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Abstract 

Many spatial social networks have the property that nearby nodes are 
more likely to be connected than are nodes that are farther apart. We 
develop a characteristic of spatial graphs that captures whether or not 
shorter distance ties are preferred over longer distance ties, and the degree 
to which this edge length bias occurs. This allows us to estimate what is 
far and what is close − what we call neighborhood radius − for any 
randomly generated spatial network. Results from Monte Carlo Markov 
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Chain simulations presented similar distribution of edge length bias to 
data from personal networks from a neighborhood in New Orleans, Post-
Katrina, although the latter presented greater variation. 

1. Introduction 

Interest in combining spatial analysis with network analysis has grown in part 
due to increased sophistication and affordability of both computer hardware and 
software. More importantly, the interest also stems from the potential applications of 
understanding the spatial structure of human relationships. Theoretically, such a 
marriage provides the opportunity to answer variants of the question “Does distance 
matter?” (Mok et al. [11]). Mok et al. [11] found specific drops in frequency of face-
to-face contact between ego and alters in a network as distance increased between 
ego and each of those alters (for likelihood of interaction across space, see also 
Axhausen et al. [1], Carrasco et al. [3], Coburn and Russell [4], Porta et al. [14]). In 
an economic geography study, Pitts [13] found that trade networks over space can 
behave as an aggregate of actual geographic path distances, and Jones [9] found that 
village network structural measures vary with location in a regional economic 
system. Other studies about the relationship of social networks to geography have 
included likelihood of political activities (Johnston et al. [8], Nicholls [12]), the 
flow/exchange of agricultural resources across space based on variation in agro-
ecological activities (Faust et al. [7], Zimmerer [18]), and effects of spatial aspects of 
social networks on health-related outcomes (e.g., Bates et al. [2], Cravey et al. [6], 
Rothenberg et al. [15], Wylie et al. [17]). However, a body of literature has yet to 
emerge that analyzes spatial social networks in a general sense. 

In order to control for homophily in social networks due to geographic 
closeness, Wong et al. [16] developed an elegant model that yielded a random graph 
embedded in geographic space with the property that connections between nearby 
nodes are more likely to occur than connections between nodes that are further apart. 
They have also shown that such graphs share many characteristics of a social 
network when the ‘neighborhood radius’ − the cutpoint between far and near c is 
sufficiently large; and they also found that social networks have characteristics 
similar to graphs generated by their method. 

In this paper, we study the inverse problem, i.e., given a spatial social network, 
we will provide a reliable estimate of the spatial length cutoff after which the 
probability of a connection between two nodes decreases significantly. One major 
application that would derive from solving this problem is being able to say, for any 
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given social network, how far is far?, i.e., what length delineates between far and 
near vertices in the related geographic space. Our purpose is to evaluate the utility of 
the edge length bias algorithm and understand the distribution across networks of 
whether or not people in any ego’s personal network in this post-disaster setting tend 
to interact with members of that personal network who live nearer to them or farther 
from them. 

2. Spatial Social Network Model 

In this section, we summarize the main ideas of the model given by Wong et al. 
[16]. A social network will be represented by a non-directed graph, i.e., a pair 
( ),, EV  where { }NvvvV ,,, 21 …=  is the set of all nodes representing the individuals 

in the network and { }LeeeE ,,, 21 …=  is the set of edges representing the social 

connections between individuals. The (random) graph is generated from the 
parameters ,,,, bppHN  and a technical parameter Δ − which can be calculated 

from the previous ones − where: 

• N is the number of vertices of a graph, 

• H is the neighborhood radius, i.e., a number that indicates what does it mean 
to be nearby (if the geographical distance between two nodes is smaller than H, then 
they are considered nearby), 

• p is the probability that any two nodes are connected, 

• bp  is the proximity bias that indicates the increase in probability that two 

nearby nodes are connected, 

• Δ indicates the decrease in probability that two far apart nodes are connected. 

To construct the graph from the above parameters, the nodes { ,1vV =  

}Nvv ,,2 …  of the graph are embedded in the plane with a distance function d. We 

assume that the points are distributed in space according to a homogeneous Poisson 
point process (see Cox and Isham [5]) with a parameter ρ (as shown in Wong et al. 
[16], parameters ρ and H are conjugate to each other and it is therefore enough to 
consider only one of them). 

Once the nodes are embedded into the space, an edge between two nodes ji vv ,  

is generated with probability ( ( )),, ji vvdf  where ( )ji vvd ,  denotes the geographical 
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distance between embedded nodes ji vv ,  and f is a function defined by 
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Wong at al. [16] have shown that graphs generated in this way share many 
common characteristics with social networks (when H is sufficiently large; in their 
case 3/2) and vice versa, that spatial social networks can often be seen as a result of 
the above procedure. Figure 1(a) shows an example of a spatial random graph 
generated by the above procedure. 

 

Figure 1. Periodic square with size .22 RR ×  The dotted and the dashed lines are to 
be identified. The gray square in the middle represents all points with the distance 

[ ]., dxxxd +∈  The gray lines in the corners represent the same square shifted 

towards boundaries. When dx is small, the gray area of the circumference of one of 
the squares is 8xdx. 

3. Inverse Problem-determining Network Parameters from the Network 

In the previous section, we described how to construct a graph from the four 
parameters .,,, bppHN  The main aim of this paper is to provide a procedure to 

reverse the process, i.e., for an empirical spatial social network, we want to 
determine parameters .,,, bppHN  

The estimate of N is simple, it is exactly the count of the nodes of the network. 
The best estimate of p is the Maximum Likelihood Estimate given by the edge 
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density, i.e., the total number of edges L divided by the number of potential 
connections ( ) .21−NN  Similarly, if H is known, then the best estimate for bp  

would be based on the density of the short edges (edges shorter than H). 
Consequently, what remains, is the nontrivial estimation of H, which is the 
neighborhood radius based on all connections in the network. 

Wong et al. [16] estimated H by searching for the step function f from (1) as the 
least square error fit to the edge length distribution function. In the following 
sections, we present another, presumably simpler way to estimate H. 

4. Edge Length Bias 

In this section, we introduce a characteristic β (we refer to as edge length bias) 
of a spatial graph and also calculate β in full generality for graphs that were 
generated by the model in Section 2. The characteristic β should capture the bias 
(towards a particular length of an edge) and is defined as a ratio of the average 
edge length to the average (geographical) distance between any two nodes. 
Mathematically, 
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where 1=ijx  if nodes iv  and jv  are connected and ,0=ijx  otherwise. 

The formula (2) is simple and straightforward to program in a computer and 
thus β can be calculated for any empirical spatial graph. 

We develop the alternative formula for β under the following assumptions on 
the graph and its spatial embedding: 

1. All nodes lie in the square with dimensions .22 RR ×  
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2. The square has periodic boundaries (i.e., the geographical space looks like a 
doughnut) and distance between two points with coordinates ( )11, yx  and ( )22, yx  

is given by 

{ },,max, yxper PPdd == ∞  

where 

{ }RxxRxxxxPx 2,2,min 212121 −−+−−=  

and 

{ }.2,2,min 212121 RyyRyyyyPy −−+−−=  

Consequently, any point can be considered as a geographical center of the 
square. 

3. The nodes are distributed by a Poisson point process with parameter ;ρ  in 

particular, any region of an area A contains on average ρA  points. 

4. Any two nodes ji vv ,  are connected with probability ( ( )),, ji vvdf  where f 

is a function with values between 0 and 1. 

The situation is depicted in Figure 2. The parameter R plays a role of a “radius 
of visibility” − for any particular individual, “nothing” really exists farther than the 
distance R from an individual. This assumption does not unreasonably bound or limit 
the space for each graph because all finite networks lie in a finite geographical area. 
The use of periodic boundaries and non-Euclidean metric may seem highly 
unrealistic, but it is only a technical assumption that allows much easier analytical 
calculation. The computer simulations presented in the Results section show that the 
characteristic β is robust and practically independent of whether the region has 
periodic boundaries or not and even what type of the metric is used to measure the 
distances between the nodes. 
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Figure 2. (a) Spatial random graph generated with ,25=N  ,1=R  ,25.0=H  

,5.0=+ bpp  .25.0=Δ−p  The estimated neighborhood radius was ,247.0=σ  

and bias ;777.0=β  (b) Square lattice with 25 vertices. 

Due to the homogeneity of the Poisson point process, the average distance 
between any two nodes of the graph can be ascertained simply by calculating the 
average distance from a given fixed node to all other nodes. Because of the periodic 
boundaries, we may assume, without loss of generality, that the fixed node is 
positioned in the center of the square. Also, the Poisson point process yields that, for 
small dx, there are (on average) xdx8ρ  points whose distance to the center is 

between x and .dxx +  This means that the average distance to the center is 
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where the bottom part represents the total number of points ( )ρ= 24RN  and the top 

part represents the sum of the distances of all points to the center. Similarly, the 
average length of an edge can be calculated by 
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Note that for (4) we used an expression that is basically identical to the left hand side 
of (3) with the addition of the term )(xf  that denotes a probability that there is an 

edge between the two nodes having geographical distance x. Combining (3) and (4) 
yields an alternative formula for ,β  which is 
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5. Estimating Relative Neighborhood Size: Neighborhood Radius 

Now, we can proceed to the second and main task: given a specific graph, 
determine what is close, or how far is far. Substituting (1) for ( )xf  in (5), we get 

( )
( )

,2

3

σΔ++Δ−

σΔ++Δ−
=β

b

b

pp
pp  (6) 

where R
H=σ  represents the relative size of the neighborhood, or neighborhood 

radius. Assuming σ to be small, the homogeneity of the Poisson process yields that 
majority of the nodes are outside of one’s neighborhood and thus .0≈Δ  Hence, we 
can approximate 

.1 2
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pp
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This immediately yields an estimate for σ based on ,β  namely, 

( ) .1 β−≈σ
bp
p  (8) 

The parameter p can be simply estimated by ,2 2NLp =  where L is the number of 
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edges and N is the number of nodes. Estimate for bp  is impossible to get without the 

knowledge of ,σ  but simply assuming high density of connections within the 
neighborhood (assuming that distance matters, or that the closest nodes are most 
likely to be connected), we may estimate σ by 

( ) .12
N

L β−≈σ  (9) 

Formula (9) thus provides an estimate for the relative neighborhood size for an 
empirical spatial social network and, as such, requires knowledge of the number of 
nodes N, the number of edges L and the edge length bias β that can be easily 
calculated using formula (2). 

6. Theoretical Results 

We ran Monte Carlo Markov Chain simulations to generate spatial social 
networks for parameters bppHN ,,,  (we embedded the graph into a square with a 

standard Euclidean metric). We tested more than 100,000 graphs with ∈= NR ,1  

{ },100...,,25  [ ],5.0,075.0∈H  [ ],1,5.0∈+ bpp  [ ].4.0,1.0∈Δ−p  For each graph, 

we calculated edge length bias β using formula (2) and using either periodic or non-
periodic boundaries; and either standard Euclidean metric or ell infinity metric, i.e., a 
metric such that 

( ) ( )( ) { }.,max,,, 21212211 yyxxyxyxd −−=∞  (10) 

We concluded that there have been no significant differences between our various 
approaches to calculation of .β  In fact, in all instances, for the same graph, the edge 

length biases calculated under different metric or boundary conditions did not differ 
by more than 5%. 

It should be noted that the robustness of β relies heavily on the randomness and 
resulting irregularity of the graphs we investigated. Once we are interested in graphs 
that are regular (for example, the square lattice in Figure 2(b)), then β will become 
sensitive to boundary conditions and the used metric. In the particular case of a 
square lattice, the bias calculated for the Euclidean metric is significantly smaller 
than for ∞d  metric and having periodic boundaries increases the bias even further. 

This phenomenon is caused largely by the regular nature of the graphs − all of the 
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edges have the same length (regardless of what metric we use to measure that), but 
the distance between unconnected edges decreases if measured by ∞d  metric or with 

periodic boundaries. Real world networks look more like the random graphs we 
considered than like the square lattice, and thus we do not expect the outcomes to be 
skewed in real world networks. 

We also used β (calculated from (2) using Euclidean metric) and then estimated 
H using formula (9) from the results of the simulations. We concluded that (9) is a 
reliable estimate of H. Results are demonstrated in Figure 3. We plotted the 
frequency of the ratio between estimated neighborhood radius based on (9) and the 
correct one based on (1). It can be seen that our estimate was within the range 
50%-150% of the correct neighborhood radius. The histogram shows that our 
method slightly overestimates the neighborhood radius, i.e., β was slightly smaller 
than it should have been. Also, in about 4% of the cases, the calculated 
neighborhood radius had value larger than 1 (and hence it could not be used in (9)); 
those cases are recorded as .AN  

 

Figure 3. Correctness of the edge length bias estimate. We plotted the frequency of 
the ratio between estimated edge length bias (by formula (9)) and the correct one. 

AN  indicates that in some cases, we calculated 1>β  and thus could not use (9). 

The histogram shows aggregate results for all parameter values tested. 
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Figure 4. Correctness of the edge length bias estimate for large graphs ( ).100=N  

As further seen in Figure 4, once we restrict ourselves to relatively large graphs 
( ),100=N  the estimation by formula (9) becomes more precise. Basically, Figures 

3 and 4 say how often we were correct (i.e., how often we over/underestimated and 
by how much) about the neighborhood radius that was practically known to us. 

Both the overestimation of the neighborhood radius and cases where 1>β  

were more common for parameters [ ] [ ].1,4.01.0,0 ∪∈Δ−p  Those parameters 

represent graphs with either too few or too many edges outside of the local 
neighborhood. If Δ−p  is small, then the better approximation of formula (6) would 

be 
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rather than using formula (7). Formula (11) was the original motivation for 
introducing the characteristic ;β  yet its use is limited to cases when there are almost 

no edges outside the neighborhood (and thus the neighborhood radius could be 
estimated heuristically). On the other hand, if Δ−p  is large, then there are too 

many connections outside of the local neighborhood and it is therefore hard, if not 
impossible to say where exactly the neighborhood ends. 

A similar phenomenon happens when H is too small or too big. It has been 
observed already in Wong et al. [16] that for too small H the graph is more like the 
standard Erdős-Renyi random graph; and it is clear that too big H has a similar 
effect. We therefore had to restrict ourselves on the intermediate values of H. 
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7. Empirical Results 

Our real world data comes from interviews of a random sample of people living 
in a single neighborhood in New Orleans that was heavily impacted by Hurricane 
Katrina. We were interested in how spatial aspects of relationships affect disaster 
recovery. The following description does not address that question, but, rather, 
provides a dataset for evaluating the edge length bias algorithm and a comparison for 
our theoretical results from above. In December 2008, we asked respondents 
( )60=n  to list 45 people they “know by sight or by name with whom they have 

had contact in the past two years or could have had contact if they wanted to”, which 
is a sufficiently general question so as not to introduce interviewer bias in the listing 
of names. This type of network is called a personal network, in contrast to whole 
networks, which are theoretically bounded groups whose members are more likely to 
interact with one another than with random people outside of the group. 

We created a random seed list of 25 numbers between 1 and 45 and used those 
seeds to select 25 alters from each personal network, since work by McCarty et al. 
has shown that around 20-25 alters randomly chosen out of a personal network of 
40+ typically preserves structural integrity. From the respondents providing 
a personal network, we asked several things about the members of their 
network-including the distance, time and direction that the respondent perceived 
each of them to live (or work) from the respondent’s home. Direction was given as 
one of eight cardinal directions, but typically was N, E, W or S. Distance was given 
in miles or blocks, the latter of which we converted to miles. We collected perceived 
time of ego’s estimate of how long it takes to get to each alter’s house. Time was 
given in hours or minutes, the latter of which we converted to hours. The units are 
not important in this study, as our purpose is to evaluate the utility of the edge length 
bias algorithm and understand the distribution across networks of whether or not 
people in any ego’s personal network in this post-disaster setting tend to interact 
with other members of that personal network who live nearer to them or farther from 
them. Nonetheless, future research will involve analysis of the role of actual distance 
in predicting the distributing of edge length bias, thus giving insight into debates on 
scale in networks. 

We then asked the respondent if each of the 25 people in the network knew one 
another well, a little bit or not at all, to the best of their knowledge-research on 
personal network tie prompts shows that a general prompt with few categories 
like ours produces reliable data while more specific prompts with many categories 
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produces less reliable data (Killworth et al. [10]). The solicitation of the personal 
network ties produces, in this case, a theoretical maximum of 300 ties or 
( )( ) .2252525 −×  

Using direction and distance of alters from ego, we created X, Y coordinates for 
each network member in a personal network using geometry. We then calculated the 
extent to which the people who lived near each other were likely to have a network 
tie between them or, put another way, we calculated to what extent a personal 
network was likely to have people with a ‘preference’ for ties shorter than average 
possible geographic distance between members of that personal network. To do this, 
we used a command line software program that we developed which employs an 
algorithm that we call the edge length bias algorithm. The software calculated 
distances between each alter based on X, Y coordinates from ego ( ).0,0  We 

completed this same procedure of creating X, Y coordinates separately for time as a 
distance and for geographic distance, and used the software to calculate the spatial 
bias based on each personal network based on time. 

The results of applying the edge length bias methodology to real world data are 
presented in Figures 5 and 6. Figure 5 is a plot of the 60 personal networks against 
the edge length bias. In this analysis of real world data, we did not calculate 
neighborhood radius, but only edge length bias. 

 

Figure 5. Plot of edge length bias values. The value of 1 means that people in that 
network tended to have ties within that network that averaged out to equal the 
average edge length of possible ties. 

Figure 6 is a summary of values at each 0.1 interval of edge length bias. For 
Figures 5 and 6, the ties of low interaction and frequent interaction were collapsed 
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so that we had binary graphs instead of valued graphs. The software can calculate 
edge length bias using valued graphs, but we do not yet know what scale is 
appropriate for stipulating the mathematical difference between no tie ( ),0  low 

interaction (1) and much interaction (2). The graphs and X, Y coordinates did not 
include ego (the interviewee); only the 25 alters in each personal network were the 
basis of these calculations. We chose to not include ego in calculations because we 
are interested in the flow of resources and information in a personal network toward 
ego when ego has limited capacity for reaching out, such as following a disaster. 

 

Figure 6. Summary distribution of edge length bias values, by percent of total, for 
60 personal networks. 

Figure 5 shows that approximately two-thirds of the personal networks in this 
sample were characterized by actual edge lengths that averaged less than the average 
edge length of possible ties within each of those networks. Around 17% of networks 
had average edge lengths less than half of the average edge length of possible ties, 
and yet only 3% of networks had average edge lengths 150% of the average edge 
length of possible ties. 

Figure 6 presents the same data as in Figure 5, but in a summary of the 
distribution of incidences at intervals of 0.1. Figure 7 is also a summary of edge 
length bias values and is based on data from approximately 35,000 runs of randomly 
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generated networks, thus providing a comparison to Figure 6. It bears remarkable 
resemblance to the real world data from Figure 6. 

 

Figure 7. Distribution of edge length bias values for spatial networks produced by 
Monte Carlo Markov Chain simulations. 

8. Conclusions and Discussion 

In this note, we devised a characteristic of a spatial graph that allows us to 
quantify the likelihood of shorter connections between nodes over longer ones. The 
characteristic is robust in the sense that it is scalable (does not matter what units are 
used for measurements) and, more importantly, it allows one to compare spatial 
graphs with very different geographical sizes if theoretically permitted by the 
hypothesis being evaluated (e.g., local village networks might not be compared to 
author citation networks among scientists). Also, it is practically metric independent 
as it does not matter what metric one uses to measure the distances. This robustness 
is of substantial theoretical importance, since periodic boundaries and ∞d  metric are 

very easy to deal with analytically on paper, without any need of computer 
simulation. 

In addition, and perhaps more importantly, we developed a formula that uses 
edge length bias to estimate the effective geographic size of one’s personal 
neighborhood. This procedure should provide the ability to estimate what is far and 
what is close for any randomly generated spatial network. The prediction by the 
formula is surprisingly good for spatial graphs that are generated by the Poisson 
point process, and the formula works extremely well for large graphs ( 100=N  or 

).more  
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Our procedure should also work for real world spatial networks, which are 
not uniformly distributed, but which, in the New Orleans case, showed similar 
distributions to the theoretical results although slightly more varied. It will be 
important to conduct many studies to start to develop typical ranges of variation in 
spatial networks − in our case, personal networks in post-disaster settings will be the 
priority along with comparisons to non-affected people with similar sociodemographic 
characteristics. 

Networks comprised of human interactions, particularly, those comprised 
mainly of face-to-face interactions, as summarized by Wong et al. [16], are 
characterized by low number of ties relative to possible number of ties, relatively 
short number of steps between any two people, existence of subgroups, and 
existence of key individuals. These real world characteristics do not necessarily 
negatively affect the results of the neighborhood radius formula, as long as graphs 
are large enough and as long as the percentage of connections either outside or 
inside the neighborhood is not close to the extremes. 
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