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Abstract

In the present paper, the mixing boundary layer equations between parallel
streams are investigated for laminar flow. The method consists essentially
in solving boundary layer equations using a hybrid analytic scheme,
Meksyn approximation and Dirichlet series method are used. The accuracy
of the analytics results has been tested by the comparison with numerical
methods.

Introduction

The behavior of a two-dimensional mixing boundary layer between parallel
streams is of basic fluid dynamics interest with many applications in engineering.
Several authors have studied the boundary layer equations to mixing between
parallel streams [1-5]. Lock [5] studied numerical solutions of the laminar boundary
layer equations for the steady flow of a stream of viscous incompressible fluid over a
parallel stream of different density and viscosity. Lessen [4] has obtained the
velocity distribution of steady motion in the free laminar boundary layer separating
the two streams, using a method equivalent to that of Blasius for the boundary layer
on a flat plate. Chow [3] demonstrated that the technique suggested by Meksyn [6]
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may be employed to solve the jet mixing problem. Chen [2], based on the linearized
theory of Blasius equation, analyzed the problem of two parallel streams of different
properties.

Analysis

It is well known that the flow in a mixing layer is described by the boundary
layer equation for the stream function with a zero pressure gradient [8]. In this case,
the boundary layer equation may be stated as

" l " _
f74 51 =0 )

with the boundary conditions
fn=0)=0, fn—>x)=1 f'(n—>-0)=0. 2

The flow field may be interpreted as two separate flow regions, namely, the upper
and lower half-planes. The two parts of the flow field will be joined together along
the axis, so, the problem is transformed in:

Lower half-plane, n <0

s % fH=0 @)
with the boundary conditions:
fin > -©)=0, fi(n=0)=0. (4)
Upper half-plane, n >0
14 1 ”n
f2+§f2f2=0 (5)
with the boundary conditions:
fo(n>o)=1 f(n=0)=0. (6)

Furthermore, in n = 0 must be satisfied

fi(n =0) = f3(n =0), (7
fi(n =0) = fJ(n=0). (8)
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Solution in lower half-plane, n <0

In this region, we will seek a solution by using Dirichlet series [4, 7],
ian Ear|
fl(Tl) = A() + Alez + Azea” + A3€2 R (9)
Substituting (9) in (3) and equating to zero the coefficients of successive powers of

an . . .
e2 ', the following recurrence relations are obtained
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AA (n- K2, nz2, (10)
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where the coefficients a and A; are free. Introducing (10) in (9) gives the following

expression for the current function

1, 2 3,
fi(n)=-a+ A{e2 " 2'21 a”+752(A1] eZ

a

3 4 5
17 (A ) g2an 121 (A)" 50
864( j & 21600( a) " T (1)

Defining B = %, f1(n) and its derivative can be written as

1 3
fi(m) = —a+ aﬁ[ez [3e""n +0s [3 202"
5
17 .3 2an 121 4 7an
"8 taeool o0 T (12)

2 1 3
, a San 1 5 San
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_ A7 pg8e2an 121 a5
864 P + 31600 P © ’ (13)
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" a %an 1, 2,an, O 22%‘*’1
fl(n):ﬁﬁ e —ZZ Be +ﬁ3 B e

5
_ A7 g2p3g2an 121 opa 5@
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The boundary condition f;(n = 0) = 0 yields

_ g, 5452 1743 121 o4 j_
1”3(1 2Pt 2P 86 P T me00P )70

The solution of this equation delivers the following value o = 1.3188.

Solution in the upper half-plane, n > 0

In this region, we can apply the Meksyn method [6], we may assume that

2 4
fa(n) = am +am” + 33113 tam + -
Substituting (16) and its derivatives into equation (5), we obtain

1 2

a.3:O, a4:— —maz,...,

4.3.20% %=

(14)

(15)

(16)

(17)

where the coefficients a; and a, are free. Introducing equation (16) in (5) and

integrating, we obtain

f3(n) = 2a,e"F M,

where

1m 1(a a a
P =5 [ alan = 5[ n? o S Bt o

1(31 2,8 3 )
a2, .3,
fin) =2 202" 3

Integrating equation (20), the following expression to f5(n) is obtained

Ao

n )
fo(n) = 2a2J.0e 2 8 dn + a.

(18)

(19)

(20)

(21)
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The integral in equation (21) is evaluated by first transforming the variable through
the relationship

(a2 @ 3 A s

1 3
where 1 = byt2 + byt! + b3t2 +byt? + -

Inverting the series, the coefficients b; are found to be given by

_20ay aj 12835 16 ay
4

=L  p=-oZ p by =-——2%2 2% (23

Equation (21) now becomes
, 1 1 1
fa(m) = 232(5 bﬂ(? Tj +bhy(l-e7)

+ % b@/(%, rj +2b,7(2, T) + ) + 4, (24)

where y(a, 1) = T'(a) - T'(a, ), and (o, 1) = J‘we‘rr“‘ldr is the incomplete
T

Gamma function.

Patchingin n=0

The boundary conditions (7) and (8) yield
2
a 1 5 a2 121
2 Bo(l 7 2P0+ 7530 864 4B3 + 7605 50 * ) 4 (25)

a—sﬁ 1—12.2;3 n 53 3p3 - 17 4. 483 12l g 55+ |=2a (26)
2.27017 4 0 0 864 0+ 51600 ° 2P0 2

The coefficients g and a, are found to be given by

aZ

a = 7\‘1 7! (27)

_pf1-L 5 42 121 =
where 4, = 30(1 7 2P0 + = 3B5 - 864 ap3 + 51500 22 s8¢ 4 j = 0.765737,

3
a
dy = 7&2 ?, (28)
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where

_gaf1-1o. D a.ag2 10 4 ope3 121 oo
%2—60(1 72 2o+ 753380 — 5574 4B + 5755557580 + j_0.4205o5.

By imposing the boundary conditions (7) and (8), the whole problem is reduced
to find the coefficient a.

The boundary condition f;(n — o) =1 will be assessed through patching in

n=mn" > 1 between the solution (24) and an asymptotic expansion of the equation

(5), there is a common region of validity of the solution (24) and the asymptotic
expansion. The corresponding asymptotic expansions for f,(n) when n is large and

positive, and when lim f;(n) =1, lim (f,(n)—n) = B, where B is a constant, is
n—oo n—>o

"

given approximately by fJ +%(‘1+ B) f; =0, the solution of which may be

written as
2 2
e @ 3 15 2 e—Zw
fo(n)*n+B+C (1— + —---j+C 4oy (29)
2 e—Zmz
f3(n) = 1+nC(erfo —1) - C* ———+ -, (30)
4w
2
2 —2m
fz"(n)zCe_‘” +C2€ 3 + e (31)
2m

where o = %(ﬂ + B) and C is a constant.

The matching between the equations (20), (24) and equations (29-31) in

n =n", yield the following algebraic equations for the coefficients a, B and C,
232(% bl'Y(%, ‘C*) + b2(1 - e_T* ) +%b3y(%, ‘E*) + 2b4'Y(2, ‘t*) + j +

2
672w

4™

=1+ VnC(erfo* —1) - C? : (32)
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e—2o)*2

* *2
2a " =Ce™® +C? :
203

% #2 %2
n - —20
j fBmdn=n'+B+CcE1- 2o+ B2 ()
0 © 200 4o 8w

Results

Solving the system (32-34) with n* =3, it has been found that a =1.2388,
B = —0.5267 and C =1.1648. The valor obtained for the velocity in the axis is
a; = 0.5876 that is very close to 0.5873 obtained by Lock [5] using numerical
integration of equation (1).

Table 1 shows the results obtained to the velocity in the axis f’(0), the slop in

the axis f"(0), and compared with other results found in the literature. The results

show that the hybrid scheme proposed in this paper provides results with high
accuracy.

Table 1. Results obtained to the velocity in the axis f'(0) and the slop f"(0)

—a f(0) f"(0)
Numerical Solution [5] 1.2386 0.5873 0.1996
Approximate Solution [5] - 0.5871 0.1901
Chow [3] - 0.5885 0.2829
Chapman [1] 1.2330 0.5870 -
Present Work 1.2388 0.5876 0.1998
Conclusions

This paper shows an improved approximate analytic solution for boundary layer
between parallel streams, demonstrating that the present method delivers results with
a better accuracy than the standard analytic methods. The present method can be
easily extended to more complex flows, for example, jets with heat and mass transfer
and combustion problems.
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