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Abstract

In this paper, we determine the essential norm of a weighted composition
operator on spaces of vector valued continuous functions defined on a
compact Hausdorff space. We also provide necessary and sufficient
conditions for a finite sum of compact weighted composition operators to
be itself a compact operator.

1. Introduction

We consider the Banach space C(X, E) of all continuous functions defined on

a compact Hausdorff topological space X and with values in a Banach space E. This
space is equipped with the usual norm. The space B(E) denotes all the bounded

operators on E and K(E) denotes the subspace of compact operators. We consider
continuous functions u: X — B(E) and ¢: X — X. We denote by (uC,) the
weighted composition operator acting on C(X, E) and given by

(UC,,) (F)(x) = u(x) f (p(x)).
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Weighted composition operators on C(X) and C(X, E) are an important class

of operators since they arise naturally in characterizations of surjective isometries
(see [3]) and in the study of bi-separating and disjointness preserving operators, see
[1] and [8]. Kamowitz [9] characterized compact weighted composition operators on
C(X). Jamison and Rajagopalan [8] extended this characterization for operators on

C(X, E), see also [11]. In this paper, we consider the essential norm of a weighted
composition operator on C(X, E). We denote by K(X, E), the subspace of
B(C(X, E)), of all compact operators. We recall that the essential norm of an
operator T € B(C(X, E)), is the distance from that operator to (X, E), (cf. [15]),

ie.,
[T ||e =inf{|T -S|:S eK(X, E)}.

In the first section of this paper, we obtain a formula for the essential norm of
weighted composition operators on C(X, E)

JuCylly = inf{r > 0:({x € X :[Ju(x)|| > r}) is finite},
under some constrains on the underlying spaces. This result generalizes Theorem 1,

in [15] to spaces of vector valued functions.

In the second section, we use Kamowitz’s characterization of compact weighted
composition operators on C(X) to answer the question: Does compactness of the

sum of two weighted composition operators imply the compactness of each
operator?

2. Essential Norm of Composition Operators on C(X, E)

We consider a weighted composition operator (uC,) on C(X, E). Our main
theorem computes the essential norm of (uC,). We first prove some preliminary

results to be employed in the proof of the main theorem. We apply a strategy
introduced in [15], however, the operator valued multiplier of the composition
operator requires different arguments from those followed in the scalar case. We set
p=inf{r>0:0({x e X :|u(x)|| = r}) is finite}.
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Proposition 2.1. If X is a compact Hausdorff topological space and (uC(p) isa

weighted composition operator on C(X, E), then

JuCyl, =

Proof. The inequality is clear if p =0, then we assume p > 0. For every
positive number ¢, we have that ¢{x :||u(x)| > p—¢} is infinite. We select a
sequence {X,} so that o(x,) # @(xm) (for n = m), |u(x,)|>p—¢ and o(x,) €
O,, with {0} a family of pairwise disjoint open subsets of X. This is possible

since a perfect subset of a compact Hausdorff space must be uncountable, see [12].
For every n, there exists f, € C(X, E) so that || f, |, =1 f, while restricted to

X\O,, is identically zero, and f,(o(x,))=v, € E, with v, chosen so that
[vnllg =1 and |[u(xy)(vq)llg = u(xq)]l| < & We observe that {f,} is pointwise

convergent to zero. Proposition 1.7.1 (p. 36) in [4] (also cf. in [6]) implies that {f,}

is weakly convergent to zero. It is well known (cf. [5]) that compact operators on a
Banach space are completely continuous and hence, every compact operator S will
transform the sequence {f,} into a sequence with a norm convergent subsequence.

We then select S, a compact operator so that ||uC, — S| < [uC, |, +&. Therefore,

we have

luColle = lUCy =S| =& 2 [(UCy = S) full,, —& 2 [(UC) (fn)ll, ~[ISFnll, — &
Since {||Sf, |}, converges to zero, we choose n so large that ||Sf, |, < &, hence,

IUCH) (fa)le = Ju(xn) fal@O g = [u(xe) | - €

and
||uC(P ||e > u(xy) | —3e>p—4de

We then conclude that [uC, ||, > p.

Theorem 2.1. Let E be a Banach space and X be a compact Hausdorff
topological space. If (uC,) is a weighted composition operator on C(X, E), so

that u(x) e K(E), forall x € X, and

1. ¢ is finite to one, or
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2. X is a separable topological space, or

3. E is finite dimensional, then
"uctp ”e =p

We first prove a lemma addressing the finite dimensional case. This proof
encompasses all of the essential constructions needed for the infinite dimensional
spaces.

Lemma 2.1. If (uC,) is a weighted composition operator on C(X, E), with E

a finite dimensional Banach space, then
luCqlle < p

Proof. We suppose that [[uC, ||, > p, we choose & > 0 so that [[uC, |, > p +&.

As in [15], we define the following closed and disjoint subsets of X; F = {x € X :
[ux)|<p+e} and G ={xe X :|u(x)||=p+2¢e}. There exists a continuous
function g: X —[0,1] sothat g|g=0 and g|g=1. Weset v=g-u, ie., for
x e X, v(x)=g(x)u(x) e B(E). We first show that v is uniformly continuous.

Given a net {x,} convergentto x,, we have that
” g(xa)u(xa) - g(x*)u(x*) "
S | g(xa)lll U(Xa) - U(X*) " + | g(x(x) - g(x*)lll U(X*) " — 0.

We now show that (vC(p) is a compact operator. We consider a bounded sequence

{gn} in C(X, E) and we prove that there exists a norm convergent subsequence of
{(vCy)(gn)},- We notice that X\F < {x Hux) || = p +%} therefore, o(X\F)

is finite. We set @ (X\F)={yy, Y2, ..., ¥k} and F = {x € X\F : ¢(X) = y;}. Each
set F; is a closed and open subset of X\F. Since X\F isopenin X, each F; isalso
open in X. We select a subsequence of {g,}, {gy,, } so that, for every i e {1 ..., k},
{gn, (yi)} converges to z; in E. This is possible, since E is finite dimensional and
@(X\F) is finite. Therefore, we define h as follows: h(x)=0, for x e F and
h(x) = v(x)(z;), for x e F. We start by showing that h e C(X, E). Let {x,} bea
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net in X, converging to x.. If we assume that x, ¢ F, then x, isin some F;. Since

Fi is open, there exists og so that for every B > o, X3 € F. The continuity of v

implies that h(x, ) converges to h(x, ). On the other hand, if we assume that x, € F,
and there exists a sub-net {x;} of {x,} in X\F, then without of generality

{x, } € Fj, for some i. Thus, we have
Ih(xc) g = 11v(x6) (@) llg =190 [l u(xe) (i) llg
= [g(x) [[u(x)(z) [l =0 = h(x,).
We now show that {vC(gp, )} converges to h. In fact,
I(vCy) (9n, ) = hl,,

= sup"(vC(P)(gnk )(x) - h(x)"E

= sup|[v(x) (gn, (¢(x))) = h(x)]lg-

Therefore,

0, if xeF,
C ng /= h o = i
|(vCy(gn, )=l Sﬂp{"v(x)(gnk(yi))—v(x)(zi)"E' if x e F

and [v(x)(gn, (¥i)) = v() ()l < [vO)lgn, (Vi) = zillg <lVIlgn, (Vi) - zillg

— 0. This establishes the compactness of vC,,. Therefore,

JuCylle < [UCy, —VCq| < H fSlHJp<1||UC(pf ~VCy T,

= sup_sup| u(x) (f(e(x))) = v(x) (F(e(x)) g

[ fl,<1 x
< sup||u(x) = v(x) || = sup|1— g(x) [ u(x)|

< sup u(x)| <p+ 2
xeX\G

This implies that [JuC,, [, < p, contradicting our initial assumption.
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Remark 2.1. In the previous proof the finite dimensionality of E was crucial
for the construction of function h, and to establish the compactness of the weighted
composition operator vC,. We now show that similar but more elaborate

constructions also work in broader settings, as those listed in Theorem 2.1.

Proof of Theorem 2.1. If E is finite dimensional (item 3), then the statement in
the theorem follows from Lemma 2.1 and Proposition 2.1. We now prove the
theorem for the assumptions stated in items 1 and 2.

1. If ¢ is finite to one, then each F (i =1,..., k) is finite, Fj = {Xj 1, ..., Xj i }-

We recall that compact operators map bounded sequences into sequences with
a convergent subsequence. We consider a bounded sequence {g,} and select a

subsequence of {gy, }, so that forevery x; j, {u(x; j)(gn, (¢(xi j)}, converges
to o j € E. This is possible, since X\F, is finite and for every x, u(x) is a
compact operator on E. We define h as follows: h(x)=0, if xeF, and
h(x) = o j, if x =X j € F. Asin the proof of Lemma 2.1, we conclude that h is
continuous. Furthermore, h is the uniform limit of {u(x; ;)(gp, ). This establishes
the compactness of uC,. The remainder of the proof now follows as in Lemma 2.1.
2. We now assume that X is separable, i.e., there exists a countable and dense
subset of XA ={a,}. Each F; is open in X, then A =ANF (i=1..k) is

countable and dense in F. We set A ={aiyj}j=1, .. and {g,} a sequence of

functions in C(X, E) with norm less or equal to one. Since Uli(=1 A is countable,

we can select a subsequence (gy, ) so that, for every a; ;, u(a; j)(gn, (Vi)
converges to ; ; € E. We define h on a dense set as follows: h(x) =0 for x € F
and h(x) = o; j for x =g j. We now show that h has a unique continuous
extension to X. We set D =F U A.---U A, and consider x, ¢ D. Hence, X, isin
Fi, forsome ig e {1, 2, .., k}. We selectanet {x,} in D converging to x,. Since

Fi, Is open there exists ag so that, for every a > ag, X, € Fj,. Therefore,

i

Xo = ajyj, € Ay,- We recall that u is continuous and hence, u(x,) converges in
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norm to u(x,), a compact operator on E. Therefore, there exists a subsequence

u(x*)(gnr(k)(yi0 )) that converges in E. We claim that u(x.)(gp, (¢(x))) converges.

We assume that there exist two subsequences of {gnk (yi0 )}, say gnq(k)(yio) and

Oney (Vig) 50 that U(x)(Gn, o, (¥g)) and U(x)(Gn, ., (Vi) cONVerge to oy

and ,, respectively. If | a — @, || = r > 0, then for a given positive number ¢ < r

we choose a so that | u(x,) —u(xy )| < % The sequence {u(x,)(9n, (Yi, D}k is a

Cauchy sequence, therefore, there exists kg so that for every k; and k, greater than

ko we have

(ko) (gny, (Vi) = Uu(%a ) (Gn, (Yig g < %
We also choose k so that t1(k) and t,(k) are greater than kg, and

"U(X*)(gnq(k)()ﬁo))_C‘)l"E <§ and "u(x*)(gnv(k)()ﬁo))_COZ"E <§'

Therefore, we have
o =2 [lg <flor —u(x)(@ng (Vi g
U6 (@ng ) (Vig ) = U(xa ) (Gn 4 Vig g
U0 ) (G (Vig ) = U0k ) (G, Vi Dl
U6 ) (G ) Vig ) = UK ) (G, 4 Vig Dl
U6 (Gn, 4 (Vig ) — 2]l <&

This contradiction implies that {u(x.)(gp, (¥i,))} is convergent due to the
compactness of u(x,). We set h(x,) = limy u(x.)(gp, (¥;,)). Thus, the uniform

continuity of u implies that h is in C(X, E). The statement in the theorem now

follows from similar considerations to those used in the proof of Lemma 2.1.
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3. Compactness of the Sum of Two Compact
Weighted Composition Operators

In this section, we investigate the problem of whether the sum of two compact
weighted composition operators is compact. We follow some techniques employed
for the characterization of compact weighted composition operators on C(X) used

by Kamowitz [8]. We consider two weighted composition operators T; and T,, of
the form u,C,, (k =1, 2) with u € C(X) and @y € C(X, X). We start with a

definition and some preliminary results.

Definition 3.1. The maps ¢, and ¢, are said to be locally distinct provided that

for every x € X, and for every open neighborhood of x, O, there exists z € O

so that ¢1(2) = 0,(2).

Lemma 3.1. Let ¢, and ¢, be locally distinct, and T; + T, be a compact
operator. For every x € X such that | u;(x)|+]|u,(x)| >0, there exists an open

set Oy, containing x, so that ¢, or ¢, restricted to O, is constant.

Proof. We suppose the claim is not true. There exists xg, So that given an open
set containing Xg, Og, @1 and ¢,, restricted to O, are not constant. In addition,
we first assume that ¢1(Xg) # @2(Xg). We select two disjoint open sets W; and

W,, containing o1(Xg) and @»(xg), respectively. The continuity of ¢, and ¢»
implies that O, = o1 1(W;) N @31 (W,), is open. For every open set W containing
Xo, we select a point zyy € Oy MW so that ¢1(zy ) # ¢1(X), since @y is not

locally constant. We have constructed a net {z, } converging to xg. Clearly,
we have ¢1(zy) = 0o(zy) and @,(zy ) = 01(Xg) = 02(Xg). We now select a
continuous function f,,, defined on X and with values on the interval [0, 1],
satisfying the following conditions: fyy (¢1(Xg)) =1, fiw (e1(zw ) = fw (02(zw ) =
fw (@2(xg)) = 0. Similarly, we can select a net y,, converging to Xy, so that

02(Yw ) = 02(Xo) and a net of functions gy, satisfying the conditions:

gw (02(%0)) =1 gw (@1(¥w)) = 9w (@2(¥w ) = gw (91(xp)) = 0.
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Associated with T; +T, we define t: X — C(X)", given by t(x)(h) =
Uy (X)h(p1(x)) + us(X)h(@,(x)). It is shown in Dunford-Schwartz ([7] Theorem VI,
7.1) that the compactness of T; + T, is equivalent to the uniform continuity of .

Therefore, we have
| (2w ) (fw ) = ©(x0) (fw )| = ta(Xo)|
and

| t(yw ) (9w ) = ©(%0) (9w ) | = [ u2(xo) |-

This implies that uy(xg) = Us(Xg) = 0, contradicting our initial assumption. Now
we assume that @1(Xg) = @2(Xg). Since ¢; and ¢, are locally distinct, we select a
net {x,} convergingto xq so that ¢1(X,) # ®2(X, ). Clearly, at least one ¢1(X,)
or ¢,(x,) must be different from ¢;(Xg). Without loss of generality, and by
selecting a subnet, we may assume that @q(X,) # ¢1(Xg) = ¢2(Xg), for all a. If
0o(Xy ) = ¢1(Xg), for a subnet of values a, then we choose two nets of functions,
fo and g, sothat fo(@1(Xe))=fo(@1(X0)) = fou(@2(X0))=0, fo(92(X,))=1,

9a(P2(Xe)) = 9a(01(X0)) = 9u(92(X0)) = 0. and gy (1(X,)) =1. The uniform
continuity of t implies that u;(xg)=U»(xg) =0, contradicting our initial assumption.

If for every o, we have ¢,(Xy) = @1(Xg) = ©2(Xg) # ¢1(X, ). We now select f,

50 that T, (03(4,)) =1 and 1, (2%, ) = T (01(40)) = fo(2(40)) =O. This implies
that Ul(Xo) =0.

Given a net {xg} converging to Xy so that ¢,(Xg) # @2(Xg) and f e C(X)

we have
[1(xg) = (%0 = [x(xg ) () = 7(ug) ()|

= uz(xp) F(@1(xp)) + ua(Xp) f(02(xg)) — U2(x0) f (@2(Xp))|- (1)

We choose a net {x} converging to X, so that g,(xg) # p2(Xo). We have the

following possibilities: 1. There exists a subnet, also denoted by {xg}, so that

91(Xg) = @2(Xg). 2. There exists a subnet, also denoted by {xg}, so that ¢;(xg) =

92(Xg)- 3. Forall B, @2(xg) # @1(Xg) # @2(Xp)-
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In case 1, for every B we choose fg sothat fg(py(xg)) = fg(p2(xg)) =0, and
fg(92(xp))=1. Equation (1) implies that u,(xo) =0, contradicting our assumption.
Similarly, for case 2, we select fg so that fz(py(x)) = f(@2(x0)) =0, and
fB((pz(XB )) =1. For case 3, we set fB((pl(XB)) = fB((pZ(XB)) =0, and fB((pz(Xo))

=1. These three cases also lead to u,(Xy) = 0 and prove the claim.

Lemma 3.2. If T{ + T, is compact, ¢; and ¢, are locally distinct and X, is so

that uy(xg) # O, then there exists an open set Oy, containing Xq, such that ¢;

restricted to O, is constant.

Proof. We assume the claim is not true. For every open set W, , ¢, restricted
to Wy, is not constant. Lemma 3.1 implies that ¢, must be constant on some
neighborhood of xg, say O, . We select a net {x,} converging to X, so that

P1(Xg) % 91(X0) and @a(Xy) = P2(Xg). If @1(Xp) # @2(Xg), then for each o we

select f, sothat f,(@1(xp))=1and fq(p1(Xy))= fo(92(X0)) = folP2(xy))=0.
The compactness of T, + T, and thus, the uniform continuity of t implies that

Ui(xg) = 0. Therefore, ©1(Xg) = ®2(Xg) = ©2(X,). Then we set f, so that

fo(@1(x)) =1 and £, (01(X0)) = fa(@2(X0)) = fo(@2(xy)) =0, which also
implies that u;(xg) = 0.

Remark 3.1. Under the same conditions of Lemma 3.2 we also have that
Us(xg) # 0 implies the existence of an open set Oy, containing Xo, such that ¢

restricted to Oy is constant.

Lemma 3.3. If T; + T, is compact, ¢; and ¢, are locally distinct and C is a
connected component of {x : u;(x) = 0}, then there exists an open set W, containing

C, so that ¢, restricted to W is constant.

Proof. We first observe that ¢, restricted to C is constant. Lemma 3.2 asserts

that for each xg € C there exists O

letw =, _.Ox.

xo+ SO that @y restricted to O,/ is constant. We
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Theorem 3.1. If X is a compact Hausdorff space, T; and T, are weighted
composition operators on C(X) defined by T; = UiCo; and ¢; and ¢, are locally

distinct, then T; + T, is compact if and only if T; and T, are compact.

Proof. If T; + T, is compact, then Lemma 3.3 asserts that given a connected
component of {x : u;(x) = 0}, there exists an open set W;, containing that component
so that o; restricted to W; is constant. The statement follows from Kamowitz’s
characterization of compact operators on C(X), see Theorem A in [9]. The reverse

implication is clear.

Example 3.1. We observe that if ¢; and ¢, are not locally distinct we may

have T; + T, compact but neither T; nor T, compact. As for example T; = u;Co;

in C([0,1], R) with uq(x)=-uUy(x)=2x, for xe [0, %} u(x)=2-2x and

Us(x)=-1 for x € E 1}, 01 = ¢, =1, over the interval [1/4, 1], and equal to 4x

over the interval [0, 1/4].
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