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Abstract 

In the present paper, the mixing boundary layer equations between parallel 
streams are investigated for laminar flow. The method consists essentially 
in solving boundary layer equations using a hybrid analytic scheme, 
Meksyn approximation and Dirichlet series method are used. The accuracy 
of the analytics results has been tested by the comparison with numerical 
methods. 

Introduction 

The behavior of a two-dimensional mixing boundary layer between parallel 
streams is of basic fluid dynamics interest with many applications in engineering. 
Several authors have studied the boundary layer equations to mixing between 
parallel streams [1-5]. Lock [5] studied numerical solutions of the laminar boundary 
layer equations for the steady flow of a stream of viscous incompressible fluid over a 
parallel stream of different density and viscosity. Lessen [4] has obtained the 
velocity distribution of steady motion in the free laminar boundary layer separating 
the two streams, using a method equivalent to that of Blasius for the boundary layer 
on a flat plate. Chow [3] demonstrated that the technique suggested by Meksyn [6] 
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may be employed to solve the jet mixing problem. Chen [2], based on the linearized 
theory of Blasius equation, analyzed the problem of two parallel streams of different 
properties. 

Analysis 

It is well known that the flow in a mixing layer is described by the boundary 
layer equation for the stream function with a zero pressure gradient [8]. In this case, 
the boundary layer equation may be stated as 

0
2
1 =′′+′′′ fff  (1) 

with the boundary conditions 

( ) ( ) ( ) .0,1,00 =∞−→η′=∞→η′==η fff  (2) 

The flow field may be interpreted as two separate flow regions, namely, the upper 
and lower half-planes. The two parts of the flow field will be joined together along 
the axis, so, the problem is transformed in: 

Lower half-plane, 0≤η  

0
2
1

111 =′′+′′′ fff  (3) 

with the boundary conditions: 

( ) ( ) .00,0 11 ==η=∞−→η′ ff  (4) 

Upper half-plane, 0≥η  

0
2
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222 =′′+′′′ fff  (5) 

with the boundary conditions: 

( ) ( ) .00,1 22 ==η=∞→η′ ff  (6) 

Furthermore, in 0=η  must be satisfied 

( ) ( ),00 21 =η′==η′ ff  (7) 

( ) ( ).00 21 =η′′==η′′ ff  (8) 
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Solution in lower half-plane, 0≤η  

In this region, we will seek a solution by using Dirichlet series [4, 7], 
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Substituting (9) in (3) and equating to zero the coefficients of successive powers of 
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1 ηa

e  the following recurrence relations are obtained 
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where the coefficients a and 1A  are free. Introducing (10) in (9) gives the following 

expression for the current function 
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Defining ,1
a
A

=β  ( )η1f  and its derivative can be written as 
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The boundary condition ( ) 001 ==ηf  yields 
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The solution of this equation delivers the following value .3188.10 =β  

Solution in the upper half-plane, 0≥η  

In this region, we can apply the Meksyn method [6], we may assume that 
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212 +η+η+η+η=η aaaaf  (16) 

Substituting (16) and its derivatives into equation (5), we obtain 
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where the coefficients 1a  and 2a  are free. Introducing equation (16) in (5) and 

integrating, we obtain 
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η−=η′′ Feaf  (18) 

where 
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i.e., 
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Integrating equation (20), the following expression to ( )η′2f  is obtained 
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The integral in equation (21) is evaluated by first transforming the variable through 
the relationship 
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Inverting the series, the coefficients ib  are found to be given by 
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Equation (21) now becomes 
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where ( ) ( ) ( ),,, ταΓ−αΓ=ταγ  and ( ) ∫
∞

τ
−ατ− ττ=ταΓ de 1,  is the incomplete 

Gamma function. 

Patching in 0=η  

The boundary conditions (7) and (8) yield 
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The coefficients 1a  and 2a  are found to be given by 

,
2

2
11

aa λ=  (27) 

where ,765737.05
21600
1214

864
173

72
52

4
11 4

0
3
0

2
0001 =⎟

⎠
⎞⎜

⎝
⎛ +β+β−β+β−β=λ  

 ,
8

3
22

aa λ=  (28) 



MARCO ROSALES-VERA 6 

where

.420505.055
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By imposing the boundary conditions (7) and (8), the whole problem is reduced 
to find the coefficient a. 

The boundary condition ( ) 12 =∞→η′f  will be assessed through patching in 

1∗η=η  between the solution (24) and an asymptotic expansion of the equation 

(5), there is a common region of validity of the solution (24) and the asymptotic 
expansion. The corresponding asymptotic expansions for ( )η2f  when η is large and 

positive, and when ( ) ,1lim 2 =η′
∞→η

f  ( )( ) ,lim 2 Bf =η−η
∞→η

 where B is a constant, is 

given approximately by ( ) ,0
2
1

22 =′′+η+′′′ fBf  the solution of which may be 

written as 
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( ) ,
2 3
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where ( )B+η=ω
2
1  and C is a constant. 

The matching between the equations (20), (24) and equations (29-31) in 

,∗η=η  yield the following algebraic equations for the coefficients a, B and C, 
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Results 

Solving the system (32-34) with ,3=η∗  it has been found that ,2388.1=a  

5267.0−=B  and .1648.1=C  The valor obtained for the velocity in the axis is 

5876.01 =a  that is very close to 0.5873 obtained by Lock [5] using numerical 

integration of equation (1). 

Table 1 shows the results obtained to the velocity in the axis ( ),0f ′  the slop in 

the axis ( ),0f ′′  and compared with other results found in the literature. The results 

show that the hybrid scheme proposed in this paper provides results with high 
accuracy.   

Table 1.  Results obtained to the velocity in the axis ( )0f ′  and the slop ( )0f ′′  

 a−  ( )0f ′  ( )0f ′′  

Numerical Solution  [5] 1.2386 0.5873 0.1996 

Approximate Solution [5] - 0.5871 0.1901 

Chow [3] - 0.5885 0.2829 

Chapman [1] 1.2330 0.5870 - 

Present Work 1.2388 0.5876 0.1998 

Conclusions 

This paper shows an improved approximate analytic solution for boundary layer 
between parallel streams, demonstrating that the present method delivers results with 
a better accuracy than the standard analytic methods. The present method can be 
easily extended to more complex flows, for example, jets with heat and mass transfer 
and combustion problems. 
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