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Abstract 

Many inferential procedures for generalized linear models (GLiMs) rely 
on the asymptotic normality of the maximum likelihood estimator (MLE). 
Fahrmeir and Kaufmann [5] present mild conditions under which the 
MLEs in GLiMs are asymptotically normal. Unfortunately, limited study 
has appeared for the special case of binomial response models beyond the 
familiar logit and probit links, with little results for more general links 
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such as the complementary log-log link, and the less well-known 
complementary log link. We verify the asymptotic normality conditions of 
the MLEs for these models under the assumption of a fixed number of 
experimental groups and present a simple set of conditions for any twice-
differentiable monotone link function. We also study the quality of the 
approximation for constructing asymptotic Wald confidence regions. Our 
results show that for small sample sizes with certain link functions the 
approximation can be problematic, especially for cases where the 
parameters are close to the boundary of the parameter space. 

1. Introduction 

Binomial response models are widely used when modeling binary response 
probabilities based on a set of (continuous and fixed) regressors. When employing 
such models, it is common to apply the maximum likelihood method for estimating 
parameters and base inference on the (supposed) asymptotic normality of the 
maximum likelihood estimator (MLE). Maximum likelihood estimation is discussed 
in Finney [7] for probit regression, in Hosmer and Lemeshow [11] for logistic 
regression models and in McCullagh and Nelder [13] and Agresti [1] for general 
binomial response models. These authors give details of how the estimation phase 
may be carried out, but only mention, and do not formally derive large sample 
properties such as asymptotic normality of the MLE. However, the latter three 
authors state that the asymptotic variance of the MLE is the inverse of the Fisher 

information matrix computed at the true parameter value, i.e., ( ) ( ),ˆVar 0
1 ββ −= NI  

and as such can be used to construct inferences on the vector of unknown 
parameters, .β  We detail these concepts in Section 2, below. 

Work on asymptotic normality of the MLE in logistic regression can be found in 
McFadden [14] and in Nordberg [17]. McFadden presents regularity conditions for a 
multinomial response model when the logit link is used. Nordberg presents regularity 
conditions that assure asymptotic normality for the logit link in binomial response 
models and further verifies that his conditions are equivalent to those of McFadden 
[14]. However, the presented conditions are of a highly technical nature. 

For dose-response models (one-regressor) Guess and Crump [8] consider 
maximum likelihood estimation using the less-common complementary log link (see 

Table 1, below) with linear predictor ∑∞
=
β=η 0j

j
jd  and q levels of the dose, d. 
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However, estimation is performed under the constraint 0≥β j  with strict inequality 

for at most 1+q  of the sjβ  and the others set to zero. In follow-up work, Crump et 

al. [3] discuss the asymptotic distribution of the MLE for constructing confidence 
intervals and conducting tests of hypotheses, while Guess and Crump [9] prove that 
the MLE is asymptotically normal in this setting as long as certain regularity 
conditions are satisfied. 

For other link functions in binomial response models less work is evident. 
Haberman [10] presents highly technical conditions assuring existence and 
asymptotic normality of the MLE that require the number of parameters to grow as 
well. Based on the work of various former authors, Fahrmeir and Kaufmann [5] 
present mild, but still very technical, regularity conditions that assure existence and 
asymptotic normality of the MLE in the larger class of generalized linear models as 
defined by Nelder and Wedderburn [15]. They consider a very broad family of 
models that allow for many different forms of link function. Further, they also 
consider the special cases of binomial response models and models with compact 
regressors. In follow-up work, Fahrmeir and Kaufmann [6] further simplify their 
conditions for selected models, such as our binomial response with a logit or probit 
link, and prove existence and asymptotic normality for those models. Although less 
complex than the conditions presented by Haberman [10], their conditions are still 
quite technical (see Section 3 below). A very similar set of conditions implying 
asymptotic normality can be found in Silvapulle [21]. However, these conditions are 
used to establish convergence of certain test statistics rather than asymptotic 
normality of the MLE. Additionally, when considering other link functions besides 
the logit and probit link, e.g., the complementary log-log and complementary log 
links, we have found no work on clearly verifying these conditions or on presenting 
easily applicable conditions assuring asymptotic normality of the MLE. In this 
paper, we derive and verify practical regularity conditions for assuring asymptotic 
normality of the MLE for binomial response models under the assumption of a fixed 
number of experimental groups, based on the conditions from Fahrmeir and 
Kaufmann [5]. We place special emphasis on the complementary log-log and 
complementary log links. In Section 2, we introduce the class of binomial response 
models and link functions and derive likelihood-based quantities. In Section 3, we 
derive and verify conditions assuring asymptotic normality for the complementary 
log-log and complementary log links and also present a result for general monotone 
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link functions. Finally, in Sections 4 and 5, we study the quality of the normal 
approximation when using finite samples for a variety of models involving one and 
two regressor variables. The conclusions from implications of these simulations are 
discussed in Section 6. 

2. Binomial Response Models 

Consider data ( )NXY,  based on q experimental groups, where Y is a random 

response vector of size ∑ =
=

q
i iNN 1  and NX  is an pN ×  matrix ( )pN >  of 

(fixed) regressors. The columns of NX  are assumed to be linearly independent (e.g., 

NX  has full rank), but may be functionally related. The individual responses follow 

a Bernoulli distribution, i.e., 

( ) ....,,1;...,,1,~ .
ii

ind
ij NjqiY ==πBer  

Further, let ∑ =
= iN

j iji YY 1  be the total number of responses at level i, and denote the 

response probability at that level as .iπ  In order to connect the regressors to ,iπ  we 

use the linear predictor ,βxii ′=η  where pR⊆∈ Bβ  is the parameter vector and 

p
i R⊆∈Xx  is the corresponding vector of regressors. Two possible, relatively 

simple forms of the linear predictor are given by 

( ) ,; 10 xx β+β=η β  where ( )x,1=′x  and (1) 

( ) ,;, 11011000 xyyxyx β+β+β+β=η β  where ( ).,,,1 xyyx=′x  (2) 

The linear predictor is then associated with π using the link function ( ) ,η=πg  

which is a strictly monotone function in .π  The inverse link is then ( ) .1 π=η−g  For 

the following, it will also be useful to consider this model in terms of the natural 

parameter, ,1log 







π−
π

=θ
i

i
i  rather than .iπ  Obviously, the natural parameter space, 

,Θ  of θ is the real line, .R  Further, when relating the linear predictor, η, to the 

natural parameter, we denote the inverse link by ( ) .θ=ηh  Common link functions 

are given in Table 1. 
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Table 1. Considered links, inverse links and natural inverse links 

 ( )πg  ( )η−1g  ( )ηh  

Logit 






π−
π

1
log  ( ) 11 −η−+ e  η 

Probit ( )πΦ−1  ( )ηΦ  ( )
( ) 





ηΦ−
ηΦ

1log  

Comp. log-log ( )( )π−− 1loglog ( )η−− eexp1  ( ( ) )1explog −ηe  

Comp. log ( )π−− 1log  0,1 >η− η−e  ( ) 0,1log >η−ηe  

As is well known [13], the mean and the variance of the responses ijY  can now also 

be expressed in terms of the parameter vector β  via ( ) ( )βxβ iii g ′=π=µ −1   and 

( ) ( ) ( ) ( ( )),11 112 βxβxβ iiiii gg ′−′=π−π=σ −−  respectively. 

The ML estimator β̂  of the parameter β  can be obtained by maximizing the 

log-likelihood: 

( ) ( ( ) ( ) ( ))∑∑
= =

π−−+π=
q

i

N

j
iijiijN

i

YYl
1 1

1log1log; Yβ  

( ) ( )( )( )[ ].exp1log
1
∑
=

′+−′=
q

i
iiii hNhY βxβx  

Equivalently, we can find the MLE as the zero of the score function: 

( ) ( ) ( ) ( )( )∑
=

µ−′=
∂

∂
=

q

i
iiiii

N
N NYhl

1
,ββx

β
β

βu  

where ( ) ( ) .
βx

β
i

d
dhhi

′=ηη
η=′  Using similar notation the Fisher information is obtained 

as 

( ) ( )( ) ( )( ) ( )∑
=

σ′′==
q

i
iiiiiNN Nh

1

22 .Cov ββxxβuβI  
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In the following sections, we shall establish that under certain regularity conditions 

the MLE β̂  is asymptotically normal. More precisely, 

( ( )) ( ) ( ),,ˆ
00

21 I0βββ Nd
N →−′I  

as ∞→N  such that ,...,,1,0 qiwN
N

i
i =>→  where 0β  denotes the true 

parameter vector. 

3. Regularity Conditions for Asymptotic Normality 

As noted above, Fahrmeir and Kaufmann [5] present regularity conditions for a 
very general class of generalized linear models. In this section, we adapt and verify 

these conditions for the binomial response model. For the following, let A
minλ  denote 

the smallest eigenvalue of a matrix A and let ∑ =
′=′=

q
i iiiNNN N1 .xxXXC  With 

this notation, the necessary regularity conditions to assure asymptotic normality of 
the MLE from Fahrmeir and Kaufmann [5] are: 

(1) Open parameter space: 

The parameter space B  is open in pR  and convex. 

(2) Permissible linear predictor: 

( )( ) .;...,,1;1,0 B∈∀=∈′=η ββx qigii  

(3) Differentiability of link and inverse link: 

( )πg  and ( )ηh  are twice continuously differentiable and ( ) ( ) .0>
η
η=η′

d
dhh  

(4) Full rank of the cross product matrix: 

NC  has full rank for .0NN >  

(5) Compact regressors: 

(5.1) The regressors qii ...,,1, =x  lie in a compact set X  with ( ) 0Θ∈′βxh  

for all ,X∈x  ,B∈β  where 0Θ  denotes the interior of the natural parameter space. 

(5.2) .min ∞→λ N
N CC  
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Deutsch [4, Section 4.3] shows that these conditions are specifically satisfied for 
binomial response models. 

Note that instead of condition (5.2), Silvapulle [21] requires the distribution of 
the (random) regressors to be non-degenerate. Further, note that only conditions 1-3 
rely upon the form of the link function. All other conditions are satisfied based on 
the fact that the regressors are finite. For binomial response models, the conditions 
of Fahrmeir and Kaufmann [5] are thus equivalent to: 

Theorem 1 (Asymptotic normality of the MLE in binomial response models). 

Given p
i R∈x  fixed, ,0

pR⊆∈ Bβ  the strictly monotone link function ( )πg  and 

the model 

( ( )) ....,,1,...,,1,~ 0
1

iiij NjqigY ==′− βxBer  
If 

  I. ( )πg  and ( )η−1g  are twice continuously differentiable, 

 II. [ ] qiiNN i ...,,1=′= x1X  is of full rank p and 

III. B  open and convex, 

then 

( ( )) ( ) ( ),,ˆ
00

21 I0βββ Nd
N →−′I  

as ∞→N  such that  ....,,1,0 qiwN
N

i
i =>→  

The conditions in Theorem 1 may seem restrictive at first, but are met for a wide 
range of link functions. Conditions I and III are satisfied by the logit, probit, 
complementary log-log, complementary log, cauchit and tobit links, as well as for 
any other link based on a continuous distribution function. Also, the requirement for 
the full rank of the design matrix NX  is met in almost all regression settings, and 

can be readily verified. 

4. Simulation Study for One-regressor Models 

In addition to establishing the asymptotic normality of the MLE ,β̂  it is also of 

interest to assess the quality of this approximation when employing it in practice. 
Towards this end, we conducted a simulation study via the freeware package R [20]. 
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The study was performed in two blocks, one involving models with only one 
regressor variable, the other involving models with two regressor variables. 

The one-regressor models were taken from previous simulation studies in 
Nitcheva et al. [16] and Buckley and Piegorsch [2]. Six model parameterizations 
were considered, representing a range of commonly observed dose-response 
patterns; see Table 2. The parameters were obtained by using the four link functions 
from Table 1 with the linear predictor in (1). Notice that when using the 
complementary log link, models A and B represent situations where the parameter 
vector β  is close to the boundary of the parameter space .B  

Table 2. One-regressor models: set up and parameters 

Model A B C D E F 

( )01 =|= xYP  0.01 0.01 0.10 0.05 0.30 0.10 

( )11 =|= xYP  0.10 0.20 0.30 0.50 0.75 0.90 

Logit     0β  –4.5951 –4.5951 –2.1972 –2.9444 –0.8473 –2.1972 

         1β  2.3979 3.2088 1.3499 2.9444 1.9459 4.3944 

Probit     0β  –2.3263 –2.3263 –1.2816 –1.6449 –0.5244 –1.2816 

 1β  1.0448 1.4847 0.7572 1.6449 1.1989 2.5631 

C. log-log 0β  –4.6001 –4.6001 –2.2504 –2.9702 –1.0309 –2.2504 

 1β  2.3498 3.1002 1.2194 2.6037 1.3576 3.0844 

Comp. log 0β  0.0101 0.0101 0.1054 0.0513 0.3567 0.1054 

 1β  0.0953 0.2131 0.2513 0.6419 1.0296 2.1972 

For our simulation study, the regressor values were taken as ,1,5.0,25.0,0=x  

which corresponds to a common design in cancer risk experimentation [19]. For 
each model parameterization in Table 2, 2000sim =n  binomial datasets were 

generated with 25=n  responses at each of the four regressor levels. From the 

generated data, the MLE β̂  was computed and saved. This procedure was repeated 

for ,50=n 10000,5000,1000,500,300,100  at each of the regressor levels. 
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To study the quality of the normality approximation, we constructed 
(simultaneous) 95% Wald confidence regions for the full parameter vector, ,β  and 

the (pointwise) slope parameter, ,1β  at each repetition and studied their coverage 

probabilities. A simultaneous ( )α−1  Wald confidence region is the ellipsoid given 

by 

{ ( ) ( ) ( ) ( )}pN
2ˆˆˆ: αχ≤−′− ββββββ I  

[cf. 18, Section A.5.4]. Note that for ,2000sim =n  the standard error of the estimated 

coverage near 95.01 =α−  is approximately ( )( ) 0049.0200005.095.0 ≈  and does 

not exceed ( ) ( ) .0112.020005.05.0 ≈  

 

Figure 1. Simulated coverage for 95% Wald confidence regions on the full 
parameter vector when using the complementary-log link. 

When inference is performed on the full parameter vector we find that the 
coverage of the Wald confidence region is close to the nominal level of 95% for 
each of the logit, probit or complementary log-log links. Our simulated coverage 
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rates for all models and link functions ranged from 0.939 to 0.969 (results available 
from the authors), which is roughly within Monte Carlo sampling error of the 
nominal level. However, employing the complementary log link proves to be more 
problematic (see Figure 1). For models with very low background response 
(response at ),0=x  namely models A and B, nominal coverage is not achieved until 

the individual sample sizes exceed 5000=n  and is extremely low for small sample 
sizes. Coverage performance improves as the background response increases: For 
model D with background response 0.05, the nominal coverage is achieved for 
sample sizes of 500 and above. Sample sizes of 100 and above are sufficient for 
models C and F with background response 0.1, while model E with a background 
response of 0.3 proves to be largely acceptable at any of the sample sizes studied. 

When considering pointwise inferences only on the slope parameter, coverage 
performance improves over that of the joint confidence region. For sample sizes of 
100 and above and for all links studied, empirical coverage rates ranged between 
0.934 and 0.966 and were thus quite close to the nominal coverage level; however, 
at sample sizes of 50 and below, empirical coverage rates for models A and B when 
employing the logit, probit and complementary log-log links ranged between 0.96 
and 0.982 and were thus somewhat conservative. The only concerns of any 
substance appeared again with the complementary log link: for models A, B and C 
with sample sizes of 50 and below, we generally observed coverage rates below 
0.95, some as low as 0.923, suggesting slight under-coverage. (Results not shown; 
further details are available from the authors.) 

5. Simulation Study for Two-regressor Models 

We also considered models using two regressor variables as in (2). The 
simulation study was set up in similar fashion as for the one-regressor case. Five 
model parameterizations were studied, as summarized in Table 3. Models AB, CE, 
CF and EG were constructed from the one-regressor models in Table 1 
(corresponding to each letter combination) and represent a variety of response 
surfaces. Model TNF was taken from a model fit of actual two-regressor data by 
Trinchieri et al. [22]. The predictor in (2) was then applied to obtain the β  

parameters. For both the regressors, 1x  and 2x  values were set to 0, 0.25, 0.5, 1. As 

with the one-regressor case, when using the complementary log link model AB 
represents a situation where β  is close to the boundary of the parameter space .B  
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Table 3. Two-regressor models: set up and parameters 

Model TNF AB CE CF EG 

( )0,01 21 ==|= xxYP  0.0550 0.0100 0.1000 0.1000 0.3000 

( )0,11 21 ==|= xxYP  0.5100 0.1000 0.3000 0.3000 0.7500 

( )1,01 21 ==|= xxYP  0.1950 0.2000 0.7500 0.9000 0.5000 

( )1,11 21 ==|= xxYP  0.9650 0.2727 0.9239 0.9720 0.9324 

Logit 00β  –2.8439 –4.5951 –2.1972 –2.1972 –0.8473 

 10β  2.8839 2.3979 1.3499 1.3499 1.9459 

 01β  1.4260 3.2088 3.2958 4.3944 0.8473 

 11β  1.8508 –1.9924 0.0477 0.0000 0.6782 

Probit 00β  –1.5982 –2.3263 –1.2816 –1.2816 –0.5244 

 10β  1.6233 1.0448 0.7572 0.7572 1.1989 

 01β  0.7386 1.4847 1.9560 2.5631 0.5244 

 11β  1.0483 –0.8078 0.0000 –0.1277 0.2950 

C. log-log 00β  –2.8723 –4.6001 –2.2504 –2.2504 –1.0309 

 10β  2.5345 2.3498 1.2194 1.2194 1.3576 

 01β  1.3440 3.1002 2.5770 3.0844 0.6644 

 11β  0.2035 –1.9941 –0.6001 –0.7794 0.0000 

Comp. log 00β  0.0566 0.0101 0.1054 0.1054 0.3567 

 10β  0.6568 0.0953 0.2513 0.2513 1.0296 

 01β  0.1603 0.2131 1.2809 2.1972 0.3365 

 11β  2.4787 0.0000 0.9378 1.0217 0.9713 
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Figure 2. Simulated coverage for 95% Wald confidence regions on the full 
parameter vector when using the complementary-log link. 

We studied the (simultaneous) coverage of 95% Wald confidence regions 
for   the full parameter vector, ,β  as well as for the non-intercept parameters, 

( ),,, 110110 βββ  and then pointwise for the cross-product parameter, .11β  Examining 

the simulated coverage rates for the full parameter vector, we found similar patterns 
as in the one-regressor case. When using the logit, probit and complementary log-log 
link, all simulated coverage rates over all studied sample sizes and models ranged 
from 0.94 to 0.9635 (result available from the authors). For the complementary log 
link, however, empirical coverage largely depended on the background response 
( );0,0at 21 == xx  see Figure 2. For model AB with a background response of 

0.01 individual sample sizes of at least 1000=n  were required to achieve nominal 
coverage. For model TNF (background response 0.055) the required minimum 
individual sample size drops to .500=n  Models CE and CF both have a background 
response of 0.1 and require the individual sample sizes to be at 300=n  or above. 
Model EG (background response 0.3) displays hardly any coverage problems when 
using the complementary log link, with coverage initially hovering just below 
nominal coverage, which is then achieved for sample sizes of around .100=n  
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Figure 3. Simulated coverage for 95% simultaneous Wald confidence regions on the 
non-intercept parameters when using the complementary-log link. 

When considering confidence regions on only the non-intercept parameters, 
coverage rates improve substantially. Our simulations continue to suggest that 
nominal coverage is achieved at all sample sizes studied when employing the logit, 
probit or complementary log-log links: empirical coverage rates ranged from 0.938 
to 0.964 (results not shown). For the complementary log, however, empirical 
coverage drops below the nominal level at individual sample sizes less than 

300=n  for model AB, and less than 100=n  for models TNF, CE and CF; see 
Figure 3. It is also interesting to observe that for all models the coverage rates are 
initially below nominal coverage and then converge to nominal levels as sample size 
increases. When pointwise inference on only the cross-product parameter 11β  is 

considered, all links display acceptable coverage, with simulated coverage rates 
ranging from 0.934 to 0.964 (results available from the authors). 

6. Discussion 

We have presented easily verifiable conditions for the asymptotic normality of 
the MLE with binomial response models and have verified that those conditions 
satisfy the more general conditions in Fahrmeir and Kaufmann [5]. Through 
simulation, we further demonstrated that using this result to construct simultaneous 
confidence regions on β  is generally acceptable when using the logit, probit or 
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complementary log-log links. However, when using the complementary log link, our 
simulations show that the small-sample coverage critically depends on the 
background response. For models with a low background response (less than 0.1) 
nominal coverage might not be achieved even for individual sample sizes of 1000. 

When considering inference on only the non-intercept parameters under a 
complementary log link, coverage rates improve and for most practical sample sizes, 
the normal approximation can be applied. Our results show that radical (anti-
conservative) coverage is possible with the complementary log link, and that this 
may be due to failure of the intercept estimator to converge quickly to normality. 
This has some intuitive motivation: a low background response, which is essentially 
captured by the intercept, would translate into a potentially unstable boundary 
problem. This issue was recently discussed in a risk analytic scenario by Kopylev 
and Fox [12]. 

Concluding, we can say that for most practical situations the normality 

assumption for the MLE β̂  appears to be generally reasonable for the logit, probit 

and complementary log-log links, at least for the model parameterizations and 
sample sizes we studied. For the complementary log link, the approximation may be 
problematic with small sample sizes ( ),100<n  however. For larger sample sizes the 

approximation should work reasonably well, assuming that β  is well separated from 

the boundary of the parameter space .B  If some concern is evident over possible 
boundary-value concerns, then we should employ the approximation with the 
complementary log link only for much larger samples sizes, say, .1000>n  A 
possible small-sample alternative in this case could be to employ bootstrap-based 
confidence statements; see Buckley and Piegorsch [2] and West et al. [23] for some 
preliminary results in this direction. 
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