

with multiple vacations has been analyzed by Choi and Han [7]. Further, studies
related to batch service queue with servers’ vacation are found in Lee et al. [16],
Samanta et al. [20], and Gupta and Vijaya [12]. However, the batch service queues
with accessible and non-accessible batch service and servers’ vacation have not been
studied so far. It may be noted that the general uncorrelated arrival process appears
to be more appropriate and reasonable than the exponential distribution, as the
memoryless property of the exponential arrival process does not always fit in many
application areas. Further, the general arrival process includes exponential,
deterministic, Erlang distributions etc., as special cases.

The present paper focuses on the study of infinite buffer queue with accessible
and non-accessible batch services for both single and multiple exponential vacations.
The inter-arrival time of customers and service time of batches are, respectively,
arbitrarily and exponentially distributed. We provide a recursive method, using the
supplementary variable technique and treating the remaining inter-arrival time as the
supplementary variable, to develop the steady-state queue length distributions at pre-

arrival and arbitrary epochs. Numerical results have been presented in the form of
tables and graphs. Also, we can obtain the result of non-vacation GI /M (a,d.0) /1]

queue by taking the vacation parameter sufficiently large, so that the mean vacation
time tends to zero. The queueing model presented above has applications in the field
of communication systems, polling systems, cinema theaters and many other such

related areas.

This paper is organized as follows. Section 2 presents the model description and
solution of the model for both single and multiple vacation policies. Various

performance measures are presented in Section 3. Some special cases which are
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matched with existing results in the literature are demonstrated in Section 4.
Numerical results in the form of tables and graphs are presented in Section 5.

Section 6 concludes the paper.
2. The Model Description and Solution of the Model

Let us consider an infinite buffer single server accessible and non-accessible
batch service queue with single and multiple vacations. The inter-arrival times are
independent and identically distributed random variables with probability

distribution function A(u), probability density function a(u), u >0, Laplace-
Stieltjes transform (LST) A%(0), Re(6)>0. The mean inter-arrival time is

E(A) = —A*(l)(O) =1/L (say), where A is the mean arrival rate. The customers are

served exponentially with parameter p by a single server in batches of maximum
size b with a minimum threshold value a. However, if the server finds 0 < n < a -1
customers present in the system at a service completion epoch of a batch, it proceeds
to take exponential vacations with parameter ¢. At the end of the vacation, if the
server finds »n > a customers waiting in the system, it begins to serve them
according to batch service rule. Otherwise, if the server sees 0 <n <a-1
customers in the system at the end of that vacation, it either goes to another vacation
(multiple vacation (MV)) or enters the idle phase (single vacation (SV)). If b or more
customers are present in the queue at service initiate epoch/vacation completion,
then only b of them are taken into service. It is further assumed that the late entries
can join a batch in course of ongoing service as long as the number of customers in
that batch is less than d < b (called maximum accessible limit). At every departure
epoch of service, the server may find the system in any one of the following three
cases: (1) 0<n<a-1, (i) a<n<d-1 and (iii) n > d. In case (i), the server
cannot initiate service, it goes to vacation state. In case (ii), the server takes the
entire queue for batch service and admits the subsequent arrivals in the batch while
the service is on, till the accessible limit d is reached, and such a batch is called an
accessible batch (AB). In case (iii), it takes min(n, b) customers for the service and
does not allow further arrivals into the batch being served even if the current batch
size is not b, that is, when the batch size is greater than or equal to d, the batch
becomes non-accessible (NAB) for late arriving customers. The traffic intensity is

given by p = A/bu <1. We analyze both multiple vacation and single vacation
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models together and for that purpose we introduce an indicator function (8) as

follows: & =1 yields the results for the single vacation policy and 6 = 0 gives the

results for multiple vacation policy.

The state of the system prior to a potential arrival at time ¢ is described by the
following random variables, namely,

e N (¢) = number of customers present in the system including those in service;

* N, (f) = number of customers present in the queue not counting those in
service;

e U(t) = remaining inter-arrival time for the next arrival;
0, if the server is in dormancy (idle phase),
1, if the server is on vacation,

e L) =

2, if the server is busy with an accessible batch,

3, if the server is busy with a non-accessible batch.

Let us define the joint probabilities by

R,(u, t)du = Pr(Ng(t) =n,u <U@)<u+du, ((t)=0),u>0,0<n<a-1,
B, o(u, t)du = Pr(Ng(t) = n,u <U(t) Su+du, {(t)=1),u20,n20,

Onolu, t)du = Pr(Ng(t) = n,u <U(t) Su+du, (1) =2),u>20,a<n<d-1,
Op1(u, t)du = Pr(N,(t) = n, u <U(t) < u+du, C(t)=3),u>0,n>0.

As we shall discuss the model in limiting case, that is, when ¢ — o the above

probabilities will be denoted by R, (u) = lim R, (u, t), P, o(u) = lim P, o(u, ?),
t—>© ’ t—>wo 7
0, 0)=1im Q, ¢(u, ) and Q, ;(u)=1lim Q, |(u,?), and their Laplace transforms
’ t—o 7 ’ t—oo
are R,(0), Py 0(0), 0, 0(0) and O, 1(0), respectively.

To obtain the queue length distribution at arbitrary epochs, we develop relations
between distributions of number of customers in the system/queue at pre-arrival and
arbitrary epochs. Relating the states of the system at two consecutive time epochs #
and ¢ + dt, using probabilistic arguments, we have in the steady-state
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— Ro(w) = 80Ry o),

—%Rn(u) = 80P, o(u) + a(u)5R,_(0), 1< n<a—1,

d-1
< By olu) = 50y o(u) + 10y, () + WY 0y o(w)

i=a

B 0() = =8P, o) + 10,1 (0) + () Py 00), 1 € m < a - 1,
B o) = ~0B, o) + ) By 00), 7>
0, 0(u) = 04, 0(u) + 0P, 0(u) + 10 1(w) + ()8R, 1 (0),

L 0,0() = 10, 0(0) + 4B, o(u) + 10, 1 (w)

+ a(u)Qn_LO(O), a+1<n<d-1,

b b
—% Qo.1(u) = —Qp 1 (u) + ¢I; By o(u)+ HI; Op1(u) + a(u) Q44 0(0),

—% Op1(u) = =10y 1 () + 1Oy yp 1 () + a(u) Oy 1(0) + 0P, o (1), n > 1.

(1

2

3)

“4)

)

(6)

()

(8)

)

Multiplying (1) to (9) by e and integrating with respect to u# from 0 to oo, yields

—0Rg(0) = 57, 0(6) — Ry (0).

—0R},(0) = 8¢F, ¢(0) + 47 (0)3R,_1(0) - R,(0), 1<n<a-],

d-1
(86— 0) Py, (6) = nQp 1(6) + HZ 0O; 0(6) = By 0(0),

i=a

(30 = 0) Py 0(0) = n0;,.1(0) + A°(0) B, 1 9(0) = B, 0(0), 1<nm<a-1,
(6= 0)F; 0(0) = A7(0) B, 1,0(0) = B, 9(0), n > a,

(1 = 0)0z.0(0) = 6Py 0(0) + n0; 1(0) + A (0)5R,1(0) — Oy, 0(0),
(1= 0)0;,0(8) = 057 4(0) + 0} 1(0)

+A47(0)0,-1,0(0) = 0,.0(0), a+1<n<d-1,

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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b b
(H=0)05,1(0) = 0D Bo(0)+ 1Y 07 1(0) + 4 (0)Q4-1,0(0) - Q.1 (0),  (17)
k=d k=d

(1 —6)0,.10) = u0y15.1(0) + 0B p 0 (0) + A7(8)0,-1.1(0) = O, 1(0), n > 1. (18)

Adding (10) to (18), and taking limit as 6 — 0 and using the normalization

condition, we get
a-1 ) d-1 0
DR, (0)+ D By o(0)+ D" 0,0(0)+ D" 0, 1(0) = (19)
n=0 n=0 n=a n=0

The left hand side of (19) denotes mean number of entrances into the system per
unit time and is equal to mean arrival rate A. We discuss the solution for the model

with single vacation policy (& = 1) in the subsection below.

2.1. Model with single vacation policy

In this model, we assume that the server takes exactly one vacation each time
when the system becomes empty. On the other hand, up on return from a vacation if
the server finds 0 < n < a —1 customers in the system, then it becomes idle until

the number of customer in the system reaches a or more.

2.1.1. Steady-state distribution at pre-arrival epochs

Let R, be the probability that n(0 < n < a—1) customers waiting in the
system at pre-arrival epoch and the server is idle and B, be the probability that
n(n = 0) customers waiting in the system at pre-arrival epoch and the server is on
vacation. Further, let O,  denote the probability that the server is busy with an
accessible batch of size n (a < n < d —1), and Q, | denote the probability that the
server is busy with non-accessible batch of size n(n > 0) customers waiting in the
queue at pre-arrival epoch. These are given by

Ry =5 Ry(0), Birg =5 Br.0(0), O = 10,,0(0), Oy =5-0,,1(0), (20)
where A is given by (19).

To obtain R,, B, and O, ;, first we need to evaluate R,(0), P, ¢(0) and

n

0,,.;(0) which is done below.
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Setting 6 = ¢ in (14), we get after recursive substitution
P, o(0)=Bp" ", n2a-1, 1)

where B = P, | 4(0) and B = 47(¢). Substituting (21) in (14), we have

Py o(0) = BBn_ad()A_* ge) — B), n> a. (22)

By using the displacement operator E defined by Ex, = x,,,; for all n, we can write
(18) as

(1w~ HE® ~0)0;1(0) = 47(0)0,-1,1(0) + 0Py 0(8) = 0,1 (0). nm21. (23)

Setting 6 = p — uEb in equation (23) and using (22), we obtain

BY(B — A" (n —pE )"
w-pE” ¢
The complementary solution of homogeneous difference equation (E — 4™(u —

ne?)) 0,.1(0) = 0 of equation (24) is given by

(E— A" (u—pE))Q,1(0) =

, n=0. (24)

ol =cr,
where C is an arbitrary constant and r is a real root inside the unit circle of the
equation z = A*(u — pz?) for p < 1.

The particular solution of the difference equation (24) is given by

n+b+l-a
Qr(zpl)(o) = Bw—b, n 0.
’ —ppt ¢
Thus, the general solution of (24) is given by
n+b+l—a
0,.10)=Cr" + BB © n=0. (25)

w-pp’ - o
Let z;(0), 1< j<b, be the b roots of p—pBb —0=0 for a fixed 6 with
Re(0) > 0. Then the complementary solution of the homogeneous difference

equation (u — uE” — )0y, 1(8) = 0 of (23) is given by

b
0,50)= D d;z,0).
Jj=1
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o0
where d;’s are arbitrary constants. Since ZQ:J(O) <1, so we must have all
n=l

d]:()

Thus, the general solution of (23), using (22) and (25) is

Cr (A (O) = 1), BHA"(O) - B)B"*
p-w? -0 (0-0)(n-up’ -0

Using (22) and (26) in (15) and (16), after substituting 6 = p, we get

0,.1(0) =

n>l. (26)

_ 1 Bo(o - B) a-b-1
Ral(O)—a{K—m+C(m—r)r :|, (27)
Qn,O(O) _ BB(I)(Bn_a b_ mn—a) + Cra—b(rn—a _ mn—a)+ K(Dn—a’

p—up” -6
a+l1<n<d-1, (28)

where ® = 4"(u) and K = 0,4.0(0). Thus, the solution of (15) and (16) is

X B BB B 41 4*(0) - B) ) o (47 (0) - )
Qn’O(e)_“‘HBb—d){ ¢-0 n-0 }
K(A*(e) _ 0))(0”7”*1
+ 3
C n—l(A*(e)_ ) a n—a—l(A*(e)_ )
+r_b{ru_wb_6”_r0) e m}’agnﬁd—l. (29)
From (17), we get
051(0) = B9 {Bd—“ (4°(0) = B) (1~ ) (1 = p**1)
T (e - -0) @-0)(-p)

. ]{A*(G)(Ddiail

+ A*(G)B(Bd_a_l _ md—a—l) . Bb—a+l } e 5

* d-1 b
(er){“(fu Ee:r_br_)(er)(l - O G )}- (30)
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Setting 6 = ¢ in (13), we get after recursive substitution,

n 0(0)

=p ”{B+B¢W(G-H—I)Bbl G (B FH_I)}’ 0<n<a-2 G)
w-up’ - ¢ (-’ - ¢)

where y = A*(l)(d)). Setting © = 0 in (10) and (11), we get

n
Rn(O):d)ZPj,O, 0O<n<a-l, (32)
=0

where P; o, 0<j<a-1 are obtained by setting 6 =0 in (12) and (13),

respectively, and are given as

B oB o-n M b-a
A p—— A 1
¢F,0 ¢—u+uﬁb[“’ n- = + pla — 1) wp }
pa—b-1 _4 H(1 s 1 la):| K
C — =
' { 1-7" O (u-¢-w’) Ch 9
= {o-m0-p-owp” (a-na-p+p}
Lo I{HBn A -np*” n+ra*n(1_B)}+ 1_2},1Snﬁa—1. (34)
pn— pr ) 1-r

Setting 6 = p in (17) and using (22), (25), (26) and (28), we get

K + —Bd)ﬁ o Cra_b
d—p+pp
d—a+1 _ b a+1 d b
(1 0)o" d(m(ﬁ ), Cl- )J. 35)
(6 —p+pp’ )(1 B) I-r
Now using (21), (25), (28), (29), (31)-(34) in (19), we obtain
A = BT} + CTy, (36)

where

1 a—d-1 b—a+l pd—a+l
T, = do {a(1- 0) + o} (B -B )

1 (u—¢—uBb)(1—B)[

+ fa(l—B)+ B(1 - pP )}}
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T, _ a(r® 1 -1) N ap — ! N d(l-a+ar—r?) n(l—r
) = _
="y u—o-p? (u-o-p)1-n1-r") (u-9-w’)1-r)

rh 1 a1 - @)t 0 S (1= )
1-r '

+

Setting 6 = ¢ in (12) and using (29)-(31) and (36), we get after simplification

BT:
C:7f’ (37)
B = \Ty([Ty + ThT3) ™", (38)
where
Ty = ou (B- w)m“‘d‘l(ﬁb—aﬂ _ ﬁd—a+1)
w—o—pp’ (w—0)(1-B)
et B ) O T )
=P op ’

i [ B = (B e =1y
AR TRy

LAL=B) + (B - 0™ (1 rd-bq.

1-r

Using (37) in (35), we get

K:B[ 0B {(l—w)w“‘d(ﬁd‘“—ﬁb‘”)_l}

¢ -+ pp’ I-p

+ ﬁ{ra—b + (1 — m)maid(l - rdb)}i|. (39)
Ty

1-r

Below we summarize the above results in Theorem 2.1 for pre-arrival epoch
probabilities.

Theorem 2.1. The pre-arrival distributions R, that an arrival sees n customers

in the system and the server is idle, P, o that an arrival sees n customers in the
system and the server is on vacation, Q, o that the server is busy with an accessible

batch and Q,, | that the server is busy with non-accessible batch are given by
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erz% Py, 0<n<a-]

P Bn+1—a |:B N Bd)H\V(a _ ”b_ I)Bb_l B Curn(Ba—n—lb_ ra—n—l):|’
p—np’ - (n—pwr” - ¢)

0<n<a-2,

B B n—a+l1
Pn,O:BT’ n>a-1,
n—-a _ _n—a
Qrz():%{BBd)(B - © )+Cr“_b(r”_“—03"_“)+K(0"_“}, a<n<d-1,
H—up” —¢
n+b+l-a
p—pp” —¢

Proof. To get the desired results, we use (20) in (32), (31), (21), (28) and (25),
respectively.

2.1.2. Steady-state distribution at arbitrary epochs

The arbitrary epoch queue length distributions R, that an arrival sees n
customers in the system and the server is idle, B, ( that an arrival sees n customers
in the system and the server is on vacation, @, ( that server is busy with an

accessible batch and @, | that the server is busy with non-accessible batch are

summarized in the following theorem.

Theorem 2.2. The arbitrary epoch probabilities are given by

L
Puo = ﬁzﬁb){w 0= ) - by {la =) -p)+ ]
. Cr;‘l {us”‘“ {(r - :)-Bwb i;“—"(l B}, 11__:[7 } N
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P, o= M’ n>a,
’ ¢
0 _ B(I)B (1 _ B)anafl ~ (1 _ w)mnfafl . K(l _ w)mnfafl
"0t ¢ ¢ H M
N C{(l _ r)rn—b—l B ra—b(l _ m)mn—a—l :|’ B
u(t - ") K
_pd-a-1;; _ ab-d+l
QO,I :%|:¢_fiﬁuﬁb {(‘b H)B ¢(1 B )+(md—a—1_Bd—a—1)+Bb—a}
N C{rab(rdal _edmey - 1= rdl}Jr K(Ddal:|
1-P '
n-1 n+b—a
le:Cr (l—r)+B(l—B)[3 D oazl

u(-r%) w-pp’ - ¢
Proof. The results P, g, 0<n<a-1 are from (33) and (34). The other
results of the theorem are obtained by setting 6 = 0 in (22), (26), (28) and (30),

respectively.

Theorem 2.3. The arbitrary epoch probabilities {R, }8_1 are given by

Cr" 1= 7)) = p = )
Al - ")

R, =-B 0+ P10+ R —

e U )T A DY
M — 1+ up”)

Finally, the only unknown quantity R, is obtained by using the normalization

condition

a-1 0 d-1 o0
Ry =1- ZRn +an,o + ZQn,O +ZQn,] :
n=1 n=0 n=a n=0
Proof. Differentiating (11) with respect to 6, and setting 6 = 0, we obtain

R, = _¢P;((1))(0)+R,;_1, 1<n<a-1|,
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where PIZ ((1))(0), 1 <n<a-1, can be obtained by differentiating (13) with respect

to 0 and setting 6 = 0, we obtain
1 1 1 _
P(0) = 5B+ o) - Pyg), 1<n<a-1.
Finally, to know the quantity Q:(ll)(O), we differentiate (26) with respect to 6 and

setting 6 = 0, we get

" (=) —p( =) BT (1 B) - ¢)
(1= rb)? 29(6 — p(1 - B)

2.2. Model with multiple exponential vacation policy

n=1.

0:V(0) =

We assume that the server takes vacation each time the number in the system
drops below a. If the server returns from a vacation and finds a or more than a
customers in the system, then it starts service immediately and continues until the
number is less than a. If the server returns from a vacation and finds less than a
number of customers in the system, then it begins another vacation immediately, and
continues so until it finds @ or more than a customers in the system upon returning

from a vacation.
2.2.1. Steady-state distribution at pre-arrival epochs

It can be seen that equations (14) and (16)-(18) are independent of 3. Therefore,
the pre-arrival probabilities O, 1(0), n >0 and P, ((0), n > a -1, will be same

in both single- and multiple-vacation policies. Following the procedure discussed for
single vacation policy, we can obtain pre-arrival epoch probabilities for multiple
vacation policy.

Setting 6 = p in (15) and (16), we get

n—a+l _ ®

b
H—up” —¢
Thus, the solution of equations (15) and (16) is

n—a+1)

0, 4(0) = 2B

+CraTh At ety g <p<d - 1.

* _ B¢ B U(A(0)-B) " (47(0)- w)
Qn’O(e)_u—uBb—d){ b0 T }
C |r(A4*0)-r) r e (47(0)- o)
rb+1{u_wb_e - 0 } a<n<d-1. (40)
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Setting 6 = 0 in (13), we obtain the recursive relation
(L=r)r"  Bu(l-p)p"*"C
b b ’
1—r n-ppt —o
Based on this recursion, we have

B(H _ HBn+b—a+l _ ¢) C(ra_l _ rn)

P,o(0)~ By (0) = < l<n<a-l.

B,.0(0) = a4 + I 0<n<a-2.
From (17), we obtain
0% 1(0) = B} (4 (0) - B) (- 9) (1 - B*)
T - - ) -0) (©-0)(1-p)

+ A*(e)(Bd—a _ (Dd—a) _ Bb—a-f—I}

* d-1 b
+(H(—:9){“(fu(—ep)tr_brz((;)(l -_r; )”*(")ra_b_l(rd_”—wd‘”)—l} 1)

Setting 6 = p in (17) and simplifying, we get

% -G =0, 42)
where h(x) _ (Dd—a+1 + xb_””(l -)(l- xd—b)
1-x :

Now using (19), we obtain

B 1— Bb—aH B(l _ Bd—a) (0(1 _ (Od_a)
e L e e = R e e |

b b—a+l d-a d—a
+Cr“‘b‘1K—1’ bJ((a—l)+1_lr_r jﬂ(l_” )—"’(11__"’@ )}. (43)

1-r

Solving the linear equations (42) and (43) for B and C, we have
. M= ") (= 1" — §)A(r) ’
(=) {1 = 0) S (B) + b2 (B)} () = Gh(B)LS (r) — g(P]r” + g(r)}
_ Boh(p) ,
P h(r) (0 - o+ pp)
b—a+1)
1-—

—x7) ol

x(1
and g(x) = (l—x -

where f(x) = (a — 1)+ =
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Theorem 2.4. The pre-arrival distributions B, o that an arrival sees n
customers in the system and the server is on vacation, Q, o that server is busy with

an accessible batch and Q, | that the server is busy with non-accessible batch are

given by

_phtb—a+l a-1_ n

Py :%{B(u W 0) e )}, O<n<a_n
n—up” —¢ 1-r

3 B n—a+1

Pn,O :BT,”IZCZ—L
n—a+l _ n—a+l

Q;’O =%{B¢(B - ® )+Cra—b—l(rn—a+l _wn—a+l)}’ a<n<d-1,
H—up” -9

n+b—a+1
Qr?,l :%{Crn +W—b}, n=>0.
H—up” —¢

2.3. Steady-state distribution at arbitrary epochs

The arbitrary epoch queue length distributions F, ( that an arrival sees n
customers in the system and the server is on vacation, O, o that server is busy with
an accessible batch and @, | that the server is busy with non-accessible batch are
summarized in the following theorem.

Theorem 2.5. The arbitrary epoch probabilities are given by

B n+b-a
Bo=———"F——[¢(u-9¢)-urp 1-p)
O 20—’ - )
; ra_ll—rb —krn_ll—r 1<n<a-1
+xu(1-rb)2[“ ( ) (1-r)], 1<sn<a-1,
0 = U= == ) (- )0 )
"o u(i - ")

L B0 —B)_:)w”_a(l - (D)), a<n<d-l,
u( = pp” - ¢)
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_ B(quﬁa(l _ BbfdJrl) _ ¢(Ddfa) ~ C((l _ rdfbfl) n mdfarafbfl(l _ }’b ))

0 ,
o u(p—up” - ¢) u(-r")
Crn—l (1 _ r) B(l _ B)B)H—b—a
Qn = + s >1.
L) w—pp’ - "

Finally, the only unknown quantity F, o is obtained by using the normalization

) d-1 )
Foo=1- an,0+ZQn,0+ZQn,l :
n=1 n=a n=0

Proof. Differentiating (13) with respect to 6, and setting 6 = 0, we get the

condition

arbitrary epoch probabilities {P,,’O}f_1 as

Po =00+ Py 1<n<a-1,
where QZ(%)(O), 1 <n < a-1, can be obtained by differentiating (26) with respect
to 0 and setting 6 = 0, we get

g0y~ U= BT 0)
’ A (1-77) Ap(d —n(1-B"))
The other arbitrary epoch probabilities are obtained by setting 6 = 0 in (22),
(26), (40) and (41).

3. Performance Measures

Performance measures are important features of queueing systems as they
reflect the efficiency of the queueing system under consideration. Once the state
probabilities at pre-arrival and arbitrary epochs are known, we can evaluate various
performance measures. The average queue length when server is in dormancy
(qu), the average queue length when server is on vacation (qu), the average

queue length when the server is busy (qu) and the average number of customers in

the queue at an arbitrary epoch (Lq) are given by

a-1 © ©
Lyo = 25”R"’ Ly = Z"P"=0’ Ly = ZnQ”’l’
n=0 n=0 n=0
a—1 ©
Ly =Y 8nRy + D 1Py + Q1)
n=0 n=0
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The average waiting time in the queue (Wq) of a customer using Little’s rule is

givenas W, = L,/ L.

4. Special Cases

In this section, some special cases which are available in the literature are
deduced by taking specific values for the parameters a, d and b.

Case 1. a =d = b =1, that is, the batch size is one. In this case, the model
reduces to GI/M/1 queue with single and multiple vacations. Using Theorem 2.4,

the pre-arrival epoch probabilities in case of multiple vacation are given by
Po=(01- r)of”, n=0,
Ot = (1=r)oy(B" =), n=0,

p-uB-¢ ¢

w0 T H-pp-0
Chatterjee and Mukerjee [4]. Using Theorem 2.1, the pre-arrival epoch probabilities

and the above result matches with

where o =

in case of single vacation are given by
Pl‘l_,O:B*l”L(B_r)(“'_“B_(b)Bna ’1207

Ot = B*[(n— B — o+ pow) (w — wr — )" —p(r - B)ep" '], n=0,
where
B = (1= r)/{(n— 1B — &+ pow) (n — pr — 0) — w?(1 - r) (r - P}

Case 2. a =d = b =1 and taking vacation parameter ¢ sufficiently large, that
is, non vacation queue with the batch size one. In this case, the model reduces to
GI/M /1 queue without vacations and our results match with the results available in

the literature. Using Theorem 2.1 and Theorem 2.4, we obtain pre-arrival epoch
probabilities as

R =0~-r),
Opy =(1- r)r”“, n=0,
in both the cases, results are same as it should be and in case of single vacation

Ra = PO_,O‘
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Case 3. Taking vacation parameter ¢ sufficiently large, the model reduces to

GI/M(@42) /1 queue without vacations.

Case 4. a = d, that is, the general batch service queue without accessibility and

(a,b

our model reduces to GI/M ) /1 queue with single and multiple vacation

policies. Substituting @ = d in Theorem 2.1 and Theorem 2.4, we obtain the pre-
arrival epoch probabilities in single and multiple vacation policies, respectively. In

case of multiple vacation pre-arrival epoch probabilities match analytically with the
one obtained by Choi and Han [7].

5. Numerical Results

To demonstrate the applicability of the results obtained in the previous sections,
a variety of numerical results have been presented in tables and graphs by
considering various inter-arrival time distributions such as exponential (M),
deterministic (D), Eralng (E;) and hyper-exponential (HE,, with parameters
o1, O», 7\.1, 7\.2)

In Tables 1 and 2, the pre-arrival and arbitrary epoch probabilities of multiple
and single vacation queues have been presented along with some performance
measures. As desired, the queue length distributions match exactly in case of

exponential distribution. In Table 3, the comparison of multiple and single vacation
models with regard to average queue lengths and waiting time has been made for

E4/M(5’10’15)/1/oo model for different values of p. It is observed that L, L,

L, and W, are less in case of single vacation as compared to that in multiple

vacation as it is expected for all values of p.

In Figures 1 and 2, we have plotted average queue lengths (Z,;) and (L)
against service rate (n) for HE, distribution with o = 6, = 0.5, A; = 4.0, A, =
6.0, L =48, $ =07, a =5 and b = 25 for various values of accessible limit d.

Figure 3 shows the average waiting time in queue (Wq) versus traffic intensity
(p) for deterministic distribution with A = 3.0, ¢ = 0.3, d =20 and b = 30 for
various services starting threshold value a.

The average waiting time in queue (/) versus traffic intensity (p) is presented
in Figure 4 for E5 distribution with L =3.0, ¢ =1.5, a =5 and d = 7 for various

values of maximum batch size b.
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In Figure 5, we have plotted average waiting time in the queue W, for single

and multiple vacations against accessible limit (d) for M, E4;, D and HE,
distributions with o; =0.6, 6, =04, A =12, Ay =32, A =16, ¢ =12,

p=04 a=5 and b =25. The following observations can be made from these

figures:

e As p increases L, increases while L., decreases and asymptotically

approaches its minimum value. Further, L, is low for small 4 and becomes high for

large d but for L, this situation will be reversed.

Table 1. Queue length distributions at various epochs in case of single vacation

MMETY) 1 oo Es /MW 1] fog DMETIS 1 (oo H Eo [MYT18) 1] fog
A=1.25 ¢=07T, A=1.25 ¢=0.7T, A=1.25, p=0.7, Al =2, Ao =1,
p=0.5 p=0.5 p=0.5 ap =04, o2 = 0.6,
p=0.5, ¢=0.7.
pre-arrival  arbitrary | pre-arrival arbitrary | pre-arrival arbitrary | pre-arrival arbitrary
Ry 0.009070 0.009070 0.006504 0.003095 0.005700 0.001948 0.009483 0.010888
R 0.017731 0.017731 0.016488  0.012554 0.016107  0.010976 | 0.017907  0.018662
Ha 0.025868  0.0258G8 | 0025702  0.022079 | 0025647  0.020951 0.025843  0.026547
Rs 0.033428  0.033428 | 0.034131 0.030821 0.034327  0.030057 | 0.033236  0.033888
FPoo 0.016196  0.016196 | 0.018604 0.011615 0.019347  0.010179 | 0.015757  0.016935
P 0.015468  0.015468 | 0.017291 0.017829 | 0.017814  0.018587 | 0.015121 0.015042
FPao 0.014529 0.014529 (.015890 (.016452 (0.016257 0.017033 0.014261 0.014171
Fao 0.013500  0.013500 | 0.014499  0.015052 | 0.014755  0.015499 | 0.013296  0.013202
Faio 0.008654 0.008654 0.008527  0.010664 0.008428  0.011298 | 0.008632  0.008328
Fso 0.005547  0.005547 | 0.005015 0.006272 | 0.004814 0.006453 | 0.005604  0.005407
P 0.000600  0.000600 | 0.000353  0.000441 0.000293  0.000392 | 0.000646  0.000624
Piso 0.000065 0.000065 0.000025 0.000031 0.000018  0.000024 | 0.000075  0.000072
Payo 0.000007  0.000007 | 0.000001 0.000002 | 0.000001 0.000001 0.000008  0.000008
Faoo 0.000000  0.000000 | 0.000000  0.000000 | 0.000000  0.000000 | 0000000  0.000000
Qao 0.038998  0.038998 | 0.041271 0.038791 0.041964  0.038581 0.038559  0.038854
Q5.0 0.041893  0.041893 | 0.044690  0.043552 | 0.045516  0.043998 | 0.041360  0.041487
Qo0 0.043023  0.043023 | 0045833  0.045516 | 0.046635  0.046230 | 0.042480  0.042494
Qo,1 0.063575 0.063575 0.069195 0.060453 | 0.070162  0.059040 | 0.064837  0.066470
Q11 0.059503  0.059503 | 0.062347  0.065030 | 0.063098  0.066567 | 0.058919  0.058404
Q2.1 0.053987  0.053987 | 0.056174 0.058592 | 0.056742  0.059864 | 0.053534  0.053066
Qa1 0.048978  0.048978 | 0.050610  0.052789 | 0.051025  0.053833 | 0.048638  0.048212
Qa1 0.044432 0.044432 0.045596  0.047560 | 0.045884 0.048409 | 0.044186  0.043799
Qs 0.040306  0.040306 | 0.041078  0.042847 | 0.041260  0.043531 0.040140  0.039789
@101 0.024752 0.024752 0.024377  0.025427 | 0.024257  0.0255393 | 0.024826  0.024608
Q201 0.009332 0.009332 0.008584 0.008954 0.008384 0.008845 | 0.009492  0.009409
Qs0.1 0.000500  0.000500 | 0.000375 0.000391 0.000346  0.000365 | 0.000531 0.000526
Qio0,1 0.000004 0.000004 0.000002  0.000002 | 0.000001 0.000001 0.000004  0.000004
Sum 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Ly T.287780 7.007780 6.936800 7.352420
Lgo 0.169750 0.149170 0.143048 0.173420
L 0.224500 0.236425 0.239643 0.221906
Lyz 6.893530 6.622170 6.554110 6.957100
W, 5.830220 5.606220 5.549440 5881940
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Table 2. Queue length distributions at various epochs in case of multiple vacation

M{MZ510 /1 /oo D/MES10 1 fog Ey/ MO oo [ HEy/M®%19 /1 /00
A=2,¢ =15, A=1,¢ =20, A=3,¢=10, M = 2.0,h2 = L0,
p=04 p=106 p=08 o1 = 0.4, A = 1.25,
p="06,6=2.0.

(n,r) | pre-arrival arbitrary | pre-arrival arbitrary | pre-arrival arbitrary | pre-arrival arbitrary
Foo 0.067984  0.067984 | 0.026580  0.012303 | 0.004303  0.002521 | 0.032954  0.036412
P 0.087961  0.087961 | 0.038457  0.032634 | 0.009099  0.007513 | 0.042005  0.043768
Pag 0.050263  0.050263 | 0.049061  0.043858 | 0.013724  0.012195 | 0.051925  0.052707
Psp 0.028722  0.028722 | 0.058535  0.063887 | 0.010005  0.011157 | 0.020770  0.019472
Pap 0.016413  0.016413 | 0.007922  0.025307 | 0.007293  0.008134 | 0.008308  0.007789
Fso 0.009379  0.009379 | 0.001072  0.003425 | 0.005317  0.005929 | 0.003323  0.003115
Pioo 0.000571  0.000571 | 0.000000  0.000000 | 0.001095  0.001221 | 0.000034  0.000032
Pag o 0.000002  0.000002 | 0.000000  0.000000 | 0000046 0000052 | 0.000000  0.000000
Psoo 0.000000  0.000000 | 0.000000  0.000000 | 0000000 0000000 | 0000000  0.000000
Q20 0.043347  0.043347

Qso 0.062788  0.062788 0.007522  0.005181 | 0.033526  0.034820
Qa0 0.069045  0.069045 | 0.053196  0.035292 0.045712 0.046102
Qs.0 0.058131  0.056869 0.049206  0.049224

Qoa 0.096754  0.096754 | 0.075292  0.067373 | 0.039247  0.029246 | 0.066458  0.067580
Qi 0.079910  0.079910 | 0.067273  0.071207 | 0.037916  0.038364 | 0.060246  0.059707
Q2,1 0.065944  0.065944 | 0.060107  0.063623 | 0.036537  0.036999 | 0.054605  0.054116

Qs 0.054387  0.054387 | 0.053705  0.056846 | 0.035143  0.035608 | 0.049489  0.049045
Qan 0.044838  0.044838 | 0.047984  0.050791 0.033753  0.034215 0.044850  0.044448
Qs 0.036955  0.036955 | 0.042873  0.045381 0.032384  0.032838 | 0.040645 0.040281

Qe 0.030452  0.030452 | 0.038307  0.040547 | 0.031045  0.031489 | 0.036835  0.036504
Qra 0.025090  0.025090 | 0.034226  0.036228 | 0.029743  0.030174 | 0.033381 0.033082
Qs 0.020671  0.020671 | 0.030581  0.032370 | 0.0284582  0.0258899 | 0.030251 0.029980
Qan 0.017028  0.017028 | 0.027323  0.028922 | 0.027265  0.027668 | 0.027415 0.027169
Q1o 0.014028  0.014027 | 0.024413  0.025841 | 0.026093  0.026480 | 0.024845 0.024622
Q20,1 0.002017  0.002017 | 0.007916  0.008379 | 0.016714  0.016966 | 0.009283  0.000199
Qs0,1 0.000006  0.000006 | 0.000270  0.000286 | 0.004360  0.004425 | 0.000484 0.000480
Qoo | 0.000000  0.000000 | 0.000000  0.000001 | 0.000464  0.000471 | 0.000004 0.000003
Sum 1000000 L0O00DOO | 1.000000  1.000DOO | 1.000000  1.000000 | 1.000000  1.000000

Ly 0.47T8890 0.403661 0.266167 0.268175
Lga 2.583430 G.276250 20.688800 6.793510
Ly 3.062330 6.679910 20.954900 T.061680
Wy 1.531160 6.679910 6.984980 5.649350

Table 3. Comparison of performance measures with single and multiple vacation

policy for E,/M 3119 /1/e0 distribution with & = 1.5, ¢ = 2.1

Single vacation policy Multiple vacation policy

P La Lg2 Lyq Wy L Lgz Lq Wy
0.1 | 0.083343 0.013312 1.639280 1.092850 | 2.037000  0.022457  2.059460 1.372970
0.3 | 0.089022  0.954965 1.966510 1.311000 | 1.298790  1.047000  2.345800 1.563860
0.5 | 0.066435  4.661810 5.222970  3.481980 | 0.731107  4.804690  5.535800  3.690530
0.7 | 0.036378 14.801500 15.059600 10.039700 | 0.340572 14.949100 15.289700 10.193100
0.9 | 0.010537 65.911400 65.978000 43.985300 | 0.088727 66.043200 66.131900 44.088000
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e As p or p increases the performance of the system increases for small values

of a and large values of d and b.

e Among all arrival distributions under consideration the deterministic

distribution gives better performance of the system.

o The single vacation policy outperforms the multiple vacation policy.

o d=8 MV a
sk | * =15 MV A

A d=22 MV &

—e— d=8 SV A .

—— d=15 5V A
2t | - g=22 8V | A" o

9z 0z 024 026 0 03 03 03 0% 03 04
Service rate (u)

Figure 1. Effect of pon L, for different values of d.

%2 02 o024 02 o0 03 032 03 0%

Service rate (u)

Figure 2. Effect of pon L., for different values of d.
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Figure 3. Effect of p on W, for different values of a.
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Figure 4. Effect of p on W, for different values of b.
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Figure 5. Effect of d on the average waiting time for SV policy.
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Figure 6. Effect of d on the average waiting time for MV policy.
Conclusion

In this paper, we have analyzed the general arrival infinite buffer queue with
accessible and non-accessible batch services with both single and multiple
vacation policies that have potential applications in modelling computer and
telecommunication systems, computer networks, etc. We have developed the
recursive method, using the supplementary variable technique and treating the
remaining inter-arrival time as the supplementary variable, to find the steady-state
queue/system length distributions at pre-arrival and arbitrary epochs. The recursive
method is powerful and easy to implement. Various performance measures are
obtained and it is noticed that the average queue length and average waiting time are
less in the case of single vacation model as compared to that in multiple vacation
case. The techniques used in this paper can be applied to analyze more complex

models such as GI* /M%) /1 and GI/G“%?) /1 queues which are left for

future investigations.
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