INFINITESIMAL HOLOMORPHICALLY PROJECTIVE
 TRANSFORMATIONS ON TANGENT BUNDLES WITH RESPECT TO THE SYNECTIC METRIC TENSOR

A. GEZER* K. AKBULUT and A. A. SALIMOV
Department of Mathematics
Faculty of Science
Ataturk University
25240, Erzurum, Turkey
e-mail: agezer@atauni.edu.tr

Abstract

In this paper, we find solutions of a system of partial differential equations which characterize infinitesimal holomorphically projective transformation on $T M$ with Levi-Civita connection of the synectic metric and an adapted almost complex structure. Further, we investigate necessary conditions in order that $T M$ admits a non-affine infinitesimal holomorphically projective transformation.

1. Introduction

Let M be an n-dimensional connected manifold and $T M$ its tangent bundle. In the present paper, everything will be discussed in the C^{∞}-category. We denote by $\mathfrak{J}_{s}^{r}(M)$ the set of all tensor fields of type (r, s) on M, and by $\mathfrak{J}_{s}^{r}(T M)$ the corresponding set on $T M$.

2000 Mathematics Subject Classification: 53C07, 53C15, 53C25.
Keywords and phrases: infinitesimal holomorphically projective transformation, almost complex structure, the synectic metric.
*Corresponding author
Communicated by Yasuo Matsushita
Received October 23, 2008; Revised September 9, 2009

Let ∇ be an affine connection on M. Then a vector field V on M is called an infinitesimal projective transformation if there exists a 1-form Ω on M such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X,
$$

for any $X, Y \in \mathfrak{J}_{0}^{1}(M)$, where L_{V} is the Lie derivation with respect to V. In this case, Ω is called the associated 1 -form of V. Especially, if $\Omega=0$, then the vector field V is called an infinitesimal affine transformation.

Next, let (M, J) be an almost complex manifold with an affine connection ∇. Then a vector field V on M is called an infinitesimal holomorphically projective transformation if there exists a 1 -form Ω on M such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X-\Omega(J X) J Y-\Omega(J Y) J X,
$$

for any $X, Y \in \mathfrak{J}_{0}^{1}(M)$. In this case, Ω is also called the associated 1-form of V, and if $\Omega=0$, then V is an infinitesimal affine transformation, too.

The problems of determining infinitesimal holomorphically projective transformation on M and on $T M$ have been considered by several authors. In 1957, Ishihara [5] has introduced the notion of infinitesimal holomorphically projective transformation, and Tachibana and Ishihara [7] investigated infinitesimal holomorphically transformation on Kählerian manifolds. In [1], Aminova and Kalinin studied the Lie algebras of infinitesimal H-projective (holomorphicallyprojective) transformation of $2 n$-dimensional Kähler manifolds with constant holomorphic sectional curvature. In [2, 4], Hasegawa and Yamauchi investigated infinitesimal holomorphically projective transformation on $T M$ with respect to the horizontal and complete lift connections. Recently, Tarakci et al. [9] have studied a similar problem on $T M$ with respect to the metric $I I+I I I$. Therefore, in this paper, we use the method of adapted frames to investigate the case of the Levi-Civita connection of the synectic metric on TM, introduced by Talantova and Shirokov [8], and prove the following two theorems:

Theorem 1. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the Levi-Civita connection of the synectic metric and an adapted almost complex structure. Then A vector field \tilde{V} is an infinitesimal holomorphically projective transformation with associated 1-form $\widetilde{\Omega}$ on $T M$ if and only if there
exist $\varphi, \psi \in \mathfrak{I}_{0}^{0}(M), B=\left(B^{h}\right), D=\left(D^{h}\right) \in \mathfrak{I}_{0}^{1}(M), \quad A=\left(A_{i}^{h}\right), \quad C=\left(C_{i}^{h}\right) \in \mathfrak{J}_{1}^{1}(M)$ satisfying

1. $\left(\widetilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}^{h}+2 \varphi y^{h}-y^{a} \Psi_{a} y^{h} \quad D^{h}+y^{a} C_{a}^{h}+2 \psi y^{h}+y^{a} \Phi_{a} y^{h}\right)$,
2. $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
3. $\nabla_{i} \Phi_{j}=0, \quad \nabla_{i} \Psi_{j}=0$,
4. $\nabla_{i} A_{j}^{a}=\Phi_{j} \delta_{i}^{a}-\Phi_{i} \delta_{j}^{a}$,
5. $\nabla_{i} C_{j}^{a}=\Psi_{j} \delta_{i}^{a}-\Psi_{i} \delta_{j}^{a}-B^{h} R_{h i j}^{a}-H_{h i}^{a} A_{j}^{h}-2 \varphi H_{j i}^{a}$,
6. $L_{B} \Gamma_{j i}^{a}=\nabla_{j} \nabla_{i} B^{a}+B^{h} R_{h j i}^{a}=\Psi_{j} \delta_{i}^{a}+\Psi_{i} \delta_{j}^{a}+H_{j i}^{h} A_{h}^{a}+2 \varphi H_{j i}^{a}$,
7. $L_{D} \nabla=\nabla_{j} \nabla_{i} D^{a}+D^{h} R_{h j i}^{a}=-\Phi{ }_{j} \delta_{i}^{a}-\Phi_{i} \delta_{j}^{a}-B^{h} \nabla_{h} H_{j i}^{a}+H_{j i}^{h} C_{h}^{a}$

$$
+2 \psi H_{j i}^{a}-H_{j h}^{a} \nabla_{i} B^{h}-H_{h i}^{a} \nabla_{j} B^{h}
$$

8. $B^{h} \nabla_{h} R_{b j i}^{a}=R_{b j i}^{h} C_{h}^{a}-C_{b}^{h} R_{h j i}^{a}-R_{b j h}^{a} \nabla_{i} B^{h}-R_{b h i}^{a} \nabla_{j} B^{h}$

$$
-A_{b}^{h}\left(\nabla_{h} H_{j i}^{a}-\nabla_{j} H_{h i}^{a}\right)-2 \varphi \nabla_{b} H_{j i}^{a}
$$

9. $A_{b}^{h} R_{h i j}^{a}+2 \varphi R_{b i j}^{a}=0$,
10. $\Psi_{l} H_{j i}^{a}=0, \Phi_{l} H_{j i}^{a}=0$,
11. $\Phi_{l} R_{k j i}^{a}=0, \Psi_{l} R_{k j i}^{a}=0$,
where $\tilde{V}=\left(\widetilde{V}^{h} \quad \widetilde{V}^{\bar{h}}\right)=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}$ and $\widetilde{\Omega}=\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\widetilde{\Omega}_{a} d x{ }^{a}+\widetilde{\Omega}_{\bar{a}} \delta y^{a}$.
Theorem 2. Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle with Levi-Civita connection of the synectic metric and an adapted almost complex structure. If TM admits non-affine infinitesimal holomorphically projective transformation, then the covariant derivative of symmetric tensor field $\left(a_{j i}\right)$ of type $(0,2)$ is zero and M is locally flat.

2. Preliminaries

In this section, we shall summarize all the basic definitions and results on $T M$ that are needed later. Most of them are well-known and details can be found in [11, 12]. Indices a, b, c, i, j, h, \ldots have range in $\{1, \ldots, n\}$ while indices $\alpha, \beta, \lambda, \mu, \ldots$ have range in $\{1, \ldots, n ; n+1, \ldots, 2 n\}$. We put $\bar{i}=n+i$. Summation over repeated indices is always implied.

Coordinate systems on M are denoted by $\left(U, x^{h}\right)$, where U is the coordinate neighborhood and x^{h} are the coordinate functions. Components in $\left(U, x^{h}\right)$ of geometric objects on M will be referred to simply as components. We denote partial differentiation $\frac{\partial}{\partial x^{h}}$ by ∂_{h}.

Let (M, g) be a Riemannian manifold, ∇ be the Riemannian connection of g and $\Gamma_{j i}^{a}$ be the coefficients of ∇, i.e., $\nabla_{\partial_{j}} \partial_{i}=\Gamma_{j i}^{a} \partial_{a}$ with respect to natural frame $\left\{\partial_{h}\right\}$. Then the curvature tensor R of ∇ has components $R_{k j i}^{h}$. With the Riemannian connection ∇ given on M, we can introduce on each induced coordinate neighborhood $\pi^{-1}(U)$ of $T M$ a frame field which is very useful in our computation. In each local chart $U\left(x^{h}\right)$ of M, we put

$$
X_{(j)}=\frac{\partial}{\partial x^{j}}=\delta_{j}^{h} \frac{\partial}{\partial x^{h}} \in \mathfrak{J}_{0}^{1}(M)
$$

Then $2 n$ local vector fields ${ }^{H} X_{(j)}$ and ${ }^{V} X_{(j)}$ form a basis of the tangent space $T_{P}(T M)$ at each point $\widetilde{P}=\pi^{-1}(P)$ and their components are given respectively by

$$
\begin{align*}
& { }^{H} X_{(j)}=\delta_{j}^{h} \partial_{h}-y^{s} \Gamma_{s j}^{h} \partial_{\bar{h}}, \tag{2.1}\\
& { }^{V} X_{(\bar{j})}=\delta_{j}^{h} \partial_{\bar{h}} \tag{2.2}
\end{align*}
$$

with respect to the natural frame $\left\{\frac{\partial}{\partial x^{H}}\right\}=\left\{\frac{\partial}{\partial x^{h}}, \frac{\partial}{\partial x^{\bar{h}}}\right\}$ on $T M$, where δ_{i}^{j}-Kronecker delta. These $2 n$ vector fields are linear independent and generate,
respectively, the horizontal distribution of ∇ and the vertical distribution of $T M$. We have called the set $\left\{{ }^{H} X_{(j)},{ }^{V} X_{(\bar{j})}\right\}$ the frame adapted to the affine connection ∇ in $\pi^{-1}(U) \subset T M$. On putting $E_{j}={ }^{H} X_{(j)}, E_{\bar{j}}={ }^{V} X_{(\bar{j})}$, we write the adapted frame as $\left\{E_{\beta}\right\}=\left\{E_{j}, E_{\bar{j}}\right\}$.

By the straightforward calculation, we have the following:
Lemma 1 [11, p. 159]. The Lie brackets of the adapted frame of TM satisfy the following identities:

$$
\begin{equation*}
\left[E_{j}, E_{i}\right]=y^{b} R_{i j b}^{a} E_{\bar{a}}, \quad\left[E_{j}, E_{\bar{i}}\right]=\Gamma_{j i}^{a} E_{\bar{a}}, \quad\left[E_{\bar{j}}, E_{\bar{i}}\right]=0 \tag{2.3}
\end{equation*}
$$

Lemma 2 [3]. Let \tilde{V} be a vector field on TM. Then

$$
\left\{\begin{array}{l}
{\left[\widetilde{V}, E_{i}\right]=-\left(E_{i} \widetilde{V}^{a}\right) E_{a}+\left(\widetilde{V}^{c} y^{b} R_{i c b}^{a}-\widetilde{V}^{\bar{b}} \Gamma_{b i}^{a}-E_{i} \widetilde{V}^{\bar{a}}\right) E_{\bar{a}},} \tag{2.4}\\
{\left[\widetilde{V}, E_{\bar{i}}\right]=-\left(E_{\bar{i}} \widetilde{V}^{a}\right) E_{a}+\left(\widetilde{V}^{b} \Gamma_{b i}^{a}-E_{\bar{i}} \widetilde{V}^{\bar{a}}\right) E_{\bar{a}},}
\end{array}\right.
$$

where $\left(\tilde{V}^{h} \quad \tilde{V}^{\bar{h}}\right)=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}$.
Let g be a Riemannian metric with components $g_{j i}$. Then we see that

$$
\begin{equation*}
\widetilde{g}=a_{j i} d x^{j} d x^{i}+2 g_{j i} d x^{j} \delta y^{i} \tag{2.5}
\end{equation*}
$$

is non-singular and can be regarded as pseudo-Riemannian metric on $T M$, where $a=\left(a_{j i}\right)$ is a symmetric tensor field of the type $(0,2)$ on M and $\delta y^{i}=d y^{i}+$ $\Gamma_{l k}^{i} d x^{l} y^{k}, \quad \Gamma_{l k}^{i}$ being Christoffel symbols formed with g. The metric (2.5) has components

$$
\widetilde{g}=\left(\tilde{g}_{\beta \gamma}\right)=\left(\begin{array}{cc}
a_{j i} & g_{j i} \\
g_{j i} & 0
\end{array}\right)
$$

with respect to the adapted frame on $T M$, that is, it coincides with $\widetilde{g}={ }^{C} g+{ }^{V} a$, where ${ }^{C} g$ and ${ }^{V} a$ denote the complete and vertical lifts of g and a to $T M$, respectively. The synectic metric \tilde{g} was determined by Talantova and Shirokov [8] to study the differential geometry of tangent bundles of Riemannian manifolds. Their paper is related to the geometry of the space of n dual variables. The concept of a
dual number is the analogue of a complex number: $x+j y$ with $j^{2}=0$. Since the set of dual numbers is represented geometrically by R^{2}, the set of n dual variables is represented by $R^{2 n}=R^{n} \times R^{n}=T R^{n}$. They showed that the space $T R^{n}$ with a certain metric represents a space of n dual variables with purely dual constant curvature. This special metric on $T R^{n}$ is related projectively to the complete lift of the standard metric on R^{n}. Afterwards, Pavlov [6] studied the tangent bundles with a metric $\lambda^{C} g+{ }^{V} a$ and also proved that the substitution of the metric ${ }^{C} g \rightarrow \lambda^{C} g+{ }^{V} a$ is a necessary and sufficient condition on preserving the "angles" between holomorphic planes.

Remark. In the case of $a=g$, the synectic metric \widetilde{g} on $T M$ coincides with the lift metric $I+I I$ on $T M$, where $a=\left(a_{j i}\right)$ is a symmetric tensor field of the type $(0,2)$ on M and $g=\left(g_{i j}\right)$ is a Riemannian metric on M. The metric $I+I I$ is introduced by Yano and Ishihara [11, p. 147-155]. Also, they proved that the tangent bundle $T M$ with the metric $I+I I$ has vanishing scalar curvature.

We now consider local 1-forms ω^{α} defined by $\omega^{\alpha}=\tilde{\mathcal{A}}_{B}^{\alpha} d x^{B}$ in $\pi^{-1}(U)$, where

$$
\widetilde{A}_{B}^{\alpha}=\left(\begin{array}{cc}
\widetilde{A}_{j}^{h} & \widetilde{A}_{\bar{A}}^{h} \tag{2.6}\\
\widetilde{A}_{j}^{\bar{h}} & \widetilde{A} \widetilde{A}_{\bar{j}}^{\bar{h}}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{j}^{h} & 0 \\
y^{s} \Gamma_{s j}^{h} & \delta_{j}^{h}
\end{array}\right)
$$

is the inverse matrix of the matrix

$$
\operatorname{AA}_{\beta}^{A}=\left(\begin{array}{cc}
\mathcal{A} A_{j}^{h} & \mathcal{A} A_{\bar{j}}^{h} \tag{2.7}\\
\mathcal{A} A_{j}^{\bar{h}} & \mathcal{A} \overline{\bar{h}} \bar{j}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{j}^{h} & 0 \\
-y^{s} \Gamma_{s j}^{h} & \delta_{j}^{h}
\end{array}\right)
$$

of frames changes $E_{\beta}=\mathcal{A}_{\beta}^{A} \partial_{A}$. These 2n 1-forms ω^{α} are linearly independent on TM. We call the set $\left\{\omega^{\alpha}\right\}$ the dual adapted coframe.

For various types of indices, we have

$$
\left\{\begin{array}{l}
E_{j}=\mathcal{A}_{j}^{A} \partial_{A}=\partial_{j}-y^{S} \Gamma_{s j}^{h} \partial_{\bar{h}} \tag{2.8}\\
E_{\bar{j}}=A_{\bar{j}}^{A} \partial_{A}=\partial_{\bar{j}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\omega^{j}=\tilde{\mathcal{A}}_{B}^{j} d x^{B}=d x^{j}, \tag{2.9}\\
\omega^{\bar{j}}=\tilde{\mathcal{A}}_{B}^{\bar{j}} d x^{B}=\delta y^{h},
\end{array}\right.
$$

where $\delta y^{h}=d y^{h}+y^{b} \Gamma_{b a}^{h} d x^{a}$.
Since the adapted frame field $\left\{E_{\beta}\right\}$ is non-holonomic, we put

$$
\left[E_{\alpha}, E_{\beta}\right]=\Omega_{\alpha \beta}^{\gamma} E_{\gamma}
$$

from which we have

$$
\Omega_{\gamma \beta}^{\alpha}=\left(E_{\gamma} \mathcal{A}_{\beta}^{A}-E_{\beta} \mathscr{A}_{\gamma}^{A}\right) \widetilde{A}_{A}^{\alpha}
$$

Thus, according to equations (2.6), (2.7) and (2.8), the components of nonholonomic object $\Omega_{\gamma \beta}^{\alpha}$ are given by

$$
\left\{\begin{array}{l}
\Omega_{l \bar{j}}^{\bar{r}}=-\Omega_{\bar{j} l}^{\bar{r}}=\Gamma_{j l}^{r}, \tag{2.10}\\
\Omega_{l j}^{\bar{r}}=-\Omega_{j l}^{\bar{r}}=-R_{l j k}^{r},
\end{array}\right.
$$

all the others being zero, with respect to the adapted frame.
If $\widetilde{\nabla}$ denote the Levi-Civita connection of \widetilde{g} from $\widetilde{T}(\widetilde{X}, \widetilde{Y})=\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}-\widetilde{\nabla}_{\widetilde{Y}} \widetilde{X}-$ $[\widetilde{X}, \widetilde{Y}]=0, \forall \widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}(T M)$, then we have

$$
\begin{equation*}
\widetilde{\Gamma}_{\gamma \beta}^{\alpha}-\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=\Omega_{\gamma \beta}^{\alpha} \tag{2.11}
\end{equation*}
$$

with respect to the adapted frame, where $\widetilde{\Gamma}_{\gamma \beta}^{\alpha}$ are components of the Levi-Civita connection $\widetilde{\nabla}$.

The equation $\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{g}\right)(\widetilde{Y}, \widetilde{Z})=0, \forall \tilde{X}, \tilde{Y}, \widetilde{Z} \in \mathfrak{J}_{0}^{l}(T M)$ has form

$$
\begin{equation*}
E_{\delta} \widetilde{g}_{\gamma \beta}-\widetilde{\Gamma}_{\delta \gamma}^{\varepsilon} \widetilde{g}_{\varepsilon \beta}-\widetilde{\Gamma}_{\delta \beta}^{\varepsilon} \widetilde{g}_{\gamma \varepsilon}=0 \tag{2.12}
\end{equation*}
$$

with respect to the adapted frame. Thus, we have from equations (2.11) and (2.12)

$$
\begin{equation*}
\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=\frac{1}{2} \widetilde{g}^{\alpha \varepsilon}\left(E_{\beta} \tilde{g}_{\varepsilon \gamma}+E_{\gamma} \widetilde{g}_{\beta \varepsilon}-E_{\varepsilon} \tilde{g}_{\beta \gamma}\right)+\frac{1}{2}\left(\Omega_{\beta \gamma}^{\alpha}+\Omega_{\beta \gamma}^{\alpha}+\Omega_{\gamma \beta}^{\alpha}\right), \tag{2.13}
\end{equation*}
$$

where $\Omega_{\gamma \beta}^{\alpha}=\widetilde{g}^{\alpha \varepsilon} \widetilde{g}_{\delta \beta} \Omega_{\varepsilon \gamma}^{\delta}, \quad \widetilde{g}^{\alpha \varepsilon}$ are the contravariant components of the metric \widetilde{g} with respect to the adapted frame:

$$
\left(\widetilde{g}^{\alpha \varepsilon}\right)=\left(\begin{array}{cc}
0 & g^{h r} \tag{2.14}\\
g^{h r} & -a^{h r}
\end{array}\right)
$$

Taking account of equations (2.10), (2.13) and (2.14), for various types of indices, we find

$$
\begin{align*}
& \widetilde{\Gamma}_{j i}^{h}=\Gamma_{j i}^{h}, \quad \widetilde{\Gamma}_{j i}^{\bar{h}}=y^{b} R_{b j i}^{h}+H_{j i}^{h}, \quad \widetilde{\Gamma}_{j i}^{\bar{h}}=0, \\
& \widetilde{\Gamma}_{\overline{j i}}^{h}=0, \quad \widetilde{\Gamma}_{j \bar{h}}^{\bar{h}}=\Gamma_{j i}^{h}, \quad \widetilde{\Gamma}_{j \bar{i}}^{h}=0, \quad \widetilde{\Gamma}_{\bar{j} i}^{\bar{h}}=0, \quad \widetilde{\Gamma}_{\overline{j i}}^{h}=0 \tag{2.15}
\end{align*}
$$

with respect to the adapted frame, where $\Gamma_{j i}^{h}$ denote the Levi-Civita connection components constructed with g on M with respect to the natural frame $\left\{\partial_{i}\right\}$ and $H_{j i}^{h}$ is a tensor field of type $(1,2)$ defined by $H_{j i}^{h}=\frac{1}{2} g^{h r}\left(\nabla_{j} a_{r i}+\nabla_{i} a_{j r}-\nabla_{r} a_{j i}\right)$ (see [10, p. 166]).

If \tilde{X} is a vector field on $T M$ with frame components \widetilde{X}^{α}, then it can be written that the frame components

$$
\begin{equation*}
\widetilde{\nabla}_{\lambda} \widetilde{X}_{\alpha}=E_{\lambda}\left(\tilde{X}_{\alpha}\right)-\widetilde{\Gamma}_{\lambda \alpha}^{\mu} \tilde{X}_{\mu} \tag{2.16}
\end{equation*}
$$

where $\widetilde{\Gamma}_{\lambda \mu}^{\alpha}$ being given by equation (2.15).
From equations (2.15) and (2.16), we have
Lemma 3. Let $\widetilde{\nabla}$ be a Levi-Civita connection of the synectic metric on $T M$ defined as follows:

$$
\left\{\begin{array}{l}
\widetilde{\nabla}_{E_{j}} E_{i}=\Gamma_{j i}^{a} E_{a}+\left(y^{b} R_{b j i}^{a}+H_{j i}^{a}\right) E_{\bar{a}}, \tag{2.17}\\
\widetilde{\nabla}_{E_{j}} E_{\bar{i}}=\Gamma_{j i}^{a} E_{\bar{a}}, \\
\widetilde{\nabla}_{E_{\bar{j}}} E_{i}=0, \quad \widetilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{array}\right.
$$

Let us consider a tensor field \widetilde{J} of type $(1,1)$ on $T M$ by

$$
\widetilde{J}^{H} X={ }^{V} X, \quad \widetilde{J}^{V} X=-{ }^{H} X
$$

for any $X \in \mathfrak{J}_{0}^{1}(M)$, i.e., $\widetilde{J} E_{i}=E_{\bar{i}}, \widetilde{J} E_{\bar{i}}=-E_{i}$. Then we obtain $\widetilde{J}^{2}=-I$. Therefore, \tilde{J} is an almost complex structure on $T M$. This almost complex structure is called the adapted almost complex structure. It is known that \widetilde{J} is integrable if and only if M is locally flat [11, p. 118].

3. Proofs of the Theorems

Proof of Theorem 1. Here we prove only the necessary condition because it is easy to prove the sufficient condition. Let \tilde{V} be an infinitesimal holomorphically projective transformation with the associated 1-form $\widetilde{\Omega}$ on TM

$$
\begin{equation*}
\left(L_{\widetilde{V}} \widetilde{\nabla}\right)(\tilde{X}, \tilde{Y})=\widetilde{\Omega}(\tilde{X}) \tilde{Y}+\widetilde{\Omega}(\tilde{Y}) \tilde{X}-\widetilde{\Omega}(\tilde{J} \tilde{X}) \tilde{J} \tilde{Y}-\widetilde{\Omega}(\tilde{J} \tilde{Y}) \widetilde{J} \tilde{X} \tag{3.1}
\end{equation*}
$$

for any $\tilde{X}, \tilde{Y} \in \mathfrak{J}_{0}^{1}(M)$.
$\operatorname{From}\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{\bar{j}}, E_{\bar{i}}\right)=\widetilde{\Omega}_{\bar{j}} E_{\bar{i}}+\widetilde{\Omega}_{\bar{i}} E_{\bar{j}}-\widetilde{\Omega}_{j} E_{i}-\widetilde{\Omega}_{i} E_{j}$, we obtain

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \widetilde{V}^{h}=-\widetilde{\Omega}_{j} \delta_{i}^{h}-\widetilde{\Omega}_{i} \delta_{j}^{h} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \widetilde{V}^{\bar{h}}=\widetilde{\Omega}_{\bar{j}} \delta_{i}^{h}+\widetilde{\Omega}_{\bar{i}} \delta_{j}^{h} . \tag{3.3}
\end{equation*}
$$

Contracting i and h in equation (3.2), we have

$$
\begin{equation*}
\widetilde{\Omega}_{j}=\partial_{\bar{j}} \tilde{\psi} \tag{3.4}
\end{equation*}
$$

where $\widetilde{\psi}=-\frac{1}{n+1} \partial_{\bar{a}} \widetilde{V}^{a}$. Hence equation (3.2) is rewritten as follows:

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \widetilde{V}^{h}=-\left(\partial_{\bar{j}} \widetilde{\psi}\right) \delta_{i}^{h}-\left(\partial_{\bar{i}} \widetilde{\psi}\right) \delta_{j}^{h} . \tag{3.5}
\end{equation*}
$$

Differentiating equation (3.5) partially, we have

$$
\begin{align*}
\partial_{\bar{k}} \partial_{\bar{j}} \partial_{\bar{i}} \widetilde{V}^{h} & =-\left(\partial_{\bar{k}} \partial_{\bar{j}} \tilde{\psi}\right) \delta_{i}^{h}-\left(\partial_{\bar{k}} \partial_{\bar{i}} \tilde{\psi}\right) \delta_{j}^{h} \\
& =-\left(\partial_{\bar{j}} \partial_{\bar{i}} \tilde{\psi}\right) \delta_{k}^{h}-\left(\partial_{\bar{i}} \partial_{\bar{k}} \widetilde{\psi}\right) \delta_{i}^{h} \\
& =-\left(\partial_{\bar{i}} \partial_{\bar{k}} \widetilde{\psi}\right) \delta_{j}^{h}-\left(\partial_{\bar{i}} \partial_{\bar{j}} \tilde{\psi}\right) \delta_{k}^{h}, \tag{3.6}
\end{align*}
$$

from which we obtain

$$
\begin{equation*}
\partial_{\bar{k}} \partial_{\bar{j}}\left(\partial_{\bar{i}} \widetilde{V}^{h}+2 \widetilde{\psi} \delta_{i}^{h}\right)=0 \tag{3.7}
\end{equation*}
$$

Therefore, we can put

$$
\begin{equation*}
P_{j i}^{h}=\partial_{\bar{j}}\left(\partial_{\bar{i}} \widetilde{V}^{h}+2 \widetilde{\psi} \delta_{i}^{h}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}^{h}+y^{a} P_{a i}^{h}=\partial_{\bar{i}} \widetilde{V}^{h}+2 \widetilde{\psi} \delta_{i}^{h} \tag{3.9}
\end{equation*}
$$

where A_{i}^{h} and $P_{j i}^{h}$ are certain functions which depend only on the variables $\left(x^{h}\right)$. The coordinate transformation rule implies that $A=\left(A_{i}^{h}\right) \in \mathfrak{J}_{1}^{1}(M)$ and $P=\left(P_{j i}^{h}\right)$ $\in \mathfrak{I}_{2}^{1}(M)$.

Using equation (3.5), we have

$$
\begin{equation*}
P_{j i}^{h}+P_{i j}^{h}=2\left\{\partial_{\bar{j}} \partial_{\bar{i}} \widetilde{V}^{h}+\left(\partial_{\bar{j}} \widetilde{\psi}\right) \delta_{i}^{h}+\left(\partial_{\bar{i}} \widetilde{\psi}\right) \delta_{j}^{h}\right\}=0 \tag{3.10}
\end{equation*}
$$

from which, using equation (3.8), we obtain

$$
\begin{equation*}
P_{j i}^{h}=\frac{1}{2}\left(P_{j i}^{h}-P_{i j}^{h}\right)=\left(\partial_{\bar{j}} \tilde{\psi}\right) \delta_{i}^{h}-\left(\partial_{\bar{i}} \tilde{\psi}\right) \delta_{j}^{h} \tag{3.11}
\end{equation*}
$$

On the other hand, using equation (3.9), we have

$$
\begin{equation*}
\widetilde{\psi}=-\varphi+y^{a} \Psi_{a} \tag{3.12}
\end{equation*}
$$

where $\varphi=-\frac{1}{n-1} A_{a}^{a}$ and $\Psi_{i}=\frac{1}{n-1} P_{i a}^{a}$, from which

$$
\begin{equation*}
\widetilde{\Omega}_{i}=\partial_{i} \widetilde{\psi}=\Psi_{i} \tag{3.13}
\end{equation*}
$$

Using equations (3.9), (3.11) and (3.13), we obtain

$$
\partial_{i} \widetilde{V}^{h}=A_{i}^{h}+2 \varphi \delta_{i}^{h}-y^{h} \Psi_{i}-y^{a} \Psi_{a} \delta_{i}^{h}
$$

from which

$$
\begin{equation*}
\widetilde{V}^{h}=B^{h}+y^{a} A_{a}^{h}+2 \varphi y^{h}-y^{a} \Psi_{a} y^{h} \tag{3.14}
\end{equation*}
$$

where B^{h} are certain functions which depend only on $\left(x^{h}\right)$. The coordinate transformation rule implies that $B=\left(B^{h}\right) \in \mathfrak{J}_{0}^{1}(M)$.

Similarly, from equation (3.3), there exist $\psi \in \mathfrak{J}_{0}^{0}(M), \Phi=\left(\Phi_{i}\right) \in \mathfrak{J}_{1}^{0}\left(M_{n}\right)$, $D=\left(D^{h}\right) \in \mathfrak{I}_{0}^{1}(M)$ and $C=\left(C_{i}^{h}\right) \in \mathfrak{J}_{1}^{1}(M)$ satisfying

$$
\begin{align*}
& \widetilde{\varphi}=\psi+y^{a} \Phi_{a} \tag{3.15}\\
& \widetilde{\Omega}_{\bar{i}}=\partial_{\bar{i}} \widetilde{\varphi}=\Phi_{i} \tag{3.16}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{V}^{\bar{h}}=D^{h}+y^{a} C_{a}^{h}+2 \psi y^{h}+y^{a} \Phi_{a} y^{h} \tag{3.17}
\end{equation*}
$$

where $\widetilde{\varphi}=\frac{1}{n+1} \partial_{\bar{a}} \tilde{V}^{\bar{a}}$ and $\psi=-\frac{1}{n-1} C_{a}^{a}$.
Next, from equation (3.1), we have

$$
\begin{equation*}
\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{\bar{j}}, E_{i}\right)=\Phi_{j} E_{i}+\Phi_{i} E_{j}+\Psi_{j} E_{\bar{i}}+\Psi_{i} E_{\bar{j}} \tag{3.18}
\end{equation*}
$$

or

$$
\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{j}, E_{\bar{i}}\right)=\Phi_{j} E_{i}+\Phi_{i} E_{j}+\Psi_{j} E_{\bar{i}}+\Psi_{i} E_{j}
$$

From equation (3.18), we get

$$
\begin{align*}
& \left(\Phi_{j} \delta_{i}^{a}+\Phi_{i} \delta_{j}^{a}\right) E_{a}+\left(\Psi_{j} \delta_{i}^{a}+\Psi_{i} \delta_{j}^{a}\right) E_{\bar{a}} \\
= & \left\{\left(\nabla_{i} A_{j}^{a}+2 \delta_{j}^{a} \partial_{i} \varphi\right)-y^{b}\left(\delta_{b}^{a} \nabla_{i} \Psi_{j}+\delta_{j}^{a} \nabla_{i} \Psi_{b}\right)\right\} E_{a} \\
& +\left\{\left(\nabla_{i} C_{j}^{a}+2 \delta_{j}^{a} \partial_{i} \psi+B^{h} R_{h i j}^{a}+H_{h i}^{a} A_{j}^{h}+2 \varphi H_{j i}^{a}\right)+y^{b}\left(A_{b}^{h} R_{h i j}^{a}+A_{j}^{h} R_{b i h}^{a}+4 \varphi R_{b i j}^{a}\right.\right. \\
& \left.\left.+\delta_{a}^{b} \nabla_{i} \Phi_{j}+\delta_{j}^{a} \nabla_{i} \Phi_{b}-H_{b i}^{a} \Psi_{j}-H_{j i}^{a} \Psi_{b}\right)+y^{b} y^{c}\left(\Psi_{j} R_{i c b}^{a}-2 \Psi_{c} R_{b i j}^{a}\right)\right\} E_{\bar{a}} . \tag{3.19}
\end{align*}
$$

Comparing both hands of the above equation, we obtain

$$
\begin{align*}
& \Phi_{j}=\partial_{j} \varphi, \quad \nabla_{i} \Phi_{j}=0 \\
& \Psi_{j}=\partial_{j} \psi, \quad \nabla_{i} \Psi_{j}=0 \\
& \nabla_{i} A_{j}^{a}=\Phi_{j} \delta_{i}^{a}-\Phi_{i} \delta_{j}^{a} \\
& \nabla_{i} C_{j}^{a}=\Psi_{j} \delta_{i}^{a}-\Psi_{i} \delta_{j}^{a}-B^{h} R_{h i j}^{a}-H_{h i}^{a} A_{j}^{h}-2 \varphi H_{j i}^{a} \\
& A_{b}^{h} R_{h i j}^{a}=-2 \varphi R_{b i j}^{a}, \quad \Psi_{l} R_{k j i}^{a}=0, \quad \Psi_{l} H_{j i}^{a}=0 \tag{3.20}
\end{align*}
$$

Lastly, from $\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{j}, E_{i}\right)=\Psi_{j} E_{i}+\Psi_{i} E_{j}-\Phi_{j} E_{\bar{i}}-\Phi_{i} E_{\bar{j}}$, we obtain

$$
\begin{align*}
& \left(\Psi_{j} \delta_{i}^{a}+\Psi_{i} \delta_{j}^{a}\right) E_{a}-\left(\Phi_{j} \delta_{i}^{a}+\Phi_{i} \delta_{j}^{a}\right) E_{\bar{a}} \\
= & \left\{L_{B} \Gamma_{j i}^{a}-H_{j i}^{h} A_{h}^{a}-2 \varphi H_{j i}^{a}\right\} E_{a} \\
& +\left\{\left(L_{D} \Gamma_{j i}^{a}+B^{h} \nabla_{h} H_{j i}^{a}-H_{j i}^{h} C_{h}^{a}-2 \psi H_{j i}^{a}+H_{j h}^{a} \nabla_{i} B^{h}+H_{h i}^{a} \nabla_{j} B^{h}\right)\right. \\
& +y^{b}\left(C_{b}^{h} R_{h j i}^{a}+B^{h} \nabla_{h} R_{b j i}^{a}-R_{b j i}^{h} C_{h}^{a}+R_{b j h}^{a} \nabla_{i} B^{h}+R_{b h i}^{a} \nabla_{j} B^{h}+A_{b}^{h}\left(\nabla_{h} H_{j i}^{a}\right.\right. \\
& \left.\left.-\nabla_{j} H_{h i}^{a}\right)+2 \varphi \nabla_{b} H_{j i}^{a}-\Phi_{i} H_{j b}^{a}-3 \Phi_{j} H_{b i}^{a}\right)+y^{b} y^{c}\left(\Phi_{c} R_{b j i}^{a}+\Phi_{c} R_{b i j}^{a}-\Phi_{j} R_{c i b}^{a}\right. \\
& \left.\left.-\Phi_{i} R_{c j b}^{a}+2 \varphi \nabla_{c} R_{b j i}^{a}+2 \varphi \nabla_{j} R_{c i b}^{a}+A_{c}^{h} \nabla_{h} R_{b j i}^{a}+A_{c}^{h} \nabla_{j} R_{h i b}^{a}\right)\right\} E_{\bar{a}}, \tag{3.21}
\end{align*}
$$

from which, we get the following important information:

$$
\begin{align*}
& L_{B} \Gamma_{j i}^{a}=\nabla_{j} \nabla_{i} B^{a}+R_{h j i}^{a} B^{h}=\Psi_{j} \delta_{i}^{a}+\Psi_{i} \delta_{j}^{a}+H_{j i}^{h} A_{h}^{a}+2 \varphi H_{j i}^{a} \tag{3.22}\\
& \begin{aligned}
& L_{D} \nabla= \nabla_{j} \nabla_{i} D^{a}+D^{h} R_{h j i}^{a} \\
&=-\Phi_{j} \delta_{i}^{a}-\Phi_{i} \delta_{j}^{a}-B^{h} \nabla_{h} H_{j i}^{a}+H_{j i}^{h} C_{h}^{a} \\
&+2 \psi H_{j i}^{a}-H_{j h}^{a} \nabla_{i} B^{h}-H_{h i}^{a} \nabla_{j} B^{h}, \\
& B^{h} \nabla_{h} R_{b j i}^{a}=R_{b j i}^{h} C_{h}^{a}-C_{b}^{h} R_{h j i}^{a}-R_{b j h}^{a} \nabla_{i} B^{h}-R_{b h i}^{a} \nabla_{j} B^{h} \\
& \quad-A_{b}^{h}\left(\nabla_{h} H_{j i}^{a}-\nabla_{j} H_{h i}^{a}\right)-2 \varphi \nabla_{b} H_{j i}^{a} \\
& \Phi_{l} R_{b j i}^{a}=0, \quad \Phi_{l} H_{j i}^{a}=0 .
\end{aligned}
\end{align*}
$$

This completes the proof.
Using this Theorem 1, we at last come to the following:
Proof of Theorem 2. Let \tilde{V} be a non-affine infinitesimal holomorphically projective transformation on M. Using equation (3) in Theorem 1, we have $\nabla_{i}\|\Phi\|^{2}=\nabla_{i}\|\Psi\|^{2}=0$. Hence, $\|\Phi\|$ and $\|\Psi\|$ are constants on M. Suppose that M is not locally flat and the covariant derivative of symmetric tensor field $\left(a_{j i}\right)$ of
type $(0,2)$ is non-zero, then $\Phi=\Psi=0$ by virtue of equations (10) and (11) in Theorem 1, that is, \tilde{V} is an infinitesimal affine transformation. This is a contradiction. Therefore, M is locally flat and the covariant derivative of symmetric tensor field $\left(a_{j i}\right)$ of type $(0,2)$ is zero. In this case, $T M$ is also locally flat $[8,10]$.

References

[1] A. V. Aminova and D. A. Kalinin, Lie algebras of H-projective motions of Kähler manifolds of constant holomorphic sectional curvature, Math. Notes 65(5-6) (1999), 679-683.
[2] I. Hasegawa and K. Yamauchi, Infinitesimal holomorphically projective transformations on tangent bundles with horizontal lift connection and adapted almost complex structure, J. Hokkaido Univ. Educ. Nat. Sci. 53(2) (2003), 1-8.
[3] I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on tangent bundles with lift connections, Sci. Math. Jpn. 57(3) (2003), 469-483.
[4] I. Hasegawa and K. Yamauchi, Infinitesimal holomorphically projective transformations on tangent bundles with complete lift connection, Differ. Geom. Dyn. Syst. 7 (2005), 42-48.
[5] S. Ishihara, Holomorphically projective changes and their groups in an almost complex manifold, Tohoku Math. J. (2) 9 (1957), 273-297.
[6] E. Pavlov, Conformal-holomorphic metrics, Tensor (N.S.) 51(1) (1992), 26-32.
[7] S. Tachibana and S. Ishihara, On infinitesimal holomorphically projective transformations in Kählerian manifolds, Tohoku Math. J. (2) 12 (1960), 77-101.
[8] N. V. Talantova and A. P. Shirokov, A remark on a certain metric in the tangent bundle, Izv. Vyssh. Uchebn. Zaved. Mat. 6(157) (1975), 143-146 (in Russian).
[9] O. Tarakci, A. Gezer and A. A. Salimov, On solutions of IHPT equations on tangent bundles with the metric II + III, Math. Comput. Modelling 50(7-8) (2009), 953-958.
[10] V. V. Vishnevskiĭ, A. P. Shirokov and V. V. Shurygin, Spaces over Algebras, Kazan University Press, 1985, p. 264.
[11] K. Yano and S. Ishihara, Tangent and Cotangent bundles, Marcel Dekker, New York, 1973.
[12] K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I, II, III, J. Math. Soc. Japan 18(2-3) (1966), 194-210, 236-246; 19(4) (1967), 486-488.

