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Abstract 

In this paper, we find solutions of a system of partial differential 
equations which characterize infinitesimal holomorphically projective 
transformation on TM with Levi-Civita connection of the synectic 
metric and an adapted almost complex structure. Further, we investigate 
necessary conditions in order that TM admits a non-affine infinitesimal 
holomorphically projective transformation. 

1. Introduction 

Let M be an n-dimensional connected manifold and TM its tangent bundle. In 

the present paper, everything will be discussed in the ∞C -category. We denote by 

( )Mr
sℑ  the set of all tensor fields of type ( )sr,  on M, and by ( )TMr

sℑ  the 

corresponding set on TM. 
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Let ∇ be an affine connection on M. Then a vector field V on M is called an 
infinitesimal projective transformation if there exists a 1-form Ω  on M such that 

( ) ( ) ( ) ( ) ,, XYYXYXLV Ω+Ω=∇  

for any ( ),, 1
0 MYX ℑ∈  where VL  is the Lie derivation with respect to V. In this 

case, Ω is called the associated 1-form of V. Especially, if ,0=Ω  then the vector 

field V is called an infinitesimal affine transformation. 

Next, let ( )JM ,  be an almost complex manifold with an affine connection .∇  

Then a vector field V on M is called an infinitesimal holomorphically projective 
transformation if there exists a 1-form Ω on M such that 

( ) ( ) ( ) ( ) ( ) ( ) ,, JXJYJYJXXYYXYXLV Ω−Ω−Ω+Ω=∇  

for any ( )., 1
0 MYX ℑ∈  In this case, Ω is also called the associated 1-form of V, and 

if ,0=Ω  then V is an infinitesimal affine transformation, too. 

The problems of determining infinitesimal holomorphically projective 
transformation on M and on TM have been considered by several authors. In       
1957, Ishihara [5] has introduced the notion of infinitesimal holomorphically 
projective transformation, and Tachibana and Ishihara [7] investigated infinitesimal 
holomorphically transformation on Kählerian manifolds. In [1], Aminova and 
Kalinin studied the Lie algebras of infinitesimal H-projective (holomorphically-
projective) transformation of 2n-dimensional Kähler manifolds with constant 
holomorphic sectional curvature. In [2, 4], Hasegawa and Yamauchi investigated 
infinitesimal holomorphically projective transformation on TM with respect to the 
horizontal and complete lift connections. Recently, Tarakci et al. [9] have studied a 
similar problem on TM with respect to the metric .IIIII +  Therefore, in this paper, 
we use the method of adapted frames to investigate the case of the Levi-Civita 
connection of the synectic metric on TM, introduced by Talantova and Shirokov [8], 
and prove the following two theorems: 

Theorem 1. Let ( )gM ,  be a Riemannian manifold and TM its tangent bundle 

with the Levi-Civita connection of the synectic metric and an adapted almost 

complex structure. Then A vector field V~  is an infinitesimal holomorphically 

projective transformation with associated 1-form Ω~  on TM if and only if there   
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exist ( ),, 0
0 Mℑ∈ψϕ  ( ),hBB =  ( ) ( ),1

0 MDD h ℑ∈=  ( ),h
iAA =  ( ) ( )MCC h

i
1
1ℑ∈=  

satisfying 

1. ( ) ( ),22~,~ h
a

ahh
a

ahh
a

ahh
a

ahhh yyyCyDyyyAyBVV Φ+ψ++Ψ−ϕ++=  

2. ( ) ( ) ( ),,,~,~
iiiiii ΦΨ=ϕ∂ψ∂=ΩΩ  

3. ,0,0 =Ψ∇=Φ∇ jiji  

4. ,a
ji

a
ij

a
ji A δΦ−δΦ=∇  

5. ,2 a
ji

h
j

a
hi

a
hij

ha
ji

a
ij

a
ji HAHRBC ϕ−−−δΨ−δΨ=∇  

6. ,2 a
ji

a
h

h
ji

a
ji

a
ij

a
hji

ha
ij

a
jiB HAHRBBL ϕ++δΨ+δΨ=+∇∇=Γ  

7. a
h

h
ji

a
jih

ha
ji

a
ij

a
hji

ha
ijD CHHBRDDL +∇−δΦ−δΦ−=+∇∇=∇  

,2 h
j

a
hi

h
i

a
jh

a
ji BHBHH ∇−∇−ψ+  

8. h
j

a
bhi

h
i

a
bjh

a
hji

h
b

a
h

h
bji

a
bjih

h BRBRRCCRRB ∇−∇−−=∇  

( ) ,2 a
jib

a
hij

a
jih

h
b HHHA ∇ϕ−∇−∇−  

9. ,02 =ϕ+ a
bij

a
hij

h
b RRA  

10. ,0,0 =Φ=Ψ a
jil

a
jil HH  

11. ,0,0 =Ψ=Φ a
kjil

a
kjil RR  

where ( ) a
a

a
ahh EVEVVVV ~~~~~ +==  and ( ) .~~~,~~ a

a
a

aii ydx δΩ+Ω=ΩΩ=Ω  

Theorem 2. Let ( )gM ,  be a Riemannian manifold and TM its tangent     

bundle with Levi-Civita connection of the synectic metric and an adapted almost 
complex structure. If TM admits non-affine infinitesimal holomorphically projective 
transformation, then the covariant derivative of symmetric tensor field ( )jia  of type 

( )2,0  is zero and M is locally flat. 
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2. Preliminaries 

In this section, we shall summarize all the basic definitions and results on TM 
that are needed later. Most of them are well-known and details can be found             
in [11, 12]. Indices ...,,,,,, hjicba  have range in { }n...,,1  while indices 

…,,,, μλβα  have range in { }.2...,,1;...,,1 nnn +  We put .ini +=  Summation 

over repeated indices is always implied. 

Coordinate systems on M are denoted by ( ),, hxU  where U is the coordinate 

neighborhood and hx  are the coordinate functions. Components in ( )hxU ,  of 

geometric objects on M will be referred to simply as components. We denote partial 

differentiation hx∂
∂  by .h∂  

Let ( )gM ,  be a Riemannian manifold, ∇ be the Riemannian connection of g 

and a
jiΓ  be the coefficients of ,∇  i.e., a

a
jiij ∂Γ=∂∇∂  with respect to natural frame 

{ }.h∂  Then the curvature tensor R of ∇ has components .h
kjiR  With the Riemannian 

connection ∇  given on M, we can introduce on each induced coordinate 

neighborhood ( )U1−π  of TM a frame field which is very useful in our computation. 

In each local chart ( )hxU  of M, we put 

( ) ( ).1
0 M

xx
X h

h
jjj ℑ∈
∂
∂δ=

∂
∂=  

Then 2n local vector fields ( )j
H X  and ( )j

V X  form a basis of the tangent space 

( )TMTP  at each point ( )PP 1~ −π=  and their components are given respectively by 

 ( ) ,h
h
sj

s
h

h
jj

H yX ∂Γ−∂δ=  (2.1) 

( ) h
h
jj

V X ∂δ=  (2.2) 

with respect to the natural frame 
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
∂
∂=

⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

hhH xxx
,  on TM , where              

j
iδ -Kronecker delta. These 2n vector fields are linear independent and generate, 
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respectively, the horizontal distribution of ∇ and the vertical distribution of TM. We 

have called the set { ( ) ( )}j
V

j
H XX ,  the frame adapted to the affine connection ∇ in 

( ) .1 TMU ⊂π−  On putting ( ),j
H

j XE =  ( ),j
V

j XE =  we write the adapted frame 

as { } { }., jj EEE =β  

By the straightforward calculation, we have the following: 

Lemma 1 [11, p. 159]. The Lie brackets of the adapted frame of TM satisfy the 
following identities: 

 [ ] [ ] [ ] .0,,,,, =Γ== ija
a
jiija

a
ijb

b
ij EEEEEERyEE  (2.3) 

Lemma 2 [3]. Let V~  be a vector field on TM. Then 

 
[ ] ( ) ( )

[ ] ( ) ( )⎪⎩

⎪
⎨
⎧

−Γ+−=

−Γ−+−=

,~~~,~
,~~~~,~

a
a

i
a
bi

b
a

a
ii

a
a

i
a
bi

ba
icb

bc
a

a
ii

EVEVEVEEV

EVEVRyVEVEEV
 (2.4) 

where ( ) .~~~~
a

a
a

ahh EVEVVV +=  

Let g be a Riemannian metric with components .jig  Then we see that 

 ij
ji

ij
ji ydxgdxdxag δ+= 2~  (2.5) 

is non-singular and can be regarded as pseudo-Riemannian metric on TM, where 

( )jiaa =  is a symmetric tensor field of the type ( )2,0  on M and +=δ ii dyy  

,kli
lk ydxΓ  i

lkΓ  being Christoffel symbols formed with g. The metric (2.5) has 

components 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== βγ 0

~~
ji

jiji

g

ga
gg  

with respect to the adapted frame on TM, that is, it coincides with ,~ agg VC +=  

where gC  and aV  denote the complete and vertical lifts of g and a to TM, 

respectively. The synectic metric g~  was determined by Talantova and Shirokov [8] 

to study the differential geometry of tangent bundles of Riemannian manifolds. Their 
paper is related to the geometry of the space of n dual variables. The concept of a 
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dual number is the analogue of a complex number: jyx +  with .02 =j  Since the 

set of dual numbers is represented geometrically by ,2R  the set of n dual variables is 

represented by .2 nnnn TRRRR =×=  They showed that the space nTR  with a 
certain metric represents a space of n dual variables with purely dual constant 

curvature. This special metric on nTR  is related projectively to the complete lift of 

the standard metric on .nR  Afterwards, Pavlov [6] studied the tangent bundles 

with a metric ag VC +λ  and also proved that the substitution of the metric 

agg VCC +λ→  is a necessary and sufficient condition on preserving the “angles” 

between holomorphic planes. 

Remark. In the case of ,ga =  the synectic metric g~  on TM coincides with the 

lift metric III +  on TM, where ( )jiaa =  is a symmetric tensor field of the type 

( )2,0  on M and ( )ijgg =  is a Riemannian metric on M. The metric III +  is 

introduced by Yano and Ishihara [11, p. 147-155]. Also, they proved that the tangent 
bundle TM with the metric III +  has vanishing scalar curvature. 

We now consider local 1-forms αω  defined by B
B dxαα =ω A~  in ( ),1 U−π  

where 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

δΓ

δ
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=α

h
j

h
sj

s

h
j

h
j

h
j

h
j

h
j

B
y

0
~~

~~
~

AA

AA
A  (2.6) 

is the inverse matrix of the matrix 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

δΓ−

δ
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=β h

j
h
sj

s

h
j

h
j

h
j

h
j

h
jA

y

0

AA

AA
A  (2.7) 

of frames changes .A
AE ∂= ββ A  These 2n 1-forms αω  are linearly independent on 

TM. We call the set { }αω  the dual adapted coframe. 

For various types of indices, we have 

 
⎪⎩

⎪
⎨
⎧

∂=∂=

∂Γ−∂=∂=

,

,

jA
A
jj

h
h
sj

s
jA

A
jj

E

yE

A

A
 (2.8) 
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and 

 
⎪⎩

⎪
⎨
⎧

δ==ω

==ω

,~
,~

hBj
B

j

jBj
B

j

ydx

dxdx

A

A
 (2.9) 

where .ah
ba

bhh dxydyy Γ+=δ  

Since the adapted frame field { }βE  is non-holonomic, we put 

[ ] γ
γ
αββα Ω= EEE ,  

from which we have 

( ) .~α
γββγ

α
γβ −=Ω A

AA EE AAA  

Thus, according to equations (2.6), (2.7) and (2.8), the components of non-

holonomic object α
γβΩ  are given by 

 
⎪⎩

⎪
⎨
⎧

−=Ω−=Ω

Γ=Ω−=Ω

,

,

r
ljk

r
jl

r
lj

r
jl

r
lj

r
jl

R
 (2.10) 

all the others being zero, with respect to the adapted frame. 

If ∇~  denote the Levi-Civita connection of g~  from ( ) −∇−∇= XYYXT YX
~~~~~,~~

~~  

[ ] ,0~,~ =YX  ( ),~,~ 1
0 TMYX ℑ∈∀  then we have 

 α
γβ

α
βγ

α
γβ Ω=Γ−Γ ~~  (2.11) 

with respect to the adapted frame, where α
γβΓ

~  are components of the Levi-Civita 

connection .~
∇  

The equation ( ) ( ) ,0~,~~~ ~ =∇ ZYgX  ( )TMZYX l
0

~,~,~ ℑ∈∀  has form 

 0~~~~~ =Γ−Γ− γε
ε
δβεβ

ε
δγγβδ gggE  (2.12) 

with respect to the adapted frame. Thus, we have from equations (2.11) and (2.12) 

 ( ) ( ),2
1~~~~

2
1~ α

γβ
α
βγ

α
βγβγεβεγεγβ

αεα
βγ Ω+Ω+Ω+−+=Γ gEgEgEg  (2.13) 
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where ,~~ δ
εγδβ

αεα
γβ Ω=Ω gg  αεg~  are the contravariant components of the metric g~  

with respect to the adapted frame: 

 ( ) .
0~

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=αε

hrhr

hr

ag

g
g  (2.14) 

Taking account of equations (2.10), (2.13) and (2.14), for various types of 
indices, we find 

,0~,~,~
=Γ+=ΓΓ=Γ h

ji
h
ji

h
bji

bh
ji

h
ji

h
ji HRy  

 0~,0~,0~,~,0~
=Γ=Γ=ΓΓ=Γ=Γ h

ij
h
ij

h
ij

h
ji

h
ij

h
ji

 (2.15) 

with respect to the adapted frame, where h
jiΓ  denote the Levi-Civita connection 

components constructed with g on M with respect to the natural frame { }i∂  and h
jiH  

is a tensor field of type ( )2,1  defined by ( )jirjririj
hrh

ji aaagH ∇−∇+∇= 2
1  [8] 

(see [10, p. 166]). 

If X~  is a vector field on TM with frame components ,~αX  then it can be written 
that the frame components 

 ( ) ,~~~~~
μ

μ
λααλαλ Γ−=∇ XXEX  (2.16) 

where α
λμΓ

~  being given by equation (2.15). 

From equations (2.15) and (2.16), we have 

Lemma 3. Let ∇~  be a Levi-Civita connection of the synectic metric on TM 
defined as follows: 

 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∇=∇

Γ=∇

++Γ=∇

.0~,0~
,~

,~

iEiE

a
a
jiiE

a
a
ji

a
bji

b
a

a
jiiE

EE

EE

EHRyEE

jj

j

j

 (2.17) 

Let us consider a tensor field J~  of type (1, 1) on TM by 

,~,~ XXJXXJ HVVH −==  
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for any ( ),1
0 MX ℑ∈  i.e., ,~

ii EEJ =  .~
ii EEJ −=  Then we obtain .~2 IJ −=  Therefore, 

J~  is an almost complex structure on TM. This almost complex structure is called the 

adapted almost complex structure. It is known that J~  is integrable if and only if M 
is locally flat [11, p. 118]. 

3. Proofs of the Theorems 

Proof of Theorem 1. Here we prove only the necessary condition because it is 

easy to prove the sufficient condition. Let V~  be an infinitesimal holomorphically 

projective transformation with the associated 1-form Ω~  on TM 

 ( ) ( ) ( ) ( ) ( ) ( ) ,~~~~~~~~~~~~~~~~~,~~~ XJYJYJXJXYYXYXLV Ω−Ω−Ω+Ω=∇  (3.1) 

for any ( ).~,~ 1
0 MYX ℑ∈  

From ( ) ( ) ,~~~~,~~ jiijjiijijV EEEEEEL Ω−Ω−Ω+Ω=∇  we obtain 

 h
ji

h
ij

h
ij V δΩ−δΩ−=∂∂

~~~  (3.2) 

and 

 .~~~ h
ji

h
ij

h
ij V δΩ+δΩ=∂∂  (3.3) 

Contracting i and h in equation (3.2), we have 

 ,~~
ψ∂=Ω jj  (3.4) 

where .~
1

1~ a
aVn ∂

+
−=ψ  Hence equation (3.2) is rewritten as follows: 

 ( ) ( ) .~~~ h
ji

h
ij

h
ij V δψ∂−δψ∂−=∂∂  (3.5) 

Differentiating equation (3.5) partially, we have 

( ) ( ) h
jik

h
ijk

h
ijk V δψ∂∂−δψ∂∂−=∂∂∂ ~~~  

( ) ( ) h
iki

h
kij δψ∂∂−δψ∂∂−= ~~  

( ) ( ) ,~~ h
kji

h
jki δψ∂∂−δψ∂∂−=  (3.6) 
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from which we obtain 

 ( ) .0~2~ =δψ+∂∂∂ h
i

h
ijk V  (3.7) 

Therefore, we can put 

 ( )h
i

h
ij

h
ji VP δψ+∂∂= ~2~  (3.8) 

and 

 ,~2~ h
i

h
i

h
ai

ah
i VPyA δψ+∂=+  (3.9) 

where h
iA  and h

jiP  are certain functions which depend only on the variables ( ).hx  

The coordinate transformation rule implies that ( ) ( )MAA h
i

1
1ℑ∈=  and ( )h

jiPP =  

( ).1
2 Mℑ∈  

Using equation (3.5), we have 

 { ( ) ( ) } 0~~~2 =δψ∂+δψ∂+∂∂=+ h
ji

h
ij

h
ij

h
ij

h
ji VPP  (3.10) 

from which, using equation (3.8), we obtain 

 ( ) ( ) ( ) .~~
2
1 h

ji
h
ij

h
ij

h
ji

h
ji PPP δψ∂−δψ∂=−=  (3.11) 

On the other hand, using equation (3.9), we have 

 ,~
a

ay Ψ+ϕ−=ψ  (3.12) 

where a
aAn 1

1
−

−=ϕ  and ,1
1 a

iai Pn −
=Ψ  from which 

 .~~
iii Ψ=ψ∂=Ω  (3.13) 

Using equations (3.9), (3.11) and (3.13), we obtain 

,2~ h
ia

a
i

hh
i

h
i

h
i yyAV δΨ−Ψ−ϕδ+=∂  

from which 

 ,2~ h
a

ahh
a

ahh yyyAyBV Ψ−ϕ++=  (3.14) 

where hB  are certain functions which depend only on ( ).hx  The coordinate 

transformation rule implies that ( ) ( ).1
0 MBB h ℑ∈=  
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Similarly, from equation (3.3), there exist ( ),0
0 Mℑ∈ψ  ( ) ( ),0

1 ni Mℑ∈Φ=Φ  

( ) ( )MDD h 1
0ℑ∈=  and ( ) ( )MCC h

i
1
1ℑ∈=  satisfying 

 ,~
a

ay Φ+ψ=ϕ  (3.15) 

 iii Φ=ϕ∂=Ω ~~  (3.16) 

and 

 ,2~ h
a

ahh
a

ahh yyyCyDV Φ+ψ++=  (3.17) 

where a
aV

n
~

1
1~ ∂
+

=ϕ  and .1
1 a

aCn −
−=ψ  

Next, from equation (3.1), we have 

 ( ) ( ) jiijjiijijV EEEEEEL Ψ+Ψ+Φ+Φ=∇ ,~
~  (3.18) 

or 

( ) ( ) .,~
~ jiijjiijijV EEEEEEL Ψ+Ψ+Φ+Φ=∇  

From equation (3.18), we get 

( ) ( ) a
a
ji

a
ija

a
ji

a
ij EE δΨ+δΨ+δΦ+δΦ  

{( ) ( )} abi
a
jji

a
b

b
i

a
j

a
ji EyA Ψ∇δ+Ψ∇δ−ϕ∂δ+∇= 2  

{( ) ( a
bij

a
bih

h
j

a
hij

h
b

ba
ji

h
j

a
hi

a
hij

h
i

a
j

a
ji RRARAyHAHRBC ϕ+++ϕ+++ψ∂δ+∇+ 422  

) ( )} .2 a
a
bijc

a
icbj

cb
b

a
jij

a
bibi

a
jji

b
a ERRyyHH Ψ−Ψ+Ψ−Ψ−Φ∇δ+Φ∇δ+  (3.19) 

Comparing both hands of the above equation, we obtain 

,0, =Φ∇ϕ∂=Φ jijj  

,0, =Ψ∇ψ∂=Ψ jijj  

,a
ji

a
ij

a
ji A δΦ−δΦ=∇  

,2 a
ji

h
j

a
hi

a
hij

ha
ji

a
ij

a
ji HAHRBC ϕ−−−δΨ−δΨ=∇  

.0,0,2 =Ψ=Ψϕ−= a
jil

a
kjil

a
bij

a
hij

h
b HRRRA  (3.20) 
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Lastly, from ( ) ( ) ,,~
~ jiijjiijijV EEEEEEL Φ−Φ−Ψ+Ψ=∇  we obtain 

( ) ( ) a
a
ji

a
ija

a
ji

a
ij EE δΦ+δΦ−δΨ+δΨ  

{ } a
a
ji

a
h

h
ji

a
jiB EHAHL ϕ−−Γ= 2  

{( )h
j

a
hi

h
i

a
jh

a
ji

a
h

h
ji

a
jih

ha
jiD BHBHHCHHBL ∇+∇+ψ−−∇+Γ+ 2  

( ( a
jih

h
b

h
j

a
bhi

h
i

a
bjh

a
h

h
bji

a
bjih

ha
hji

h
b

b HABRBRCRRBRCy ∇+∇+∇+−∇++  

) ) ( a
cibj

a
bijc

a
bjic

cba
bij

a
jbi

a
jib

a
hij RRRyyHHHH Φ−Φ+Φ+Φ−Φ−∇ϕ+∇− 32  

)} ,22 a
a
hibj

h
c

a
bjih

h
c

a
cibj

a
bjic

a
cjbi ERARARRR ∇+∇+∇ϕ+∇ϕ+Φ−  (3.21) 

from which, we get the following important information: 

 ,2 a
ji

a
h

h
ji

a
ji

a
ij

ha
hji

a
ij

a
jiB HAHBRBL ϕ++δΨ+δΨ=+∇∇=Γ  (3.22) 

a
hji

ha
ijD RDDL +∇∇=∇  
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h
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a
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a
ji BHBHH ∇−∇−ψ+  (3.23) 

h
j

a
bhi

h
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a
bjh

a
hji

h
b

a
h

h
bji

a
bjih

h BRBRRCCRRB ∇−∇−−=∇  

( ) ,2 a
jib

a
hij

a
jih

h
b HHHA ∇ϕ−∇−∇−  (3.24) 

.0,0 =Φ=Φ a
jil

a
bjil HR  (3.25) 

This completes the proof. 

Using this Theorem 1, we at last come to the following: 

Proof of Theorem 2. Let V~  be a non-affine infinitesimal holomorphically 
projective transformation on M. Using equation (3) in Theorem 1, we have 

.022 =Ψ∇=Φ∇ ii  Hence, Φ  and Ψ  are constants on M. Suppose that 

M is not locally flat and the covariant derivative of symmetric tensor field ( )jia  of 
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type ( )2,0  is non-zero, then 0=Ψ=Φ  by virtue of equations (10) and (11) in 

Theorem 1, that is, V~  is an infinitesimal affine transformation. This is a contradiction. 
Therefore, M is locally flat and the covariant derivative of symmetric tensor field 
( )jia  of type ( )2,0  is zero. In this case, TM is also locally flat [8, 10]. 
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