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Abstract 

Nowadays, industrial companies are frequently faced with the problem of 
where the capital should be spent and which combination of projects 
should be selected from several possible project mixes. Traditional 
methods of portfolio selection, that is how to select a combination of 
possible projects, are index-ranking and linear programming. In recent 
years, we have been able to observe that these methods are insufficient, 
particularly in long-term programming. The nature of real-world problems 
requires taking into account uncertainty of the input data and it is very 
difficult to clearly know all information in deterministic parameters. In 
this paper, we consider the problem of portfolio selection in an oil and gas 
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company to motivate our study. We model this problem as a stochastic 
programming problem and develop a fuzzy programming approach for 
solving such a problem. 

1. Introduction 

Nowadays, industrial companies have to face with many challenges such as 
which combination of projects gives them the maximum benefit. Consider, for 
example, a typical large oil and gas company. Such a company operates many 
explorations and production projects, which involve several billion dollars every 
year. Here the company has the difficult task of portfolio selection from a large 
number of competing exploration and production projects for immediate or future 
operation under limited amount of investments [7]. 

Companies have traditionally used index-ranking method for portfolio selection. 
In this method, they first rank their projects based on economic metrics such as net 
present value, internal rate of return, period of payback among others. They then 
select the projects beginning at the top of this ranking and continue until a certain 
financial has been met. Unfortunately, this method is rarely adequate, because in 
practice a company measures their performance against more than one economic 
metric and has many constraints. This is where optimization models come into play. 
In fact, the natural solution to overcome the shortcoming of index-ranking method is 
to use linear programming models. This approach has been used by Lessard [6] for 
portfolio optimization in the energy sector. Here the task is to select a portfolio so 
that maximize/minimize one or more value in which satisfies the constraints in the 
form of annual corporate goals and asset dependencies. 

However, in the energy sector there are many challenges in implementing 
portfolio selection. Let us consider the portfolio selection in oil and gas industry 
which is a fundamental subject of capital budgeting in the energy sector. Oil and gas 
companies have the difficult task of portfolio selection from a large number of 
competing exploration and production projects for immediate or future operation 
under limited amount of investments. The difficulties arise from the fact that 
exploration and production projects face both local uncertainties involving the 
discovery and production of oil at a given site, and global uncertainties involving 
prices, politics etc. In particular, the nature of these problems requires taking into 
account uncertainty of the input data such as oil price, oil production, capital etc., 
and it is very difficult to clearly know all information in deterministic parameters. 
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The traditional way to evaluate any uncertainty in the parameters is through a post-
optimization analysis, with the help of sensitivity analysis and parametric 
programming. However, none of these methods is suitable for overall analysis of the 
effect of imprecision in parameters. Another way to handle uncertainty is to use 
stochastic programming according to the probability theory which is the context of 
this paper. In particular, the aim of this paper is to formulate the portfolio selection 
problem in oil and gas industry as a stochastic programming problem and propose a 
fuzzy programming approach for finding an efficient portfolio. 

This paper is organized as follows. In Section 2, the portfolio selection of oil 
and gas assets is modeled as a stochastic programming problem. In Section 3, an 
approach is presented for solving the resulting problem based on the well-known 
work of Bellman and Zadeh [1] in fuzzy programming. This approach is applied in 
Section 4 to solve a problem of Gama Petroleum, a hypothetical oil and gas 
company in Brazil. In Section 5, conclusions and extensions are presented. 

2. Problem Description 

Given a set of n assets, the aim is to maximize the net present value (NPV), 
subject to a capital limit stating that we can spend no more than iC  million US 

dollars (MMUS$) and a production limit stating that we must produce at least iP  

million barrels (MMbbl) over each of the next L year. Assume that jnpv  represents 

the NPV of jth asset and jip ,  and jic ,  represent the production and capital for the 

jth asset in the ith year, respectively. It is known that NPV of a portfolio is the sum 
of equity-proportioned NPV of each asset and similarly for annual values of 
production or capital. This problem is formulated as the following linear 
programming problem: 

∑
=

=
n

j
jj xnpvNPV

1
max:LP  

s.t. ∑
=

=≥
n

j
ijji LiPxp

1
, ,...,,2,1,  
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=≤
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j
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 ,...,,2,1,10 njx j =≤≤  (1) 
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where jx  represents the equity interest of the jth asset. Here all problem data must 

be well defined and precise, which is often impossible in petroleum industry. For 

example, let ∗j th asset be an oil field development. Thus, its NPV depends on oil 

price in future years and other parameters. Obviously, oil price will vary during the 
next years. In other words, NPV as well as annual values of production or capital are 
uncertain and not deterministic. 

The traditional way to handle the uncertain parameters of a linear programming 
model is to perform post-optimization analysis or parametric programming. In this 
approach usually parameters are analyzed separately, which is not suitable for an 
overall analysis of the effect of imprecision in parameters. Therefore, since the 
single parameter sensitivity analysis is not appropriate when there are many 
uncertain parameters, the other approaches such as robust optimization [2] or 
stochastic programming [4] are used in order to investigate the overall effect of all 
uncertain parameters simultaneously. Thus, it is reasonable to model the portfolio 
selection problem as follows: 

n m
1

SLP : max
n

jj
j

NPV npv x
=

= ∑  

s.t. ∑
=

=≥
n

j
ijji LiPxp

1
, ,...,,2,1,ˆˆ  

 ∑
=

=≤
n

j
ijji LiCxc

1
, ,...,,2,1,ˆˆ  

 ....,,2,1,10 njx j =≤≤  (2) 

Here and subsequently, the presence of a hat above a parameter is used to indicate 
that it is a random variable. Each random parameter can have any probability 
distribution, but for the sake of simplicity, we assume that these random parameters 
follow normal probability distributions as given below: 

m ( (m ) (m ) )~ , , 1, ..., ,j j jnpv N m npv npv j nσ =  

( ( ) ( )) ,...,,1,...,,1,ˆ,ˆ~ˆ ,,, LinjppmNp jijiji ==σ  

( ( ) ( )) ,...,,1,...,,1,ˆ,ˆ~ˆ ,,, LinjccmNc jijiji ==σ  
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( ( ) ( )) ,...,,1,ˆ,ˆ~ˆ LiPPmNP iii =σ  

( ( ) ( )) ,...,,1,ˆ,ˆ~ˆ LiCCmNC iii =σ  

where ( ).m  and ( ).σ  denote mean and standard deviation of the distribution, 

respectively. Moreover, we assume that the random parameters are independent (so 
that the covariance matrix is an identity matrix). 

The SLP model (2) is a stochastic linear programming problem and one can use 
the existing methods of stochastic programming for solving it. Two main approaches 
to stochastic programming are recognized as chance constrained programming [3] 
and two-stage programming [5]. However, we develop a fuzzy programming 
approach as discussed in the next section. 

3. Solution Approach 

Bellman and Zadeh [1] presented an application of the fuzzy set theory in 
decision making problems. Specifically, they introduced three basic concepts: fuzzy 
goal (G), fuzzy constraint (C), and fuzzy decision (D) associated with a decision 
making problem in a fuzzy environment on a universe set X. The fuzzy goal and 
fuzzy constraint are represented by fuzzy sets G and C, respectively, and fuzzy 
decision D is defined as the intersection of the fuzzy goal and the fuzzy constraint, 
that is .CGD ∩=  In particular, D is characterized by its membership function as: 

( ) ( ) ( ){ } .,,min Xxxxx CGD ∈μμ=μ  

The decision rule is to select the solution having the highest membership of D. 
Therefore, the decision making problem reduces to the following problem. 

( ) ( ) ( ){ }.,minmaxmax xxx CGXxDSx
μμ=μ

∈∈
 

In the context of stochastic optimization and hence our portfolio selection 
problem, since the objective function is random-valued and there are no universal 
concepts of optimal solutions to be accepted widely, it is an important task to define 
the concept of optimal portfolios and investigate their properties. In this section, we 
define an efficient portfolio and present an algorithm for finding such a solution 
based on the seminal work of Bellman and Zadeh [1]. We begin the discussion by 
introducing the concept of fuzzy constraint. 

Definition 3.1 (Fuzzy constraint). Let X represent the set of all possible 



M. M. NASRABADI, M. A. YAGHOOBI and M. MASHINCHI 66 

portfolios of n assets, ( )xPî  and ( )xCi
ˆ  denote the left-hand side of ith production 

and capital constraints of model (2), respectively. Corresponding to a given portfolio 
:Xx ∈  

(1) The fuzzy production constraint corresponding to the ith production 
constraint of model (2), denoted by ,, iProμ  is defined by its membership function 

as: 

( ) ( ( ) ),ˆˆ
, iiiPro PxPProbx ≥=μ  

where ( ) ∑ =
= n

j jjii xpxP 1 , .ˆˆ  The fuzzy production constraint corresponding to the 

model (2) is given by 

( ) { ( )} .,min ,1
Xxxx iProLiPro ∈μ=μ

≤≤
 

The fuzzy capital constraint Capμ  is similarly defined. 

(2) The fuzzy constraint corresponding to the model (2) is defined as the 
intersection of the fuzzy production constraint and the fuzzy capital constraint as 

.CapProC μμ=μ ∩  

Using Min operator, the fuzzy constraint is characterized by membership function 

( ) { ( ) ( )} .,,min XxXXx CapProC ∈μμ=μ  

(3) A portfolio Xx ∈  is said to be α-feasible ( )10 ≤α<  if ( ).xCμ≤α  We 

refer to α as the degree of feasibility of x. 

Lemma 1. Let ( ].1,0∈α  The portfolio ( )nxxx ...,,1=  is α-feasible if and 

only if 

( ) ( ) ( ) ( ) ( )∑ ∑
= =
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⎥
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1
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⎢
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1
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1
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where φ represents the cumulative distribution function of the standard normal 
variable ( ).1,0N  
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Proof. Obviously ( ) α≥μ XC  if and only if ( ) α≥μ XiPro,  and ( )XiCap,μ  

α≥  for all ....,,1 Li =  We show that ( ) α≥μ XiPro,  for Li ...,,1=  is equivalent 

to (3). By Definition 3.1, we have 

( ( ) ) ....,,1,ˆˆ LiPXPProb ii =α≥≥  

Set ( ),ˆˆ XPPh iii −=  then we can write 

( ) LihProb i ...,,1,0 =α≥≤  

or equivalently 

 ( )
( )

( )
( ) ....,,1, Lih

hE
h

hEhProb
i
i

i
ii =α≥⎥⎦

⎤
⎢⎣
⎡

σ
−

≤
σ
−  (5) 

It is clear that 
( )

( )i

ii hEh
ασ

−
 is a standard normal random variable with mean zero and 

variance one. Hence, we have 

( )
( ) ....,,1, LiE

i
i =α≥⎥⎦
⎤

⎢⎣
⎡

ασ
α−

φ  

The cumulative distribution function φ is an increasing function. Thus, the last 
inequality implies 

 ( )
( ) ( ) ....,,1,1 Lih

hE
i
i =αφ≥

σ
− −  (6) 

For each ,...,,1 nj =  ,...,,1 Li =  we know that ijp̂  is normally distributed 

random variables and so is ih  for Li ...,,1=  with 

 ( ) ( ) ( )∑
=
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n

j
jijii xpmPmhE

1
,ˆˆ  (7) 
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Therefore substituting (7) and (8) into (6) implies that 

( ) ( ) ( ) ( ) ( )∑ ∑
= =

− =≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σ+σαφ+−

n

j

n

j
jijijiji LixpPxpmPm
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2221 ,...,,1,0ˆˆˆˆ  (9) 

which establishes the first inequality of the lemma. 

Similarly, we can show ( ) α≥μ XiCap,  for Li ...,,1=  is equivalent to (4). ~ 

The next step is to introduce the concept of fuzzy goal. To do this, we consider 
the following bi-objective mathematical programming problem: 

(n ) (m )
1

-model : max
n

jj
j

E E NPV E npv x
=

= ∑  

max α 

s.t. constraints (3) and (4) hold, 

,...,,1,10 njx j =≤≤  (10) 

where E denotes the mathematical expectation. This model is a non-linear multiple 
objective model in general and is named E-model, hereafter. The E-model (10) is a 
crisp non-linear multiple objective problem that simultaneously computes the 
maximum possibilistic mean value of each single objective and degree of feasibility 
over all possible portfolios x. However, for some fixed value of α, it reduces to a 
single objective nonlinear programming problem that can be easily solved. It is clear 

that finding the best value ∗α  is equivalent to determining maximum value of 
( ]1,0∈α  so that the following problem has a feasible solution 

(n ) (m )
1

max
n

jj
j

E NPV E npv x
=

= ∑  

s.t. constraints (3) and (4) hold, 

....,,1,10 njx j =≤≤  (11) 

This approach indicates that maximizing degree of feasibility is much more 
important than maximizing possibilistic mean value of each objective. In fact, in 
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solving the E-model (10) we have implicitly made use of the lexicographic method 
for solving multiple objective linear programming problems [9]. 

Since ,10 ≤α<  we can present a bi-section algorithm for solving E-model as 
follows: 

Bi-section Algorithm 1 (BA1) 

Step 1. Set ,0=α  0=αL  and ,1=αU  where Lα  and Uα  are the lower and 

upper bounds for the best value ,∗α  respectively. 

Step 2. Test model (11). If model (11) is infeasible, then stop and conclude 
model (2) is also infeasible. Otherwise set 1=α  and go to Step 3. 

Step 3. Test model (11). If model (11) has a feasible optimal solution, say =∗x  

( ),...,,1
∗∗
nxx  then ( )∗∗ =α x,1  is an optimal solution for model (2) and stop. 

Otherwise go to Step 4. 

Step 4. Set ( ) 2UL α+α=α  and solve model (11). If model (11) has a 

feasible optimal solution then update the value of Lα  as .α=αL  Otherwise set 

.α=αU  Go to Step 5. 

Step 5. (Stopping Condition) If the difference between two consecutive values 
α is less than ε, then the algorithm is finished, where ε is an acceptable tolerance; 
otherwise go to Step 4. 

Now we can define fuzzy goal. 

Definition 3.2 (Fuzzy goal). Let (n )E NPV∗  be the maximum expected value of 

NPV computed by model (11) and X be the set of all possible portfolios of n assets. 

(1) The fuzzy goal corresponding to the model (2) is defined by its membership 
function as: 

( ) m (n )
1

, .
n

G jj
j

x Prob npv x E NPV x X∗

=

⎛ ⎞
⎜ ⎟μ = ≥ ∈
⎜ ⎟
⎝ ⎠
∑  

(2) A portfolio Xx ∈  is said to be β-optimal ( )10 ≤β≤  for model (2) if 

( ).xGμ≤β  We refer to β as the degree of optimality of x. 
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Lemma 2. Let ( ].1,0∈β  Then x is β-optimal if and only if 

(n ) (m ) ( ) (m )
1 2

1 2 2

1 1
0.

n n

j jj j
j j

E NPV m npv x npv x∗ −

= =

⎡ ⎤
⎢ ⎥− + φ β σ ≤
⎢ ⎥⎣ ⎦

∑ ∑  (12) 

Proof. We have 

( ) m (n ) (n (n ))
1

n

G jj
j

X Prob npv x E NPV Prob NPV E NPV∗ ∗

=

⎛ ⎞
⎜ ⎟μ = ≥ = ≥ ≥ β
⎜ ⎟
⎝ ⎠
∑  

if and only if 

(n (n ) )1 Prob NPV E NPV∗− ≤ ≥ β  

or equivalently 

(n (n ) ) ,Prob NPV E NPV∗≤ ≤ β  

where .1 β−=β  This relation can be rewritten as 

n (n )
(n )

(n ) (n )
(n )

,
NPV E NPV E NPV E NPV

Prob
NPV NPV

∗⎛ ⎞− −
≤ ≤ β⎜ ⎟⎜ ⎟σ σ⎝ ⎠

 

where 
n (n )

(n )
NPV E NPV

NPV
−

σ
 is a standard normal variable. By using cumulative 

distribution function, the later relation is stated as 

(n ) (n )
(n )

.
E NPV E NPV

NPV

∗⎛ ⎞−
φ ≤ β⎜ ⎟⎜ ⎟σ⎝ ⎠

 

From the above inequality and the fact that φ is an increasing function, we have 

(n ) (n )
(n )

( )1 .
E NPV E NPV

NPV

∗
−−

≤ φ β
σ

 

Since ( ) ( ),11 βφ−=βφ −−  and mnpv  is a normally distributed random variable with 

(n ) (m )
1

,
n

jj
j

E NPV m npv x
=

= ∑  
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(n ) (m )
1 2

2 2

1
,

n

jj
j

NPV npv x
=

⎡ ⎤
⎢ ⎥σ = σ
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∑  

we obtain the desirable inequality. ~ 

So far, we defined fuzzy constraint and fuzzy goal corresponding to model (2). 
Now we can define fuzzy decision. 

Definition 3.3 (Fuzzy decision). Let Cμ  and Gμ  be the membership functions 

of fuzzy constraint and fuzzy goal, respectively, of model (2). 

(1) We define the fuzzy decision corresponding to model (2) as follows: 

.GCD μμ=μ ∩  

Using Min operator, fuzzy decision is characterized by membership function 

( ) ( ) ( ){ } .,,min Xxxxx GCD ∈μμ=μ  

(2) A portfolio Xx ∈  is said to be γ-efficient ( )10 ≤γ≤  for model (2) if 

( ).xDμ≤γ  We refer to γ as the degree of efficiency of x. 

Following Bellman and Zadeh [1], the decision rule is to select the solution 
having the highest membership of the fuzzy decision. This leads to the following 
definition. 

Definition 3.4 (Efficient portfolio). The portfolio Xx ∈∗  is said to be an 

efficient portfolio for model (2) if there is no portfolio Xx ∈  such that ( )∗μ xD  

( ).xDμ<  

By introducing the auxiliary variable λ, finding an efficient portfolio reduces 
into the following problem: 

max λ 

s.t. ( ),xDμ≤λ  

....,,1,10 njx j =≤≤  (13) 

Notice that if ( )∗∗ λ,x  is an optimal solution of model (13), then ∗λ  represents the 
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degree of efficiency of optimal portfolio .∗x  By using Lemmas 1 and 2, we can 
rewrite model (13) to 

max λ 

s.t. ( ) ( ) ( ) ( ) ( )∑ ∑
= =

− ≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σ+σλφ+−

n
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j
jijijiji xpPxpmPm
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 ( ) ( ) ( ) ( ) ( )∑ ∑
= =

− ≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σ+σλφ+−
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ijijijij CxcCmxcm

1
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 (n ) (m ) ( ) (m )
1 2

1 2 2

1 1
0,

n n

j jj j
j j

E NPV m npv x npv x∗ −

= =

⎡ ⎤
⎢ ⎥− + φ λ σ ≤
⎢ ⎥⎣ ⎦

∑ ∑  

 ....,,1,10 njx j =≤≤  (14) 

We can easily establish the following result. 

Lemma 3. If model (14) is feasible (infeasible) for some fixed values of λ, then 
it is also feasible (infeasible) for all values less (greater) than λ. 

It is important to note that model (14) is a nonlinear programming model. 
However, by Lemma 3 and the fact that λ satisfies ,10 ≤λ≤  we can introduce the 
following method for solving model (14). 

Bi-section Algorithm 2 (BA2) 

Step 1. Set ,1=λ  0=λL  and ,1=λU  where Lλ  and Uλ  are the lower and 

upper bounds for optimal value of ,∗λ  respectively. 

Step 2. Test the existence of a feasible solution satisfying the constraints of 

model (14). If a feasible solution exists, say ( ),...,,1
∗∗∗ = nxxx  then ( )∗∗ =λ x,1  is 

an efficient portfolio for model (2). Otherwise go to Step 3. 

Step 3. Set ( ) 2UL λ+λ=λ  and test the existence of a feasible solution 

satisfying the constraints. If it has a feasible solution then update the value of Lλ  as 

.λ=λL  Otherwise set .λ=λU  
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Step 4 (Stopping Condition). If the difference between two consecutive values λ 
is less than ε, which is an acceptable tolerance, then the algorithm is finished 
otherwise go to Step 3. 

4. A Numerical Example 

In this section, we consider an example of portfolio optimization of 25 potential 
oil production projects. Table 1 presents the main characteristics of these projects 
including total oil production, total capital, and NPV. The data is due to Gama 
Petroleum, a hypothetical oil and gas company in Brazil, and is taken from Lima et 
al. [8]. 

The problem parameters of Table 1 are precise and deterministic. Due to 
uncertainty arising from inherent natural of oil production projects, we assume that 
the parameters are normal random variables with the following means and variances: 

m ( )~ , 0.12 ,j jjnpv N npv npv  

( ),10.0,~ˆ , jjji ppNp  

( ),6.0,~ˆ , jjji ccNc  

for .25...,,1=j  Moreover, we assume that the random parameters are independent. 

There is a capital limit stating that we can spend no more than C MMUS$ and a 
production limit stating that we must produce at least P MMbbl. We suppose that C 
and P are also normal random parameters with the following characteristics: 

( ),1000,19000~ˆ NC  

( ).1500,25000~ˆ NP  

The problem now is to select a combination of potential projects so that NPV is 
maximized and the capital and production limitations are satisfied. This can be 
modelled as model (2). In what follows, we present the results of applying our 
approach for solving this problem. 

The first step is to solve E-model (10). By applying Bi-section Algorithm 1 with 
tolerance error less than 0.001 ( ),001.0.,e.i =ε  we get 

,959.0=α∗     =∗x (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0.508, 1, 1, 1, 1, 0, 1) 
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with maximum expected value (n ) 3793340.78.E NPV∗ =  The next step is to solve 

the model (14) by applying Bi-section Algorithm 2. This leads to the following 
combination of 25 projects 

=∗x (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0.846, 0.17, 1, 1, 1, 1, 0, 1) 

with degree of efficiency 948.0=λ∗  and expected NPV (n ) 3872475.76.E NPV∗ =  

Table 1. Main characteristics of 25 potential projects 

Projects ( )j  Production ( )jp
(MMbbl) 

Capital ( )jc  
(MMUS$) 

Net present value ( )jnpv  
(MUS$) 

1 695.210 1669.30 46278.96 

2 999.400 1466.86 346050.80 

3 748.127 1157.37 28562.40 

4 214.750 1087.52 140172.27 

5 643.200 580.00 339119.55 

6 499.706 1020.93 48354.53 

7 389.305 1022.00 130332.73 

8 305.300 1263.00 22314.76 

9 410.790 660.94 535741.33 

10 703.391 1790.83 243595.91 

11 193.272 992.42 126638.26 

12 268.444 1083.44 233245.61 

13 335.833 1226.00 85887.38 

14 350.375 914.58 155555.96 

15 287.555 454.96 459233.76 

16 449.731 910.62 93419.94 

17 514.560 518.67 254179.93 

18 625.690 1560.45 84482.13 

19 773.730 1980.91 187566.08 

20 897.740 1557.64 19360.56 
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21 832.834 1524.64 186017.33 

22 1199.20 1686.77 41867.82 

23 1399.16 2002.00 474417.09 

24 214.750 1050.35 145824.82 

25 710.790 855.10 497372.86 

5. Conclusion and Extension 

We have proposed a stochastic programming model for the portfolio 
optimization problem in petroleum industry in which the profit coefficients as well 
as the capital and production coefficients of assets are random variables with normal 
distributions. Further, based on the fuzzy decision making theory a solution 
approach is suggested. However, another way to handle imprecision in the 
parameters is to consider the knowledge of experts about parameters as fuzzy 
numbers and model portfolio selection problem as a fuzzy programming problem, 
which gives us the conceptual and theoretical framework for dealing with 
complexity, imprecision and vagueness [10]. It is worth noting that the approach of 
this paper can be extended to this case without any difficulties. 

We conclude the paper by mentioning that although the focus of this paper was 
on the portfolio optimization problem of oil and gas assets, our theoretical results 
can be applied for many instances of practical applications. Moreover, the approach 
of this paper can be applied to find an efficient solution to any stochastic linear 
programming problem whose all parameters are random variables with normal 
distributions. 
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