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Abstract 

An improved homogeneous balance principle and an F-expansion 
technique are used to construct exact periodic wave solutions to the 
( )11 + -dimensional Gross-Pitaevskii equation. 

1. Introduction 

Traditional studies of solitons are mainly focused on those nonlinear evolution 
equations where time variable does not appear explicitly. On the other hand, 
however, nonlinear systems with time-dependent nonlinearities and dispersions also 
attract lots of interests from physicists and mathematicians [2, 9], and are getting 
more and more absorbing. It has been reported that specific dependencies of the 
equation coefficients on time variables can enhance the stabilities of the solutions 
[7]. Moreover, time-modulated nonlinearities and/or dispersions can facilitate the 
manipulation of the soliton behaviors. These facts have greatly enlarged our 
knowledge on nonlinear excitations and gave an origin to the important concept, 
nonautonomous soliton, which was first proposed by Serkin et al. [5]. The BECs and 
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nonlinear optics provide excellent proving grounds for exploring nonlinear systems 
with distributed coefficients. The well-known Feschbach resonance is used to control 
the nonlinearities of matter waves by manipulating the scattering length either in 
time or space, and have led to the proposal of many novel nonlinear phenomena [3]. 
Dispersion management (DM) for atomic matter waves is also proposed recently and 
has induced plenty of consequent studies [1]. Moreover, the evolution of matter 
waves in time-dependent traps has been addressed, and the modulation instability of 
a one-dimensional BEC system in a time-dependent harmonic potential has been 
investigated [8]. In nonlinear optics, nonlinear management (NM) and DM are also 
widely used for experiments and theories with temporal or spatial optical solitons, 
soliton lasers, ultrafast soliton switches [5]. Furthermore, the recent progresses on 
inhomogeneous nonlinear media have generated novel concepts such as the optical 
similariton [4]. 

In this paper, we present an analytical study on the dynamics of periodic waves 
of BEC with a time-varying atomic scattering length in a time-varying expulsive 
parabolic potential. New exact solutions of the 1D GP equation are obtained. The 
results show that the periodic waves can be compressed into a desired width and 
amplitude in a controllable manner by changing the scattering length and external 
potential. 

2. New Exact Solutions of the 1D GP Equation 

Now we discuss the controlled compression of a matter-wave bright soliton 
in an expulsive potential. The evolution of the weakly coupled BEC at zero 
temperature is governed by the 3D time-dependent GP equation. We assume that the 
trapping in the transverse directions is stronger and the longitudinal confinement 
frequency and the s-wave scattering length vary with time; then the BEC is cigar-
shaped and the 3D GP equation can be reduced to the following dimensionless 1D 
GP equation [6]: 

( ) ( ) ,2
1 222

2

2
ψψ−ψΩ−

∂
ψ∂−=

∂
ψ∂ tgxtk

xti  (1) 

where Ω is the normalized longitudinal confinement frequency at the initial stage. 
The wave function ψ, time t and variables x are, respectively, normalized to 

( ) ,8 21
⊥π mwas  the oscillation period ,1−

⊥w  the harmonic oscillator length 
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,⊥⊥ = mwa  where sa  is the s-wave scattering length, ⊥w  is the harmonic 

frequency corresponding to the strong confinement cross-section and m is the mass 
of the atom. 

Utilizing an F-expansion technique [13] and a procedure for balancing terms in 
the expansion [10], we present in this paper a method for finding analytical periodic 
traveling wave solutions to (1). 

We define the complex periodic wave ( )tx,ψ  of (1) in terms of its amplitude 

and phase [12]: 

( ) ( ) ( )[ ].,exp,, txitxutx φ=ψ  (2) 

Substituting ( )tx,ψ  into (1), we find the following coupled equations: 

;02 =φ+φ+ xxxxt uuu  (3) 

.02
1 3222 =+Ω+φ−+φ− guuxkuuu xxxt  (4) 

We seek traveling wave solutions to equations (3) and (4) and assume the 
functions to be of the form: 

( ) ( ) ( ) ( );1
21 θ+θ= −FtfFtfu  (5) 

( ) ( );tlxtp +=θ  (6) 

( ) ( ) ( ),2 textbxta ++=φ  (7) 

where ,, 21 ff  p, l, a, b, and e are the parameter functions to be determined and F is 

a Jacobi elliptic function (JEF), which in general satisfy the following general first- 
and second-order nonlinear ordinary differential equations: 
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where ,0c  2c  and 4c  are real constants related to the elliptic modulus of the JEFs 

(see Table 1). 
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Table 1. Jacobi elliptic functions 

Solution 0c  2c  4c  F 0=M  1=M  

1 1 ( )21 M+− 2M  sn sin tanh 

2 21 M−  12 2 −M  2M−  cn cos sech 

3 12 −M  22 M−  1−  dn 1 sech 

4 2M  ( )21 M+− 1 ns cosec coth 

5 2M−  12 2 −M  21 M−  nc sec cosh 

6 1−  22 M−  12 −M  nd 1 cosh 

7 1 22 M−  21 M−  sc tan sinh 

8 21 M−  22 M−  1 cs cot cosech 

9 1 ( )21 M+− 2M  cd cos 1 

10 2M  21 M+−  1 dc sec 1 

Substituting equations (5), (6), (7) into equations (3) and (4) and requiring that 

( )6,5,4,3,2,1,0;2,1,0 == nqFx nq  and 4
4

2
20 FcFcc ++  of each term be 

separately equal to zero, we obtain a system of algebraic or first order ordinary 
differential equations for ,, 21 ff  p, l, a, b, and e: 

,02 =+ afdt
df

j
j  (10) 
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⎛ + padt

dpf j  (11) 
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⎝
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dt
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( ) ,02 2
4

2
11 =+ pcgff  (16) 

( ) ,02 2
0

2
22 =+ pcgff  (17) 

where ,2,1=j  the constants ,, 20 cc  and 4c  appearing in equations (15)-(17) are 

related to the square of the elliptic modulus M of JEFs (see Table 1). We consider 
the most generic case, in which 1f  and 2f  are assumed nonzero and a is arbitrary. 

The following set of exact solutions is found: 
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,2
2

10

2
04 α−=

f
pcg  (24) 

where .4exp
0 ⎟

⎠
⎞⎜

⎝
⎛−=α ∫

t
adt  The subscript 0 denotes the value of the given function 

at .0=t  A parameter 1,1,0 −=ε  is introduced in equations (18) and (22). 

Incorporating these solutions back into (2), we obtain the general periodic 
traveling wave solutions to (1): 
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3. Propagation Characteristics of Snaking Behavior 

For simplicity in the following discussion, we merely analyze periodic traveling 
wave solutions ψ expressed by (25) and rewrite it in a simple form ( ,0=ε  

),,12,1 2
4

2
2

2
0 McMcMc −=−=−=  namely 

( ) [ ],exp 22
1

10 ebxaxiFf ++θα=ψ  (26) 

( ) ,, 22
10

2 MlpxcnfA +α=ψ≡  (27) 

where M is modulus of Jacobi elliptic function. 

It can be seen that in order to construct solutions ψ, nonlinearity g and potential 
k are not arbitrary, they are linked through the relations (23) and (24). Anyway, we 
still have a large freedom to choose those functions to obtain physical meaningful 
solutions. 

For the simple example, we focus on the case 

( ) ( )
( )

,
sin12

cossin
22

0

2
000

Ω+

++
=

tk
tktkktk  (28) 

where 0k  is a constant. Actually, the case gives periodically time-modulated potential 

and diffraction. Substituting the expressions for k(t) to (23) and solving the 
differential equation, we can obtain 

( ) ( ) .sin14
cos

0
0

tk
tkta

+
−=  (29) 

Consequently, the function α can be given as 

,sin1 0 tk+=α  (30) 

by integrating expression α. Substituting (30) and the expression for ( )tg  into (24), 

we can obtain 

( ) ( ).sin12
0

10

2
0

2
tkf

pMtg +=  (31) 
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Figure 1. (a) and (b) given by equations (28) and (30), where .1.0,5.00 =Ω=k  

 

Figure 2. Density 2ψ≡A  as a function of propagation distance x and t, with 

,010 =f  ,10 =p  ,10 =l  ,5.00 =k  ,1→M  .10 =b  

In Figure 1, we show the picture of α and k as a function of t, with ,5.00 =k  

.1.0=Ω  The function α has an important effect on modulating the amplitude of the 

solution A. It is seen in this situation that α is periodically oscillating along the 
t-axis. Consequently, the corresponding A will be explicit breathing solitary wave 

solution, and its density 2ψ  is depicted as a function of the propagation distance x 

and time t. The dynamics of the corresponding density 2ψ≡A  is shown in Figure 

2(a). From the profile, we can see that the density of the solitary wave has strong 
variations on its propagation, and thus shows a snaking behavior. The variations are 
getting more and more significant as the wave is propagating, and the amplitude of 

the density also oscillates. In Figure 2(b), we plot the density 2ψ≡A  in a smaller 

time interval where t varies from 0 to 5, which clearly shows the snaking of the 
density along the x-axis and the oscillations of the amplitude. The solutions can help 
to understand matter wave dynamics in BECs with the interaction strength and the 
external potential changing with time. 
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4. Summary and Conclusion 

In summary, an improved homogeneous balance principle and an F-expansion 
technique are applied to the generalized ( )D11 +  Gross-Pitaevskii equation. 

Abundant exact analytical periodic wave solutions are obtained. Such exact solutions 
exist under certain conditions by imposing constraints on the functions describing 
nonlinearity, and potential function. The dynamics of the derived solutions can be 
manipulated by prescribing specific time-modulated nonlinearities and potentials. 
The results show that the spatiotemporal periodic waves and solitary waves are with 
breathing and snaking behaviors similar to the similaritons reported in other 
nonlinear systems. The present solution method provides a reliable technique that is 
more transparent and less tedious than the Jacobian elliptic function ansatz, or other 
expansion and variational methods. The technique is also applicable to other 
multidimensional nonlinear partial differential equation systems. 
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