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Abstract 

We give a necessary and sufficient condition that a Boolean formula in 
3-CNF is satisfiable in the form of a multiple integral and apply the Monte 
Carlo method to its evaluation. 

1. Introduction 

3-SAT is the problem deciding whether a given Boolean formula in 3-CNF is 
satisfiable, which was shown to be NP-complete by Cook [1]. 3-SAT can also be 
stated as follows. 

Let ( )nxx ...,,1ϕ  be a Boolean formula in 3-CNF 

( ) ( ),321131211 mmm yyyyyy ∨∨∧∧∨∨  

where { }.,...,,,...,, 11311 nnm xxxxyy ¬¬∈  By the equivalence relations 

( ) ( ) ,1,111, xxyxyxxyyx −⇔¬−−−⇔∨⇔∧  

( )nxx ...,,1ϕ  can be transformed into 
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where { }nnm xxxxyy −−∈ 1,...,,1,...,, 11311  [3]. Then 3-SAT is equivalent to the 



NORICHIKA MATSUKI 90 

problem deciding whether 

 ( ) ( ) ( ) ( )( )∑
=

+ =−−−=ϕ
m

i

n
iiin yyyxxT
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12
3211 0111...,,  (1) 

has a solution for { }.1,0...,,1 ∈nxx  

In this paper, we give a necessary and sufficient condition that (1) has a solution 
for { }1,0...,,1 ∈nxx  in the form of a multiple integral and apply the Monte Carlo 

method to its evaluation. 

2. The Criterion 

We write, for ,0>ε  

( ){ },...,,1,1:...,,1 nixxxD in =ε−≤≤ε=ε  

( ) {( ) [ ] }....,,1,21:1,0...,,...,, 11 niaxxxaaD ii
n

nn =≤−≤ε∈=ε  

Theorem 1. Suppose that ( ) ( ).213 26 2
mnn nnn ++<ε  Then ( ) 0...,,1 =ϕ nxxT  

has a solution { }1,0...,,1 ∈nxx  if and only if 
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Proof. If ( ) 0...,,1 =ϕ naaT  for { },1,0...,,1 ∈naa  then 

( ) ( )( )∫ ∫
ε−ε

ϕ
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Hence, if (1) has at least one solution, then 
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If ( ) 0...,,1 ≠ϕ naaT  for { },1,0...,,1 ∈naa  then 

( )
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Hence, if (1) has no solution, then 
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By (2), (3) and ( ) ( ),213 26 2
mnn nnn ++<ε  the theorem follows. ~ 

3. Numerical Integration 

From Theorem 1, to check satisfiability for ( )nxx ...,,1ϕ  it suffices to evaluate 
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with the error 
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Using the Monte Carlo method [2], we can estimate 

( )
( ) ( )( ) ,...,,
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ϕ
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where ( ) ( )( ) ( ) ( )( )NxNxxx nn ...,,...,,1...,,1 11  are points selected at random in 

.2ε−ε
D  The error is ( )21−NO  independent of the dimension n. 
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