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Abstract 

We consider the nonparametric estimation of the hazard function, using 
a recursive kernel estimator of the density and the distribution function. 
Assuming that the data proceed from a strong mixing stationary process, 
the strong consistency of the proposed estimator is obtained. The rate of 
convergence is the same as that in the independence case. Asymptotic 
normality of the estimator is also proven. 

1. Introduction 

Let X be a real random variable, with probability density function f 
and distribution function F, with respect to some σ-finite measure on .R  
The failure rate or hazard function is defined by 

( ) ( ) .lim
0 x

x xXxXxPxr
x ∆

≥∆+<≤
=

→∆
 

By the definition of conditional probability, we have that 

( ) ( )
( )

( )
( )

,1 xF
xf

xF
xfxr =

−
=  
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considered when ( ) ,0>xF  that is, ( )⋅r  is defined in the set { ( )xFx R∈  
}.0>  

If we consider that the random variable X measures the “failure 
time”, then ( ) xxr Δ  can be interpreted as the approximate probability 

that one subject “fails” in the time interval [ ),, xxx Δ+  given the subject 
has survived time x, i.e., the instantaneous probability of failure at x, 
given survival to x. 

The estimation of the hazard function is a problem of considerable 
interest in many applied fields, such as inventory theory, reliability, 
medicine and seismology. In this last case, the hazard function might be 
thought as the instantaneous risk of the occurrence of an earthquake at 
time x, knowing that the last earthquake has happened at time zero (Rice 
and Rosenblatt [15]). Such approximation has been considered and 
applied to real data sets in recent papers (Estévez et al. [4, 6]). 

A practical question is the estimation of ( )⋅r  based on a random 

sample ....,,1 nXX  In the case of i.i.d. random variables we can cite the 
works of, for example, Watson and Leadbetter [24, 25], Ahmad [1], 
Hollander and Proschan [9], Prakasa Rao and Van Ryzin [13] or Hassani 
et al. [8]. In a context of dependent data (usually, strong mixing 
processes), we highlight the papers of Estévez and Quintela [5], Izenman 
and Tran [11], Roussas [17, 18] and Sarda and Vieu [20]. 

Roussas [17, 18] considers a nonparametric estimator defined by 

 ( ) ( )
( )

,ˆ1 xF
xfxr h

h
−

=  (1)  

with ( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
h h

XxKnhxf
1

1  the classical Parzen-Rosenblatt kernel 

estimator of the density, and ( )⋅F  the empirical distribution function. 
Estévez and Quintela [5] use a kernel estimator of the distribution 

function in the denominator, that is, ( ) ( )∫ ∞−
=

x
hh dttfxF .  Roussas and 

Tran [19] compare (1) with a recursive version, using 
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 ( ) ( )
( )

,ˆ1 xF
xfxr n

n
−

=  (2) 

where 

 ( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i i
i

i
n b

XxKbnxf
1

11  (3) 

is a recursive estimator of the density function, with { } +∈ Rnb  a 
sequence of smoothing parameters. Asymptotic optimality properties for 
this estimator under mixing conditions can be seen in Masry [12], Tran 
[21] or Roussas and Tran [19]. 

In our paper, we consider the estimator 

 ( ) ( )
( )

( )
( )

,1 xF
xf

xF
xfxr

n

n
n

n
n =

−
=  (4) 

where ( )⋅nf  is the same as in (2), and ( )⋅nF  is the kernel estimator of 
( ),⋅F  defined by 

 ( ) ( ) ,1

1
∑ ∫
= ∞−

=⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

x
n

i
i

n dttfb
XxHnxF  (5) 

with ( ) ( )∫ ∞−
=

x
duuKxH .  

The hazard estimator can be computed recursively 

( )
( )

( )
.

111

11

1

1

⎥⎦
⎤
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⎡

⎟
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⎜
⎝
⎛ −

+−−

⎟
⎠
⎞

⎜
⎝
⎛ −
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=

−

−

n
n

n

n
n

n
n

n

b
XxHnxFn

n
b

XxKnbxfn
n

xr  

In this way, the hazard estimator can be updated with each new 
observation .1+nX  This iterative scheme saves computer time in a 
practical case, whereas a nonrecursive estimator needs to be recalculated 
completely when a new data set is observed. This is the case of time 
series data (see Vilar and Vilar [22] for more discussion and references on 
this point). Moreover, in the case of the estimator (4), the use of a kernel 
distribution estimator instead of the classical empirical distribution gives 
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it continuity properties. The continuity can reveal important features of 
the hazard in seismology studies (see, e.g., Estévez et al. [6]). Perhaps it 
is in this setting where the recursivity turns out to be an important tool: 
when a seismic series is taking place, we can obtain the instantaneous 
risk of a new earthquake more quickly than when using a nonrecursive 
estimate (Grazinoli and Lorenzo [7]). 

In this paper, we establish uniform consistency properties and 
asymptotic normality for the estimator (5) in a dependence context. As a 
by-product, we obtain the rate of convergence and the asymptotic 
normality for the kernel hazard estimator. These rates are the same as 
those in the independent case. The dependence setting and the 
assumptions used are presented in Section 2. Consistency properties and 
the asymptotic normality of the proposed estimators can be seen in 
Section 3. Finally, all the proofs are reported in the Appendix. 

2. Dependence Structure and Asymptotic Optimality 

This work assumes the sample data to be dependent and to satisfy 
the “strong mixing” condition (α-mixing), introduced by Rosenblatt [16], 
which is defined as: 

Definition 1. Let ∗N  denote the set of positive integers, and for any i 

and j in { } ( )ji ≤∞∗ ∪N  define j
iF  to be the σ-algebra spanned by the 

variables ....,, ji XX  The sequence { }iX  is said to be α -mixing (strong 

mixing) if there exist mixing coefficients ( )mα  such that ( ) −BAP ∩  

( ) ( ) ( ),mBPAP α≤  for any sets A, B that are, respectively, k
1F -

measurable and ∞
+mkF -measurable (k, m positive integer), and ( ) .0↓α m  

This condition is one of the weakest used in studies of dependent 
samples. It is satisfied, for example, by the ARMA processes with 
continuous white noise (see Doukhan [3] for a more complete discussion 
of the strong mixing conditions). 

In the results we will present below, the following assumptions will 
be considered: 
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About the random variables and the mixing coefficients 

(H.1) ( )nnX  is a strictly stationary sequence of α-mixing variables 

with ( )∑
∞

=
+∞<α

1
.

r
r  

About the density function 

(H.2) The density f is bounded and has ( )2≥k  continuous derivatives. 

(H.3) For all ,2≥j  there exists the joint density function ( )⋅⋅,,1 jf  

and 

( ) ( ) .,,)(,,1 R∈∀≤− vuCvfufvuf j  

About the kernel function K 

(H.4) K is a bounded probability density function, verifying 
( ) .0lim 0 =→ xKxx  

(H.5) K is Lipschitz continuous (i.e., ,0, ∞<<∃ KK CC  such that 
( ) ( ) .),, R∈∀−≤− yxyxCyKxK K  

(H.6) K has order k ( ) ( ) ( )⎜
⎝
⎛ ==== ∫ ∫ ∫ − dxxKxdxxKxdxxxK k 120 "  

and ( ) .0 ⎟
⎠
⎞∞<< ∫ dxxKxk  

About the bandwidth sequence 

(H.7) { }nb  is a monotone nonincreasing sequence verifying 0→nb  

and ∞→k
nnb  as .∞→n  

(H.8) ∑ =
+=∞<β→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛n
j l

l

n

j klb
b

n 1 .1...,,1,1  

3. Results  

3.1. Uniform strong consistency 

First, we present two lemmas that show the asymptotic behavior of 
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the kernel estimators of the density and distribution functions. In the 
sequel, 0>C  will denote a positive constant, and all limits are taken as 
{ },n  or subsequences thereof, tend to infinity. Also, we will consider S as 

any compact subset contained in the interior of { ( ) }.0>∈ xFx R  

Lemma 1 (Tran [21]). Under (H.1)-(H.8) and assuming that the 

mixing coefficients have the form ( ) ( )anOn −=α  with ,2
11>a  we have 

( ) ( )( ) ,logsup
21

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=−

∈ n
n

Sx nb
nOxfxf   a.s. 

Lemma 2. Under (H.1)-(H.8) and assuming that 

(H.9) the mixing coefficients have the form ( ) ( )anOn −=α  with 1+a  

,2
11>  

(H.10) F is k-times continuously differentiable, and 

(H.11) the bandwidth sequence verifies ( )∑∞
=

−+ ∞<1
11 ,n

ak
nnb  we have  

( ) ( )( ) ( ),sup k
nn

Sx
bOxFxF =−

∈
  a.s. 

Now, to study the asymptotic properties of ( ),⋅nr  we write, for each 

,Sx ∈  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )[ ],11 xFxFxfxfxfxFxDxrxr nn
n

n −−−−=−  (6) 

with ( ) ( ) ( ) ( )( ) ( )( ).11 xFxFxFxFxD nnn −−==  It is easy to obtain that 
( ) .,0 SxCxDn ∈∀>>  Considering the results of Lemmas 1 and 2, 

and using ( 6), we can write the following theorem for the estimator of the 
hazard function: 

Theorem 3. Under the assumptions of Lemma 2, we have 

( ) ( ) ( ),sup k
nn

Sx
bOxrxr =−

∈
  a.s. 
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Remark 1. If we suppress, in Theorem 3 (resp. Lemma 2), the 
assumptions related to the kth order of the kernel function K and the 
existence of k derivatives of the function f, we simply obtain the 
convergence toward zero of the bias of the estimator ( )⋅nr  and the strong 
consistency (pointwise and uniform) of the same. 

Remark 2. Note that the rate of convergence obtained in Theorem 3 
(resp. Lemma 2) is the same as that in the case of independent samples. 
This rate is achieved by means of the reconstruction techniques used by 
Ango-Nzé and Doukhan [2] (see Quintela and Vieu [14]). 

3.2. Asymptotic normality 

To establish the asymptotic normality of the estimator ( )⋅nr  we need 
to include the following assumptions: 

(H.12) There exists a subsequence of positive integers { },nm  
,1 nmn ≤≤  such that 

0→nnbm   and  ( )∑
∞

=

γ−
γ−

→α
nmjn

j
b

01 1
1   for some  ( ).1,0∈γ  

(H.13) The sequence ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛∑ =

− n
k n

k
b
bn 1

2
1  has a finite limit. 

(H.14) Let ( ) N∈ρ=ρ n  and let ( ) N∈β=β n  subsequences of N∈n  
such that ∞→βρ,  and .n≤β+ρ  Let ( ),nμ=μ  the largest positive 
integer for which ( ) .n≤β+ρμ  Then, it verifies that ( ) 0,0 →βμα→ρβ  

and .0
2

→ρ
nnb  

Masry [12] proves the asymptotic normality for the estimator (3) in 
the case of strong mixing and asymptotically uncorrelated processes (for 
the definition of processes of this type see (3.2) of Masry [12]). Roussas 
and Tran [19] show a similar result under (H.1.)-(H.8) and (H.12)-(H.14). 
Because expression (6) and Lemma 4 below, we can establish the 
asymptotic normality for the recursive hazard estimator. 
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Lemma 4. Under (H.1)-(H.4) and (H.7), we have 

( )( ) ( ) ( ).xFxFxFnVar n →  

Theorem 5. Under (H.1)-(H.10) and (H.12)-(H.14), we have 

( ) ( ) ( )( ) ( )( ),,021 xNxrxrnb d
nn τ→−  

with ( ) ( )
( )
( ) ,1

2
2

xF
dxxK

xrx
−

=τ ∫  for each point of continuity .Sx ∈  

Remark 3. Except (H.5), the assumptions (H.1)-(H.8) and (H.12)- 
(H.14) are used by Roussas and Tran [19] to obtain the asymptotic 
normality of the recursive kernel estimator of the density function f. 
Because the proof of Theorem 5 makes use of equation (6), we will use the 
result of Roussas and Tran [19] and therefore, we need to use their 
assumptions. Also, because (6), we need to get the asymptotic normality 
of the kernel estimator of the distribution function. 

Remark 4. Because our assumptions are the same as those used in 
Roussas and Tran [19], their comments on these remain valid (see pages 
351-354 of the mentioned paper). In this work, we find specific examples 
of the selection of possible values in (H.14). 

Remark 5. The popular choice for the bandwidth parameter =nb  

10, <<− sCn s  is contemplated in our case, because all the conditions 
about the bandwidth sequence are fulfilled. 

4. Appendix: Proofs 

Proof of Lemma 2. Let us calculate the expectation 

( )( ) ( ) ( )∑ ∫∑
=

∞+

∞−=

−=⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i
i

n

i i
i

n duuKubxFnb
XxHEnxFE

11
,11  (7) 

using integration by parts. Now, a Taylor’s expansion of order k of 
( )ubxF i−  provides that ((H.6) and (H.10)): 
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( )( ) ( ) ( ) ( ) ( )∑ ∫
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+=
n

i

kkk
i

k
n dxxKuxFbkxFnxFE

1
!

11  

 ( ) ( ) ( ) ( ) ( ).1
!

1

1

k
n

n

i

k

n
ik

n
kk

k
bob

b
nbdxxKuxFkxF +⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛−+= ∑∫
=

 

By (H.8), we have that ( )( ) ( ) ( ).sup k
nnSx bOxFxFE =−∈  

Now set ( ) ( ) ( )( ).xFExFxA nnn −=  We are going to use the 
reconstruction techniques (see Doukhan [3]): consider a sequence 

( ) ( )( ){ } ∗∈Nnnlnq ,  such that ( ) ( ) ( ) ,2 nnqnlnqn ≤≤−  and set 

( ) ( ) ( )
( )

∑
=

Δ+=
nl

j
njn xxZnxA

2

1
,1  

where ( ) ( ) ( )
( )∑ +−= ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=
njq

nqji i
i

i
i

j b
XxEHb

XxHxZ 11  and note that 

we have 

 ( ) 3sup ε≤Δ
∈

xn
Sx

  a.s., (8) 

provided that ( ) ( ).ε= nonq  By Rio’s lemma (see Ango-Nzé and Doukhan 
[2]), we can change the variables ( )xZ j  with j odd (resp. with j even) by 

independent variables ( )xZ j′  with the same distribution of ( )xZ j  and 

such that 

 ( ( ) ( ) ) ( )( ).0 nqxZxZP jj α=≠′−  (9) 

Because of (8) we get: 

[ ( ) ]ε>=
∈

xAPI n
Sx

n sup  

 ( ) ( ) .3
1sup3

1sup
oddeven ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ε>′+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ε>≤ ∑∑ ∈∈ j
j

Sxj
j

Sx
xZnPxZnP  (10) 
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Using (9) and classical Lipschitz arguments ((H.5)), we write the 

compact S as [ ]11 , += γγ= kk
l
k
nS ∪  with ( )1−= nn rOl  intervals with 

longitude .nn br =  We get 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ε>∑∈ even
, 3

1sup
j

yj
Sx

ZnP  

{ }
( )( )
( ) .2311sup1

even
, ,, nqb

nqnZnPbC
nj

ZZj
kn kjkjk

α+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ε>′≤ ∑ γγ ≠′γ  (11) 

The other term in r.h.s. of (10) can be treated similarly, and then, by 
Bernstein’s inequality for i.i.d. variables, we get 

 ( )

( ) ( ) ( ) ( )

( )( )
( ) ,

918
exp12 2

222

nqb
nqn

nqnl
n

nqnl

nqn
bCI

nn
n

α+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε+σ

ε−≤  (12) 

where .2
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

=σ
i

i
b

XxHVar  By Lemma 4, we get .2 C≤σ  

Now, we take k
nobε=ε  and ( ) ( ).k

nbonq −=  We have, for some ,+∞<l  

( )( )
( )∑ ∑

∞

=

∞

=

α+≤
1 1

.
n n n

n nqb
nqnlI  

Because (H.9) and (H.11), we have that ∑∞
=

+∞<1n nI  and the proof 

is complete. 

Proof of Lemma 4. We have 

( )( ) ∑
=

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i i
i

n b
XxHVar

n
xFVar

1
2

1  

.,2

1
2 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

+
≤<≤

∑∑ j

j

i
i

nji
b

Xx
Hb

XxHCov
n

 (13) 
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For each i, the variance 

 ,
22
⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

=⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

i
i

i
i

i
i

b
XxHEb

XxHEb
XxHVar  (14) 

with ( ) ( )1oxFb
XxHE

i
i +=⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −  (see (7)). An integration by parts 

argument can be applied to the moment of order two, to obtain that 

( ) ( ).1
2

oxFb
XxHE

i
i +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −  For the sum of covariances in (13), we can 

use (22) below to get that this term tends to zero. ~ 

Proof of Theorem 5. We will use a typical argument (Masry [12]) 
which consists in decomposing the sum of dependent random variables 
into a sum of large and small blocks. It will be proven that the 
contribution of the small blocks is negligible and that the large blocks are 
approximately independent. After this, we will use Lindeberg-Feller’s 
central limit theorem to achieve asymptotic normality. 

Write 

( ) ( )( )[ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=− ∑
=

n

i i
i

i
i

nn b
XxHEb

XxHnnxFExFn
1

2121 1  

 ( )∑
=

−=
n

i
i xLn

1

21 .  

Now, we split 

( ) ( )∑
=

−− ′++=
n

i
nnni TTSnxLn

1

2121 ,  

where 

 ∑∑
μ

=
+μ

μ

=

′=′′==
1

1
1

,,,
m

nmn
m

mn yTyTyS  (15) 
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and 

( ) ( ) ( )∑
−ρ+

=

+β+ρ−==
1

;11with,
m

m

k

ki
mim mkxLy  (16) 

( ) ( ) ( )∑
−β+

=

+ρ+β+ρ−==′
1

;11with,
m

m

l

li
mim mlxLy  (17) 

( )
( )
∑

+β+ρμ=
+μ =′

n

i
i xLy

1
1 .  (18) 

The asymptotic normality is proven showing that: 

[ ] ,021 →−
nTEn  (19) 

[( ) ] ,021 →′−
nTEn  (20) 

and 

 ( )( ),,021 xNSn n σ→−  (21) 

where ( ) ( ) ( )( ).12 xFxFx −=σ  

Proof of (19). Because the variables ( )xLi  have mean zero, we obtain 

[ ] ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′= ∑

μ

=1

2 11

m
mn yVarnTEn  

( ) ( )∑ ∑∑
μ

= μ≤<≤

′′+′=
1 1

2 21

m
ji

ji
m yyEnyEn  

.21 AA +=  (22) 

By (16), 

( ) ( ( )) ( ( ) ( ))∑ ∑ ∑
−β

=

−β

=

−β

≠=
+++ +=′

1

0

1

,0

1

;0

2 ,
t t ltl

lltltlm xLxLCovxLVaryE nnn  
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( ( )) ( ) ( ) ( )∑ ∑ ∑
−β

=

−β

=

−β

≠=
+++ −α+≤

1

0

1

,0

1

;0
,4

t t ltl
lltltl xLxLltxLVar nnn  (23) 

because ( ) CxL tln ≤+  and using Ibragimov’s inequality [10]. Moreover, 

( ( ))xLVar tln +  is also bounded (see (12)). Therefore, 

( ) ( )∑ ∑
−β

=

−β

≠=

−αμ+μβ≤
1

,0

1

;0
1 1611

t ltl
ltnxCnA  

 ( ) ( )∑
∞

=

αμβ+μβ≤
0

.1611

r
rnxCn  (24) 

Because (H.14), ,0→μβ n  and by (H.1), .01 →A  

Let us consider now 2A  in (22): because ji ≠  and the definition of 
the sy′  we can write 

( ) ( ) ( )∑ ∑ ∑∑∑
ρ−

= ρ+=

∞

ρ=μ≤<≤

α≤−α≤′′
n

l

n

ll r
ji

ji
rnllyyE

1
12

1 1 12

.22  

Then, by (H.14), we have that .02 →A  

Proof of (20). Decomposing [( ) ]2
nTE ′  into the sum of variances and 

covariances, we obtain that 

 [( ) ] ( ) [ ( ) ( )] .21

1

2 xLxLEnn
nCTEn ji

nji
n

≤<≤
∑∑+β+ρμ−≤′  (25) 

By definition of ( ),xLk  we get 

( ) ( )[ ]xLxLE lk  

( ) ( ) [ ( ) ( ) ( )]dudvvbxfubxfvbxubxfvHuHbb lklklklk −−−−−≤ ∫ ,,2�R
 

( ),lkbb lk −α≤  (26) 

integrating by substitution and using (H.3). 
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Now, we consider the subsets: 

{( ) { } },1...,,1, 2
1 nmijnjiS ≤−≤∈=  

{( ) { } },11...,,1, 2
2 −≤−≤+∈= nijmnjiS n  

where nm  is given in (H.12). The sum in the second term at r.h.s. of (25) 

can be divided into sets 1S  and .2S  By definition of 2S  and by (26), we 
obtain 

 [ ( ) ( )] ( )
( )
∑ ∑ ∑
∈

−β

+=

−β

=
+α≤

2,

1

1 1
.

Sji mj

j

i
iijji

n

bbjxLxLE  (27) 

Now, using Schwarz’s inequality, 

 ∑ ∑
−β

= =
+ ≤

j

i

n

k n

k
niij

b
bbbb

1 1
2

2
2 .  (28) 

Because (H.1), (H.7) and (H.13), we obtain that 

[ ( ) ( )]
( )
∑
∈

− →
2,

1 .0
Sji

ji xLxLEn  

A similar argument can be applied for the set .1S  By (H.14), the proof of 
(20) is complete. 

Proof of (21). We write ∑ ∑μ
=

μ
=

−− == 1 1
2121 .m m mmn ZynSn  To 

prove (21) we only have to prove that 

 [ ] [ ] 0
1

2121
→−∏

μ

=

−−

m

yiunSiun mn eEeE  (29) 

and 

 .,0
1 1

∑ ∑
μ

=

μ

= ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
→

m m
mm ZVarNZ  (30) 
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(29) results from Volkonskii and Rozanov [23]: 

[ ] [ ] ( ) ( ),11
1

2121
+βα−μ≤−∏

μ

=

−−
ceEeE

m

yiunSiun mn  

that tends to zero, by (H.14). 

For (30), consider ,nmm sZZ =′  where ( )∑μ
=

= 1
2 .m mn ZVars  Using 

analogous arguments to those used in (22), we obtain that 

 ( ) ( ).2 xFxFsn →  (31) 

Now, { }mZ ′  is a sequence of independent random variables with mean 
zero and variance one. Therefore, to show (30), we only have to check that 

 ( )∑
μ

=

→′
1

.1,0
m

m NZ  (32) 

Let us consider 

( ) [( ) { } ]∑
μ

=
ε≥′′=ε

1

2

m
Zmn mIZEg  

[ { }] [ ]∑
μ

=
μ≤≤ε≥

−− ε≥ρμ≤=
1

21
12

212 max21
m

nmmn
nsymn nsyP

ns
CIyEns

nm
 

because ,ρ≤ cym  for all m. Using (H.14) and (31) we have that ( )εng  
tends to zero. This proves the asymptotic normality (32). This fact and 
(30) prove (21). 
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