A NUMERICAL APPROACH TO 3-SAT

NORICHIKA MATSUKI

3-9-34, Fujisaki, Narashino-shi
Chiba, 275-0017, Japan
e-mail: n-matsuki@tree.odn.ne.jp

Abstract

We give a necessary and sufficient condition that a Boolean formula in 3-CNF is satisfiable in the form of a multiple integral and apply the Monte Carlo method to its evaluation.

1. Introduction

3-SAT is the problem deciding whether a given Boolean formula in 3-CNF is satisfiable, which was shown to be NP-complete by Cook [1]. 3-SAT can also be stated as follows.

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a Boolean formula in 3-CNF

$$
\left(y_{11} \vee y_{12} \vee y_{13}\right) \wedge \cdots \wedge\left(y_{m 1} \vee y_{m 2} \vee y_{m 3}\right),
$$

where $y_{11}, \ldots, y_{m 3} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\}$. By the equivalence relations

$$
x \wedge y \Leftrightarrow x y, \quad x \vee y \Leftrightarrow 1-(1-x)(1-y), \quad \neg x \Leftrightarrow 1-x,
$$

$\varphi\left(x_{1}, \ldots, x_{n}\right)$ can be transformed into

$$
\prod_{i=1}^{m}\left(1-\left(1-y_{i 1}\right)\left(1-y_{i 2}\right)\left(1-y_{i 3}\right)\right)
$$

where $y_{11}, \ldots, y_{m 3} \in\left\{x_{1}, 1-x_{1}, \ldots, x_{n}, 1-x_{n}\right\}$ [3]. Then 3-SAT is equivalent to the
Keywords and phrases: 3-SAT, Monte Carlo method.
problem deciding whether

$$
\begin{equation*}
T \varphi\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m}\left(\left(1-y_{i 1}\right)\left(1-y_{i 2}\right)\left(1-y_{i 3}\right)\right)^{2 n+1}=0 \tag{1}
\end{equation*}
$$

has a solution for $x_{1}, \ldots, x_{n} \in\{0,1\}$.
In this paper, we give a necessary and sufficient condition that (1) has a solution for $x_{1}, \ldots, x_{n} \in\{0,1\}$ in the form of a multiple integral and apply the Monte Carlo method to its evaluation.

2. The Criterion

We write, for $\varepsilon>0$,

$$
\begin{aligned}
& D_{\varepsilon}=\left\{\left(x_{1}, \ldots, x_{n}\right): \varepsilon \leq x_{i} \leq 1-\varepsilon, i=1, \ldots, n\right\} \\
& D_{\varepsilon}\left(a_{1}, \ldots, a_{n}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}: \varepsilon \leq\left|x_{i}-a_{i}\right| \leq 1 / 2, i=1, \ldots, n\right\} .
\end{aligned}
$$

Theorem 1. Suppose that $\varepsilon<(3 n+1)^{n} /\left(2^{6 n^{2}+2 n} m n\right)$. Then $T \varphi\left(x_{1}, \ldots, x_{n}\right)=0$ has a solution $x_{1}, \ldots, x_{n} \in\{0,1\}$ if and only if

$$
\int \cdots \int_{D_{\varepsilon-\varepsilon^{2}}} \frac{d x_{1} \cdots d x_{n}}{T \varphi\left(x_{1}, \ldots, x_{n}\right)}>\frac{1}{m n \varepsilon} .
$$

Proof. If $T \varphi\left(a_{1}, \ldots, a_{n}\right)=0$ for $a_{1}, \ldots, a_{n} \in\{0,1\}$, then

$$
\begin{aligned}
I\left(a_{1}, \ldots, a_{n}\right) & =\int \cdots \int_{D_{\varepsilon-\varepsilon^{2}}\left(a_{1}, \ldots, a_{n}\right)} \frac{d x_{1} \cdots d x_{n}}{T \varphi\left(x_{1}, \ldots, x_{n}\right)} \\
& >\int \cdots \int_{D_{\varepsilon-\varepsilon^{2}}(0, \ldots, 0)} \frac{d x_{1} \cdots d x_{n}}{m\left(x_{1}^{2 n+1}+\cdots+x_{n}^{2 n+1}\right)} \\
& >\int_{\varepsilon-\varepsilon^{2}}^{\varepsilon} \cdots \int_{\varepsilon-\varepsilon^{2}}^{\varepsilon} \frac{d x_{1} \cdots d x_{n}}{m n \varepsilon^{2 n+1}} \\
& =\frac{1}{m n \varepsilon} .
\end{aligned}
$$

Hence, if (1) has at least one solution, then

$$
\begin{equation*}
\int \cdots \int_{D_{\varepsilon-\varepsilon}^{2}} \frac{d x_{1} \cdots d x_{n}}{T \varphi\left(x_{1}, \ldots, x_{n}\right)}>\frac{1}{m n \varepsilon} \tag{2}
\end{equation*}
$$

If $T \varphi\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for $a_{1}, \ldots, a_{n} \in\{0,1\}$, then

$$
\begin{aligned}
I\left(a_{1}, \ldots, a_{n}\right) & <\int \cdots \int_{D_{\varepsilon-\varepsilon}^{2}}(0, \ldots, 0) \frac{d x_{1} \cdots d x_{n}}{\left(\left(1-x_{1}\right) \cdots\left(1-x_{n}\right)\right)^{6 n+3}} \\
& =\frac{1}{(6 n+2)^{n}}\left(\frac{1}{(1-1 / 2)^{6 n+2}}-\frac{1}{\left(1-\varepsilon+\varepsilon^{2}\right)^{6 n+2}}\right)^{n} \\
& <\frac{2^{6 n^{2}+2 n}}{(6 n+2)^{n}} .
\end{aligned}
$$

Hence, if (1) has no solution, then

$$
\begin{equation*}
\int \cdots \int_{D_{\varepsilon-\varepsilon}^{2}} \frac{d x_{1} \cdots d x_{n}}{T \varphi\left(x_{1}, \ldots, x_{n}\right)}<\frac{2^{6 n^{2}+2 n}}{(3 n+1)^{n}} \tag{3}
\end{equation*}
$$

By (2), (3) and $\varepsilon<(3 n+1)^{n} /\left(2^{6 n^{2}+2 n} m n\right)$, the theorem follows.

3. Numerical Integration

From Theorem 1, to check satisfiability for $\varphi\left(x_{1}, \ldots, x_{n}\right)$ it suffices to evaluate

$$
I=\int \cdots \int_{D_{\varepsilon-\varepsilon^{2}}} \frac{d x_{1} \cdots d x_{n}}{T \varphi\left(x_{1}, \ldots, x_{n}\right)}
$$

with the error

$$
\frac{1}{2}\left(\frac{1}{m n \varepsilon}-\frac{2^{6 n^{2}+2 n}}{(3 n+1)^{n}}\right)
$$

Using the Monte Carlo method [2], we can estimate

$$
I \approx \frac{\left(1-2 \varepsilon+2 \varepsilon^{2}\right)^{n}}{N} \sum_{i=1}^{N} \frac{1}{T \varphi\left(x_{1}(i), \ldots, x_{n}(i)\right)}
$$

where $\left(x_{1}(1), \ldots, x_{n}(1)\right), \ldots,\left(x_{1}(N), \ldots, x_{n}(N)\right)$ are points selected at random in $D_{\varepsilon-\varepsilon^{2}}$. The error is $O\left(N^{-1 / 2}\right)$ independent of the dimension n.

References

[1] S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the 3rd ACM Symposium on Theory Computing, 1971, pp. 151-158.
[2] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Dover Publications, New York, 2007.
[3] A. Shamir, IP = PSPACE, J. Assoc. Comput. Mach. 39(4) (1992), 869-877.

