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Abstract

In the classical Black-Scholes model, the risk asset is taken in a standard
Brownian environment, where the risk is quantified by a constant
volatility parameter. It has been proposed by many authors that the
volatilities should be modeled by a stochastic process to obtain a more
realistic model. For example, see Fouque et al. [7, 8], Cotton et al. [5], and
Kallianpur and Karandikar [15]. Precedent is singular perturbation
analysis for financial markets with stochastic volatility, which is a
function of fast mean-reverting Ornstein-Uhlenbeck process driven by a
standard Brownian motion.

Here we consider the European call option in a fractional Black-Scholes
model in a financial market that has two instruments: a risk-less asset and
a risky asset. A risky asset process X is governed by a standard Brownian
motion W, whereas stochastic volatility is a function of fast mean-
reverting Ornstein-Uhlenbeck process Y which is influenced by a
fractional Brownian motion By with Hurst parameter H e (1/2,1). We

are interested in three parameters describing Y: (i) the effective volatility
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G which is obtained by the average with respect to the long-run
distribution of Y, (ii) the rate of mean reversion a which is characterized

in terms of /e with a small parameter ¢, and (iii) the variance vZH of the

long-run distribution of Y which is dependent on Hurst parameter H.

Our aim is to obtain asymptotics of the price of a European call option as
¢ — 0. We can derive the pricing partial differential equation in terms of
€, and obtain that the corrected Black-Scholes price is given by sum of the
classical Black-Scholes price with constant volatility and the corrected
term. Our theorem is an extension of the results in Fouque et al. [7] and
Kallianpur and Karandikar [15] to a fractional Black-Scholes model with
uncorrelated W and By .

1. Stochastic Volatility

The simplest financial derivative is a European call option, which can be priced
by the classical Black-Scholes formula and the risk is quantified by a constant
volatility parameter. A natural generalization is to model the volatility by a stochastic
process. In reality, the volatility process cannot be directly observed. However
through empirical studies of the stock price returns, one has observed that the
estimated volatility fluctuates randomly around a mean level. The process is said to
be mean-reverting.

We are motivated by Fouque et al. [7] and interested in more realistic market
models, particularly ones in which volatility is uncertain. Andersson [1], Cotton
et al. [5], Fouque et al. [7, 8], Jonsson and Sircar [14] and Kallianpur and Karandikar
[15] write the canonical class of stochastic volatility models as a positive function of
a simple ergodic Ito process, a mean-reverting Ornstein-Uhlenbeck process:

dX (t) = pX (t)dt + o(t) X () dW (), (1.1)
o(t) = f(Y(t)), (1.2)
dY(t) = a(m — Y(t))dt + B(pdW (t) + y1 - p2dB(t)). (1.3)

Here (W(t)) and (B(t)) are independent standard Brownian motions with -1 <
p <1 the instantaneous correlation coefficient between asset price (X(t)) and
volatility shocks. The factor (Y(t)) is called the volatility-driving process and f is

some positive suitably regular function whose specification is unimportant for the
principal asymptotic approximation.
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Recall that . measures the characteristic speed of mean-reversion of (Y(t)) and

v2 = BZ/(Zcx) is the variance of the long-run distribution, measuring the typical
size of the fluctuation of volatility-driving process.

Our main references are Fouque et al. [7] and Kallianpur and Karandikar [15];
the authors introduce the scaling

a=1s B=(2v)/Ve,
where 0 < e <1 and v = O(1) (fixed), to model fast mean-reversion (clustering)
in market volatility, derive the pricing partial differential equation in terms of ¢, and
finally, obtain a corrected Black-Scholes price formula by singular perturbations.
Let (W(t)) be a standard Brownian motion and (By(t)) be a fractional

Brownian motion with Hurst parameter H e (1/2, 1). Then, our purpose is to obtain

a corrected Black-Scholes price formula in a fractional Brownian environment,
where (W (t)) and (By(t)) are uncorrelated, influencing risky asset process (X (t))

and volatility-driving process (Y (t)), respectively. Namely, our model corresponds
to (1.1)-(1.3) with {W(t), B(t); p} replaced by {W(t), By (t); p = 0}.

It remains to be proved that a corrected Black-Scholes price formula can be
derived in the case where the sources of fluctuations {W(t), B(t); p} in (1.1)-(1.3)

are replaced by the following:
(i) W (), B (t) p = O},
(i) Wy (t), B(t); p =0 or p = 0},
(iii) Wiy (£), By (t) p= 0 or p =0},

with another fractional Brownian motion Wy (t). However, if we appeal to the
fractional Wick-I1to calculus, then the stochastic integral o(t) X(t)dW (t) in
equation (1.1) is defined in the sense of the Wick product such that o(t) ¢ X(t)

0 dWy (t). Further, we shall need the explicit form of the Malliavin ¢-derivative,

such that D&n(t) of a random process n(t), which appears in the fractional Ito

formula. Furthermore, we shall need the explicit form of the fractional Girsanov
formula for risk-neutral measure and the risk premium factor (market price). These
provide us with more difficulty in calculations.
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A simple model is the case where the risky asset X(t) is under a fractional
Brownian motion and the volatility o(t) is a rapidly varying deterministic function.
Namely, let Wy (t) be a fractional Brownian motion with Hurst parameter H e

(1/2,1) and ¢ be a small parameter such that 0 <g < 1. Let us consider the e-

dependent market (A(t), X*(t)), 0 <t <T, such that
dA(t) = rA(t)dt, A(0) =1,
dX &(t) = pX ®(t)dt + o®(t) X (t)dWh (1), X®(0) = x € R,,
c®(t) = YE(t).
Here Y #(t) is the solution of the following ordinary differential equation:
edY®(t)=alb-Y®(t)]dt, O0<t<T,
Yo(0) = yo € Ry,
with constants a > 0 and b > 0. Then we have
V() =b + (3 - jexp( -2t
Yét)—>b a &—>0 for t>0.

The constant b is also asymptotically stable value in the sense that Y®(t) — b as

t > . Let C%(t, X) (resp. CO(t, X)) be the European call option price as
obtained by the fractional Black-Scholes formula with the deterministic volatility

function c®(t) (resp. the constant volatility b). Then, Narita [19] shows that as

ce—>0

cét, X)=cot x)+0(E") for t>o

where the constants appearing in the big-oh notation O(-) are independent of .

2. Fractional Black-Scholes Model

Fractional Brownian motion (fBm) has been applied to describe the behavior to
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prices of assets and volatilities in stock markets. The long-range dependence self-
similarity properties make this process a suitable model to describe these quantities;
we shall give some details of fBm in Section 3.

Let us consider the fractional Black-Scholes (fractional BS) model with T the
time of maturity, where the price of a risk-less asset (a bank account or bond) A(t)

attime t € [0, T] and the price of a risky asset (a stock) X(t) attime t € [0, T] are

given by the following equations:

dAt) = rA(t)dt,  A(0) = 1.

Here r represents the constant risk-less interest rate and hence A(t) = e™,

X (t) = uX (t)dt + o(t) X (t)dW (1), 2.1)
o(t) = f(Y (1)), (22)
dY (t) = a(m — Y (1)) dt + BdBy (1), 2.3)

with constants u(>r), m>0, a >0 and B > 0.

Assumption 2.1. We assume the following:

(i) (W(t)) is a one-dimensional standard Brownian motion.

(ii) (By (1)) is a one-dimensional fractional Brownian motion (fBm) with Hurst

parameter H. Throughout this paper, let H be fixed and it is assumed that
/2 <H <1

(iii) (W(t)) and (By (t)) are independent.
(iv) f:R — R, iscontinuous.

The process (Y(t)) is a mean-reverting fractional Ornstein-Uhlenbeck (fractional

OU) process. Examples of functions f are f(y)=eY (Scott model), f(y)=]y|
(Stein-Stein model).

For the future discussion, we shall introduce the terminology of mathematical
finance in the following.
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A European call option (a European option to buy) is a contract that gives the
right (but not the obligation) to buy at time T (the maturity) a stock at price K (the
strike or exercise price), which is fixed when the contract is signed.

If X(T) = K, the option enables its owner to buy the asset at price K and then
sell it immediately at price X(T); the payoff, that is, the difference X(T)-K
between the two prices is realized gain. If X(T) < K, the gain is zero. For example,
we can express the payoff F(w) at time T of a European call option in the fractional
BS model by

F(o) = (X(T) - K)" == max{X(T) - K, 0}
as given in the classical Black-Scholes (classical BS) model.

More generally, we introduce the following concepts:

The process u(t) (resp. v(t)) denotes the amount of the risk-less asset A(t)
(resp. the risky asset X(t)) that is held at time t. Then, 6(t) = (u(t), v(t)) is called
portfolio. Consequently, the value, or wealth, of the portfolio at time t is

VOt) = VOt w) = ut) Alt) + v(t) X (t).
A portfolio 0(t) is self-financing if

dvO(t) = u(t)dA@t) + v(t)dX(t), O0<t<T.

Namely, an investment strategy is said to be self-financing if no extra funds are
added or withdrawn from the initial investment. The cost of acquiring more units of
one security in the portfolio is completely financed by the sale of some units of
another security within the same portfolio.

A portfolio 6(t) is said to provide an arbitrage opportunity if, with v ®(0) < 0,
we have V®(T) > 0 as. and
Probab (v %(T) > 0) > 0.

Thus, an arbitrage opportunity means a self-financing trading strategy requiring no
initial investment, having no probability of negative value at expiration, and yet
having a possibility of a positive payoff. One of the fundamental concepts in the
theory of option pricing is the absence of arbitrage opportunities, which is called
arbitrage-free. We will allow ourselves to use no-arbitrage in place of arbitrage-free
when convenient.



ASYMPTOTICS FOR OPTION PRICING 7

Let F = F(w) be a European contingent T-claim (or just a T-claim); that is,

F is a lower bounded random variable denoting the payoff. For F, if there exist an
initial investment z € R and 6(t) such that

Fl)=V®%T, 0) (@s),
then the financial market is said to be complete.

Suppose now that the T-claim F(w) is attainable in the sense that there exists a
portfolio 0(t) = (u(t), v(t)) such that the value process equals F a.s. at the terminal

timeT, i.e.,
V(T, 0) = Flo) (as.).

If such a 0(t) exists, we call it a replicating or hedging portfolio for F.

Remark 2.2. Under Assumption 2.1, let us mention the following results on the
model (2.1)-(2.3) that are proved in Hu [11]:

(i) The market is incomplete and martingale measures are not unique.

(ii) Set y(t) = (r — n)/o(t) and

S = eaf [ a3 v(t)|2dtj.

where P is the probability measure in the underlying probability space. Then, Q is
the minimal martingale measure associated with P.

(iii) The risk minimizing hedging price of a European call option is given by
V = e TEG[(X(T) - K)*],
where Eq stands for the mathematical expectation with respect to Q.
If G; denotes the filtration generated by fBm, it holds that
V = e TEQ[Eq((X(T) - K)' G7)]

—e T Eq [Cgs(X(0), o],

T
where ¢ = W”o 0(5)2 ds and Cgg denotes the classical BS formula.
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Remark 2.3. For the model (2.1)-(2.3), we shall introduce the scaling

o<} b ()

where 0 < e <1 and vy = O(1) (fixed), to model fast mean-reversion in market

volatility; vy is the parameter appearing in the long-run distribution N(m, V|2_|) of
(Y(t)) and [(-) is the Gamma function (Lemma 3.11 and Assumption 5.1). We

shall derive the pricing partial differential equation in terms of £ (Lemma 4.1 and
Lemma 5.2), and finally, obtain a corrected Black-Scholes price formula by singular
perturbations (Theorem 6.1).

It is helpful to one in comparing the fractional BS formula with the classical BS
formula. In the following, let A(t) be the price at time t for the risk-less asset and

X(t) be the price at time t for the risky asset, characterized by a triple (r, p, ) of

positive constants.
* The fractional BS model (see Hu and @ksendal [13] and Necula [20])
Let Wy (t) be the fBm with Hurst parameter H € (1/2, 1).
(i) dA(t) = rA(t)dt, A(0)=1.
(i) dX(t) = pX(t)dt + oX(t)dWy (t), X(0) = x > 0.

Theorem 2.4 (Factional BS formula). The European call price at t € [0, T]

with strike price K and maturity T is given by

C(t, X (1) = X(ON(dy) - Ke™"T™IN(dy),
where
og X2+ rT -0+ o e g2

G\/TZH —t2H

d; =

X(t) 6% —2H _.2H
logl == |+r(T -t)——(T“" -t°")
dy = ( K ) 2

G\/TZH —t?H

(= dy —oVT2H 2,
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and N(-) is the cumulative probability of the standard normal distribution, i.e.,

z 2
N(z) = \/;_T[ j_w exp[—yTJ dy.

Theorem 2.5 (Factional BS equation). The price of a derivative on the stock
price with bounded payoff h(X(T)) is given by C(t, X(t)), where C(t, X) is the
solution of the following partial differential equation:

aCc 2.2H-1, y 2 6°C o  ~_
at+(Hcst ) X _6X2+rxax rC =0,

C(T, X) = h(X).
* The classical BS model (see Fouque et al. [7] and the references therein)
Let W(t) be the standard Brownian motion.
(i) At) =rA(t)dt, A(0)=1.
(i) dX(t) = uX(t)dt + oX(t)dW(t), X(0)=x> 0.

Theorem 2.6 (Classical BS formula). The European call price at t € [0, T]
with strike price K and maturity T is given by

C(t, X(t)) = X(t)N(dy) — ke " T-UN(dy),

where

Iog(%) + (r + G—;J (T -1)

o = VT —t '
X (t) o2
log = +[r—TJ(T -t)
d2= ( )G,\/T_t (=d1—6VT—t),

and N(-) is the cumulative probability of the standard normal distribution.

Theorem 2.7 (Classical BS equation). The price of a derivative on the stock
price with bounded payoff h(X(T)) is given by C(t, X(t)), where C(t, X) is the
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solution of the following partial differential equation:

€, 1 2020°%C o
at+2csx 6X2+rxax rC =0,
C(T, X) = h(X).

3. Fractional Ornstein-Uhlenbeck Process

We shall make preparations for our discussion and introduce the fractional
stochastic calculus, omitting some details.

Definition 3.1. A one-dimensional fractional Brownian motion (fBm) with
Hurst parameter H < (0, 1) is a Gaussian stochastic process with By (0) = 0, such

that
E[BH (] =0,  E[By(®By(s)] = 5t/ +[s —|t—s P}

forall s, t € R. Here E[-] denotes the mathematical expectation with respect to the
probability law py for By (+).

Remark 3.2. FBm has the following properties:

(i) By is self-similar with self-similar index H, that is, for every ¢ > 0, the
process {By (ct); t e R} is identical in distribution to {c"' By (t); t € R}.

(if) By has stationary increments.

(iii) If H =1/2, then By has independent increments.

(iv) If H >1/2, then By has long-range dependence.

(v) If H =1/2, then By is non-Markovian.

(vi) If H #1/2, then By is not a semimartingale.

(vii) The covariance between future and past increments is positive if H > 1/2

and negative if H < 1/2.

If H =1/2, then the fBm B2 is one-dimensional standard Brownian motion.
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Definition 3.3. Throughout this paper, let H be a fixed parameter and it is
assumed that 1/2 < H < 1. For given H e (1/2, 1), define ¢ : RxR — R, by

o(s, t)=H@H -1)|s-t]?"2 s teRr
Then we notice that
jt‘[td)(s, r)dsdr = t2H.
0Jdo
Let f : R — R be Borel measurable such that

j I £(s) F(t)4(s, t)dsdt < oo.
RJR

Then the stochastic integral with respect to the fBm By (-) is well defined. It
follows from Gripenberg and Norros [9] and Nualart [21] that for any deterministic
integrand f, g e L’(R, R)N LY(R, R)

EK I _1(5)dey (s)j]R g(t)dBy, (t)ﬂ _ j ) I 1(S)g(t)(s, Dasat

The stochastic integral with respect to the fBm By (-) is extended to the case

where the integrands are stochastic functions. We now follow from Duncan et al.
[6], and Hu and @ksendal [13].

We will assume that Q is the space §'(R) of tempered distributions on R,
which is the dual of the Schwartz space $(R) of rapidly decreasing functions on R.
If ®e8(R) and f e S(R), we let (o, f)=w(f) denote the action of w applied
to f. It can be extended to all f : R — R such that

112 = J‘RJ'R £(s) f(t)d(s, t)dsdt < oo.

The space of all such functions f is denoted by L%(R).

Defining the inner product
(f, g)¢ :=I I f(s)g(t)¢(t, s)dsdt, f,ge Lﬁ,(R),
RJIR

we notice that (Lﬁ(R), (- ~)¢) is a Hilbert space.
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Remark 3.4 (Gaussian property). Let f, g e Li(]R{). Then, the stochastic
integrals J'go f(s)dBy (s) and j;o g(s)dBy (s) are Gaussian random variables with

mean 0 and variance | f |42) |g |<2b In particular,
e[ [, o] g

:jo J'O f(5)gt)(s. t)dsdt = (f, g),.
For F:Q=8(R)—> R, we denote by DPF the Malliavin ¢-derivative of F
at t; we shall cite a familiar notion in Definition 3.7 below.
According to Hu [12, Proposition 6.25], we define Lf;’g to be the set of

processes g(t, m): R x Q — R such that D¢g(s) exists for almostall s € R and

s = E“ j 9(5) g(t)é(s, t)dsdt +J' J (D_ﬁ,’g(t))zdsdt} <.
¢ RJIR RJR
Then, by the method of the Wick product ¢ (the Wick calculus in white noise
analysis), for o(t, ) € Lff’a, we can define IR o(t, ®)dBy (t), that is, the fractional
Ito-integral of the process oft, ®) with respect to By (t).
The Wick product is used instead of the ordinary product in the Riemann sums,
e.g.,

b _ n-1
| _olt, @)dBy ()= Anngok;cak, ©) 0 (B (tes1) — By (1),

where

Ara=ty<t <--<ty=b [A]=maxoceena(thss — t)-

Remark 3.5 (Expectation of an integral of f e Lf;'g). An importance of this

fractional Ito-integral is
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EUR o(t, )dBy (t)} -0,

where E[-] denotes the mathematical expectation with respect to the probability
law puy for By(-); see Biagini et al. [2], Duncan et al. [6, pp. 588-592], Hu
[12, pp. 56-58, 67-69], and Hu and @ksendal [13], and in particular the references
therein.

Compare the fractional Ito-integral with the fractional pathwise integral defined
by

b n-1
[ ot @By = tim Okz(‘,)cs(tk, ©) (B (t1) — By (t).

Then, these integrals do not have expectation zero. Moreover, the financial market
based on By (t) could have an arbitrage opportunity if we use the fractional

pathwise integral. However, we will get no-arbitrage if we use the fractional Ito-
integral; see Hu and @ksendal [13].

Remark 3.6 (Wick product). The Wick product has the following properties;
see Holden et al. [10, Section 2.4 and Chapter 3]:

(i) In Wick product F 0 G, commutative law, associative law and distributive
law hold.

(ii) If at least one of F and G is deterministic, e.g., F = ag € R, then the Wick
product coincides with the ordinary product in the deterministic case, that is,

FOG=F-G, inparticular, if F=0,then FOG =0.

(iii) When applied to ordinary stochastic differential equations, derivative
product rule holds as in the case of ordinary calculus:

UOV) =U'0V +U 0V,

(iv) Wick product is easier to handle with use such that if Y is in Hida space of
stochastic distribution, then

J' Y(t)dBH(t)zj. Y ()0 Ny (t)dt,
R R

where Ny (t) is the fractional white noise, that is, Ny (t) = dBy (t)/dt; see Hu and
@ksendal [13, Definition 3.11] and Holden et al. [10, Section 2.5].
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We shall need the stochastic gradient according to Biagini et al. [3, p. 281],
Duncan et al. [6], Hu [12, p. 51, p. 99], Hu and @ksendal [13, Definition 4.3] and
Nualart [21, Chapter 1].

Definition 3.7 (The Malliavin ¢-derivative). Let @ be given by
@g)(1)= [ ot wg)du, g e Lj(R).

Then the ¢-derivative of a random variable F € LP(Q) (p > 1) in the direction of

dg e Lﬁ,, where ¢ e Lﬁ,(R), is defined as
DggF (o) = lim l{F[w + ESJ. '(Qg)(u)duJ - F(w)},
300 0
if the limit exists in LP(Q). Further, if there exists a process (DZF; s > 0) such that

DogF = f;o D?Fg(s)ds (as.) forall g e L42), then F is said to be ¢-differentiable;

D§’F is an analogue of the Malliavin ¢-derivative of F at s.

Without rigor, we note as follows: Let F : Q = S'(R) —» R. Then
) dF
DJF = | ¢(s, t)DiFdt, DiF(0)=——(t, o).
R do

Here D;F(w) is the stochastic gradient (or Hida/Malliavin derivative) of F at t.
Note that — in spite of the notation — D;F is not a derivative with respect to t but a

(kind of) derivative with respect to o € Q, such that
DtU f(s)dBy (s)) =f(t) for aet if fe Li(R).
R

Remark 3.8 (Rules for differentiation). Let f : R — R be smooth and F : Q
— R be ¢-differentiable. Then f(F) is also ¢-differentiable, satisfying

DY f(F) = f'(F)DJF.

Further, the following equations hold: If f e Li(R), then
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D;"UOO f(u)dBy (u)j _ J.wcb(u, $) f (u)du = (of )(s),
0 0

where f, g e Li(R). Let f e Li(R). Let T > 0 be arbitrary and fixed. Then
t o0
D?UO f(u)dBy (U)] = D;on o(U, $)x[0,1](u) f(u)duj

= J.(: o(u, s) f(u)du forany s, tel0, T].
In particular,
D¢ (Byy (s)) = fos o(u, s)du = HsZH 1
For further details concerning stochastic integrals with respect to fBm, we

are referred to Biagini et al. [3], Hu [12], Mishura [16] and Nualart [21], and in
particular the references therein. Moreover, we shall use the following theorem:

Theorem 3.9 (Fractional Ito formula). Consider the fractional SDE:

dX(t) = ut, ®)dt + oft, ®)dBy (t), u,oce Lfg'g,

where L:f'g is the set of processes as given after Remark 3.4, and the stochastic

integral means the fractional Ito integral. If f € Cl'z(]R+ x R), then we have

f(t, X(1) = (0, X(O))+L§%(S, X (s))ds
+I ;g_:((s' X (s))n(s)ds +I;§—:<(S, X (s))o(s)dBy (s)

; I;;z(—fz(s, X (s))o(s) DX (s)ds.

Here D¢X(s) is the Malliavin ¢-derivative of F = X(s) at s in the sense of
Definition 3.7.
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Under preparations above, we consider the process of equation (2.3) with the
initial state Y(0) = yp € R and the time interval [0, «), that is,

dY(t) = o(m = Y(t))dt + dBy (t), t >0,
Y(0) = yp € R, (3.1)

with constants m >0, o >0 and B > 0. This is a linear fractional stochastic

differential equation. It follows from Biagini et al. [2, 3] and Narita [17, 18] that the
solution cannot explode and hence the solution is pathwise unique. For the details of
stochastic differential equations in fractional Brownian environment, see Holden
et al. [10], Mishura [16] and Nualart [21].

We shall need the following estimates on the integrals:

Lemma 3.10. Let ¢(s, r) be the function as given in Definition 3.3. Define A(x)
and B(x) by

A(x) = J‘Oxei'&z""ld&, B(x) = J‘Oxe‘%ZH‘ldé;, (% <H < 1).

Then, for any constant o > 0, the following hold:

(i) J;,[; exp(a(s + r))d(s, r)dsdr
132H
_ H(a) (A(at) + exp(2at) B(at)} for > 0. (3.2)
(ii) I;I; exp(—a(s + r))¢(s, r)dsdr
132H
_ H(aj (B(at) + exp(~2at) Alat)}  for t >0, (33)

(iii) IOS exp(ar)d(s, r)dr

=H exp(aS){eXD(—aS)SZH s &TH _1B(as)}. (3.4)
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Proof. We shall show equation (3.3). Put

S+r=u,
{s —-r=yv,
and hence
s =(u+v)/2,
{r = (u-v)/2.

Consider the domain D ={(s,r):0<s<t,0<r <t}. Then, D is transformed to

the following domain D’:
D'={(u,v):0<u+v<2t, 0<u-v<2t}=D;UDj,
D ={(u,v):0<u<t, —-u<vc<uj,
D) ={(u,v):t<u<2t, u-2t<v<-u-+2t}.

The Jacobian J = J(u, v) of the coordinate transformation above is given by

o os| 11
ou ov 2 2 1
J = = ==,
o ol |11 2
ou oV 2 2

Thus we have
I(t) = “.Dexp(—oc(s +r)HQ2H -1)|s—r |2H’2dsdr
= J‘J‘Dlexp(—au)H(ZH —1)|v|*"72) 3 |dsdr
= Ip(t) + I5(t),

l1(t) = %J.IDiexp(—au)H(ZH ~1)|v|*" 2 dudv,

I5(t) = %J‘J.D, exp(—au)H(2H —1)|v |2H_2dudv.
2
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Step 1.
1t v 2H-2
|1(t)=§J' exp(—ocu)duJ‘ H(2H —1)|v P 2qv
0 -u
t u 2H-2
=I exp(—au)duj H(2H — 1)v=" "“dv
0 0
t 2H-1 1
= HI exp(—au)u" "du (5 <H«< 1)
0
1 2H X
= H(—) B(at),  B(x) :I e %e2H g,
a 0
Step 2.

2t-u

IL(t) = %J.:t exp(—ocu)duj. ”

= LZt exp(—au)duj

)H(2H ~|v]PH2dv
u

2t—u
H(2H - 1)v2" ~2dv
0

2t
= HI exp(—au)(2t — u)?"1du (% <H«< 1)
t

t 2H-1
=H exp(—2at)I exp(az)z“" dz (2t —u =z)
0

1)2H X E.2H-1
- H(a) exp(—20t) Alat),  A(X) = j ete2H-1ge,
0
By Steps 1-2, we obtain equation (3.3). The same argument as taken in the preceding
leads us to equation (3.2). Finally, we shall show equation (3.4). Integration by parts

implies that

IOS exp(ar)d(s, r)dr

S
= H(2H —1)I [s—r |2H_2 exp(ar)dr
0
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~ H(@H -1 (s - 1" 2 explar)ar

=H(2H —1)J.;exp(ar){—ﬁ(s - r)ZH_l},dr (% <H< 1)

S
= H{SZHl + aj exp(ar)(s — r)ZH‘ldr}
0

H {SZH_I + aexp(OLS)J.; exp(—az)zZH‘ldz} (s—r=2)
1 2H e as
=H {SZH_l + aexp(as)(a) Jo exp(—&)gZH‘ldg} (az =€)

=H {SZH 1y (é)ZH B exp(as) B(OLS)}, B(x) = IOX e~5e2H-1ge.

which yields equation (3.4). This completes the proof of Lemma 3.10. O

Lemma 3.11. Let Y(t) be the solution of (3.1). Then
t
Y(t)=m+e “(yg—m)+ Be’“tj e®dBy (s). (3.5)
0

Hence Y(t) is a Gaussian stochastic process and has the long-run distribution

which is the normal distribution N(m, vﬁ') with mean m and variance vzH, such
that

1
o

v :BZH( )ZHr(zH), (3.6)

where I'(-) is the Gamma function; I'(x) = I;O e~5eX e,
Proof. Remark 3.6 implies that

dz_@ = a(m-Y®)+ BNy (1), Y(0) = yo
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with the fractional white noise Ny (t) = dBy (t)/dt. This a linear differential

equation of the first order, and hence

t
0= e am) gy ()5 + 3o |
— g™ {L:eas(ocm)ds + J; e**BNp (s)ds + VO}

t
=e “m[e™ — 1]+ pe™ Io e®dBy, (s) + ey,

which yields equation (3.5). Recall (ii) of Remark 3.6 and equation (3.2) of
Lemma 3.10. Then we notice that the fractional Ito integral J’t f(s)dBy (s) With
0

deterministic integrand f(s) = e® is well-defined; see the explanation after

Definition 3.3 and Gripenberg and Norros [9]. Take the mathematical expectation on
equation (3.5). Then, by Remark 3.5, we have

M (t) = E[Y(t)] = m + (yo — m)e ..

Moreover, by Remark 3.4 and equation (3.2) of Lemma 3.10, we get

2
V() =V[Y ()] = BZeZME[( j ;eO‘SdBH (s)j }
= Bze_zo‘tﬁjg e*(S+Ny(s, r)dsdr

_ e 20ty (%jZH (A(at) + e2*B(at))

2H
_ BzH(a) e 2 Aot + B(att)},

where

A(X) = J'Oxeiaz'*‘ldg, B(X) = j'oxe‘éaz'*‘ldg, (% <H <1).
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Observe the expression (3.5). Then, by Remark 3.4, we obtain that Y(t) is a
Gaussian process and hence has the normal distribution N(M(t), V (t)) with mean

M (t) and variance V(t). Notice that

2H-1 2H-1
o . A(x . e¥x X
lim e 2*A(x) = lim LI = lim =0,
X—>00 x>0 g2X  xow  9g2X x—®o  9pX

lim B(x) = : e~%e2H14e = 1(2H).

X—0

Then we obtain thatas t — o

M) - m, V() > BZH(%)ZH I(2H).

By characteristic of the normal distribution, the limit distribution as t — oo is also
the normal distribution, which yields equation (3.6). This completes the proof of

Lemma 3.11. O

Lemma 3.12. Let Y(t) be the solution of equation (3.1). If f e CY2(R, x R),

then we have

F(t, Y (1) = £(0, Y(0))+ I;%(s, Y(s))ds
; ;%(s, Y(s))a(m = Y(s))ds + j ;gf—y(s, Y(s))BdBy (5)

to2
" joy@, Y(s))

- 1\2H-L
X HBZ{exp(—ocs)SZH Ly (a) B(as)} ds, (3.7)
where

B(x) = on e %¢2H 1ge
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Proof. Apply the fractional Ito formula (Theorem 3.9) to Y (t). Then we have

£t Y(1) = £(0, Y(0))+ J;%(s, Y(s))ds
; ;%(s, Y(s))au(m — Y (s))ds + j ;%(s, Y(s))BdBy (5)

+ I;Zi—;(s, Y (s))BD2Y (s)ds.

Here DYY(s) is the Malliavin ¢-derivative of F :=Y(s) at s in the sense of
Definition 3.7. Lemma 3.11 implies that Y (t) has the explicit form (3.5). Therefore,
by Remark 3.8 and equation (3.4) of Lemma 3.10, we can calculate the Malliavin

¢-derivative D?Y(s) as follows:

D§’Y(s) = Bexp(—as)Dg’U;exp(ar)dBH (r)}
= Bexp(—ow)joS exp(ar)o(s, r)dr

2H-1
= Bexp(-as)H exp(as){exp(—as)sZH 14 (%) B(as)},
where
X
B(x) = J. e %e2H1ge |
0
This completes the proof of Lemma 3.12. O

4. Asset Pricing
In the following sections, we take the same argument as given by Fouque et al.
[7]; we also owe the proof to the introductory method in Andersson [1].

Under Assumption 2.1, we consider the model (2.1)-(2.3). In this case, there is
one risky asset X and two random sources W and By. Namely, there are two
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sources of randomness instead of one as in the classical BS model. When
constructing a portfolio, the derivatives cannot be perfectly hedged with just the
underlying asset. Instead we also need a benchmark derivative called G. A risk-less
portfolio IT is formed, containing the quantity —Ay of the underlying asset X, the

quantity —Ag of another traded asset G (Benchmark option) and the priced

derivative P. The total value of the portfolio is
IM=P-AyX —AgG. 4.1)

The differential of the portfolio value is needed to construct a risk-less and
no-arbitrage, satisfying

dIT = dP — Ay dX — AgdG. (4.2)

Notice that the model (2.1)-(2.3) can be written by the vector form

X pX f(Y)X 0) (W
d | = dt + d .
o Ha

Then, the classical Ito formula and the fractional one (Lemma 3.12) are applied to
dP and dG as follows:

P 1 0°P s %P, o
dH{ 58 f(y)X yHB

x {exp(—at)tZH 1y (é)ZH B B(oct)H dt

oP oP
+de +WdY —Axdx

—AG{%? +%Wf(y) X2 +8y_HB

x {exp(—at)tZH 14 (é)ZH _1B(oct)H dt

oG oG
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Collecting the dX and dY terms, we have

oP oG oP oG
P 1P, 2y2
kﬁ*igﬁ*W)x

2H-1
+ gj,_ZP HBZ{exp(—at)tZH 14 (é) " B(oct)H dt

oG  13°G ., 22
—AG{EJFEGX—zf(Y) X

+ ?;—(3 Hp? {exp(—at)tZH 1y (%TH _1B(Ott)H dt. (4.4)

We want this portfolio to be risk-less by eliminating the coefficients in front of dX
and dY, and hence

oP oG
X e ~Ax =0 (45
oP oG
Z _asZ =0 4.6
oy Ae gy (4.6)

From the equations above, Ay and Ag are solved as follows:

(SIS

Thus, if the portfolio is well-balanced according to (4.7) and (4.8), the risk is
eliminated. Moreover, we want TI(t) to be risk-less with instantaneous interest rate

r, such that

dII(t) = rII(t)dt.
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Namely,

o 18%P ,, 22

2H-1
+ Z)Z/_E HBz{exp(—at)tZH it (a " B(at)H dt

A{%f 170 f(yx

+ ﬁ HpB {exp(—at)tZH 1y (l)m lB(oct)H dt
ay o

= rlldt, (4.9)

where TT =P - Ay X —AgG. Substitute Ag and Ay, which are given by equations
(4.7) and (4.8), into the equation (4.9), and then multiply both sides by 6G/dy. Then

we obtain
P 10%P 2,2

2H-1
; Zy—P HB {exp(—oct)tzH 4y (%j B(at)}

oP |(oPY?
—rP +rX W:| (Wj

[ ;a VX2

6 o1 (132HT
ay_ HpB {exp(—at)t + (aj B(at)}

-G +rX S—S} (%j_l. (4.10)

The left hand side in equation (4.10) does only depend on P and the right hand side
does only depend on G. Both sides are thus equal to some function k(t, X, y).
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Lemma 4.1. The equation governing P can be written as

P 13°P . 2.2

{exp( at)t?H-1 4 (é)ZH B B(at)}

rP+rX 6

— K(t, X, y)%. (4.11)

The terminal condition for P is the contract function h(X), i.e., P(T, X, y) =
h(X(T)); for example, h(X(T)) = (X(T) - K)* with T and K, the time of maturity
and the strike price, respectively.

Proof. The argument in the preceding and equation (4.10) leads us to equation

(4.11). This completes the proof of Lemma 4.1. O

The function k cannot be determined by arbitrage theory alone. However, it is
completely determined in terms of the traded benchmark asset G. One can say that
the market knows the function k.

For a moment, recall the model (1.1)-(1.3), where the asset process (X(t)) and

the volatility driving process (Y (t)) are governed by a standard Brownian motion

(W(t)) and another standard Brownian motion (B(t)), respectively, such that

B(t) = pW () + V1 - p2B(1). (4.12)

Here (W(t)) and (B(t)) are independent Brownian motions with -1 < p <1 the

instantaneous correlation coefficient between asset price and volatility shocks. Then,
according to Fouque et al. [7], the function k is taken by

k(t, X, y) = a(m-y)-BA(t, X, y), (4.13)
where

Alt, X, y) = p(f( )j+v(t X, y)N1-p? (4.14)

with an arbitrary function y(t, X, y).
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Under Assumption 2.1, our model (2.1)-(2.3) corresponds to the case of
(1.1)-(1.3) where
B(t)=By(t) p=0  andhence B(t) = By (t).
Hereafter, in our model (2.1)-(2.3), it is convenient to assume that
1
Z—H
k(t, X, y)=a(m-y)-a2 By(t X,y), (4.15)
appealing to the Hurst parameter H > 1/2. We notice that equation (4.15) is equal to
equation (4.13), if H =1/2 is formally substituted into equation (4.15). Further, for

simplicity, we assume that the function y depends only on the variable y. Therefore,
we assume the following:

Assumption 4.2.
1

Z—H
kt, X, y) =a(m-y)-a? Ppy(y). (4.16)
5. The Pricing PDE in Terms of ¢

Here we consider the model (2.1)-(2.3). Lemma 3.11 implies that the fractional
OU process (Y(t)) has the long-run distribution N(m, v ) as t — oo, that is, the

density
1 (y = my?
n(y) = exp( J (5.1)
\/va|2_| 2V|2-|
where
2H
vy = BZH(%) I'(2H), (5.2)

and I'(-) is the Gamma function; I'(x) = I: e X e,

We take the same argument as taken by Fouque et al. [7] and assume the
following:

Assumption 5.1.

(i) The rate of mean reversion o or its inverse, the typical correlation time of

(Y (1)), is characterized by a small parameter ¢, such that

1
€ =—.
o
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(if) Let V|2-| be given by equation (5.2), which controls the long-run size of the

volatility fluctuations. Then we assume that this quantity remains fixed as we
consider smaller and smaller values of g, such that

S T (1)‘“ (v )L
JHT(2H) Jlo JHT(2H) )P
Under Assumptions 4.2 and 5.1, we observe the multiplier of the second
derivative aZP/ay2 in the partial differential equation (4.11), that is,

HB2 exp(-at)t?H 1 4+ HBZ(E)ZHlB(at) B(x) = J.Xe_éng‘lda
o ' “Jo :

Step 1.
o

ERTA

The L’Hospital rule for limits of indeterminate form yields that for t > 0,

2 —2H
H [32 exp(—at) = [%J( 1 j exp(—at)

. 2 v L o2 Vi i {O‘ZH}'
lim HB? exp(~at) = T(2H) o exp(at) {: (F(ZH)JJTOO {exp(at)},}

v2 2Ho 2" 1
| b | jiy 2He” ( :_)
T'(2H) Ja—xo exp(at)t €
2 2H-2
_|_VH lim 2H(2H —1)0(2 (l <H < 1)
F(2H) Jase  exp(at)t 2
2
[ vE )y 2HEH-1) 5.3

Step 2.

HBZ&TH * B(at) = (F(VZ'%'H )] &)_18(&0
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(8|

VH T(2H)
We notice that
X
B(x) = j e %e?Hlde 5 T(2H) as x > w.
0

Then the L’Hospital rule for limits of indeterminate form yields that for t > 0,

!

- B&j—r(zH) . {B&j—r(zH)}

e—0 € £—0 {8},
lim -t ex (—lj(l)m_l
e—0\ g2 Pl )\e
2H+1
M) tim expf ~L (1
() el 2 (1)

_ (2 tim 2 {: (~2H) 1im &} (a=2)

a0 exp(ot) 0% foxp(at)}

_ (—tZH) lim (2H +1)0L2H
a—w  explat)t

= (-t2") lim

5 —<H«<1
o0 exp(at)t

2

(2H +1)2Hq 21 (1 )

= (—tZH) lim (2H +1)2H(2H _1)(12H_2

3 =0.
o0 exp(at)t
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Thus, we have that for t > 0,
o1 2H-1 , 1
HB (a) B(at) = (VH E) +o1) (5.4)

1
for € small enough; ¢ = —.
a

Further, let k(t, X, y) be the function as given in equation (4.16). Then, under

Assumption 5.1, we have the following:
Step 3.

1y
k(t, X, y) = a(m-y)-a? Py(y)

E
- %(m -y)- @)2 (—,—HVF'ZZH)]SLHY(V)

1

Y 1
= E(m -y)- (ﬁjﬁ%’(w-

Lemma 5.2. Under Assumptions 4.2 and 5.1, for € small enough, the pricing

(5.5)

PDE (4.11) can be written in terms of ¢ as follows:

Pt 1 0°PE 242
ot +§ 6X2 f(y) X
2 2pe €
L YHOPT L (x PT_pe
€ 8y2 oX
1 Vi 1 oPE
FiZmoy) | —H_ | — & o, 5.6
Ly - | o) 5 69)

for t < T with the terminal condition P*(T, X, y) = h(X), where h(X) stands for

the nonnegative payoff function.

Proof. Observe the multiplier of 62P/5'y2 in PDE (4.11). Then the equations
(5.3), (5.4) and (5.5) yield equation (5.6). This completes the proof of Lemma 5.2. [J
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6. Asymptotic Solution

We shall solve PDE (5.6) by singular perturbation analysis. We write PDE (5.6)
with the notation as follows:

(%LO +%£1+£2)P8 _o, (6.)

where we define
Lo = V3 aay—zz +(m- y)%, 6.2)
L = —(ﬁ]v(y)% (63)
Lz=LBs(f(y))=%+%f(y)2X25(—22+r(X§—l). (6.4)

Here Lgs (o) is the classical Black-Scholes operator with the deterministic volatility

parameter o, that is,

o0 1 2,0 8 o
LBs(G)Za-FEG X ax_2+ I’(Xﬁ—x—l) (65)

We look for an expansion
P® = Py + VeP, + ¢P, + eVePy + - (6.6)

for small ¢, where Ry, P, ... are functions of (T, X, y) to be determined by the

terminal conditions
Py(T, X, y) =h(X), RP(T, X,y)=0 for i=>1.

Substituting equation (6.6) into equation (6.1) and collecting powers of ¢, we have

1 1
Leory + - (LoP + 4P
< LoPo /—8(01 L1Py)

+ (LoPy + 4P + LHR)
+Ve(LoP3 + L4Py + LoP)

+ e
=0. (6.7)
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For equation (6.7), step by step, the terms of order /¢, 1/+/¢, ... will be studied.

Term of order 1/e. Atorder 1/e, we have

LoPy = 0. (6.8)

The operator L contains partial derivatives with respect to y but no derivatives with
respect to X. Hence P, must be a constant with respect to the variable y, which

implies that
Py = Py(t, X) (6.9)
with terminal condition Py(T, X) = h(X).
Term of order 1/ve. Atorder 1/ve, we have
LoPy + L4Py = 0. (6.10)

Notice that P, only depends on t and X and that the operator L; involves the
derivative with respect to y. Then we have that ;P = 0, and hence equation (6.10)
is reduced to LyP, = 0. The operator L, involves derivatives with respect to y.
Thus, P, must be a constant with respect to y, which implies that P, = Pi(t, X),
with the terminal condition P(T, X) = 0.

Thus, we note that the term Py + x/EPl in equation (6.6) will not depend ony.
Zeroth order-term. At order 1, we have
LoPy + 4P + LRy = 0. (6.11)

The discussion above implies that P, and P, only depend on (t, X) and that £;
and Ly involve derivatives with respect to y. Thus, 4P, = 0, and hence equation
(6.11) is reduced to

LoPy + LRy = 0. (6.12)

Here, P, only depends on t and X. When regarding X as fixed, L,P, only depends

on y. Hence the equation (6.12) is a Poisson equation for P, with respect to £y, that

is, LOPZ = —szo.
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In the following, we let (-) denote the averaging with respect to the invariant

distribution N(m, vZ ) of the fractional OU process (Y(t)) (see Lemma 3.11 and
equation (5.1)):

© 0 2
(@)=1 aly)n(y)dy = \/21—2.[ g(y)exp(—(yz_—zm)de-
—®© TVH - VH

Notice that this averaged quantity does not depend on ¢.
In order to have a solution to the Poisson equation (6.12), £,P, must be in the

orthogonal complement of the null space of Ly, where Lg is the adjoint operator of
Ly, such that

2
Cop = —%«m —y)p)+ V4 Zy—? (6.13)

for p e C2(R). This solvability condition is equivalent to saying that LoP, has

mean zero with respect to the invariant distribution, which yields
E[LoPo] = (L2P) = ,[, L,Pon(y)dy =0, (6.14)

where n(y) in equation (5.1) solves Lon = 0. Namely, the solvability condition
above implies that (L,Py) = 0. Since P, does not depend on vy, the solvability

condition is reduced to
Lgs ()P =0, (6.15)

where (L,) = Lgs(c) and G is the effective constant volatility defined by

%= (1%) = [ 1Pnya, (6.19)

which is the average with respect to the invariant distribution of the process Y.

Therefore, Py is the solution of Black-Scholes equations with terminal condition

Py(T, X) =h(X) and the effective constant volatility & = VG2 as given by
equation (6.16).
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Observe the equation (6.12), again, that is,

LoPy = LR

(6.17)

Apply the same solvability condition as given in equation (6.14). Then, since
(LyPy) = 0, we see that L,R, in the right hand side of equation (6.17) can be

written as
Py = LR Py = L1y - 59)x2 2R
LaPy = LoRy = (L2P0) = 5 (f(y)" - 37) e

Thus, equation (6.17) is given by

_ Ly -syx2 2R
’E’OPZ_ 2(f(y) G )X axz

The solution of the Poisson equation in equation (6.19) is given by

1. 2 _ o°R
P2=—§Lol(f(Y) —cz)XzaTS

1 a°P
= =5 (w(y) +c(t, X))XZaTO,

where y(y) is the solution of the Poisson equation
Loy = 1(y)° - 5°
and c(t, X) is a constant that may depend on (t, X).
Term of order ve. Atorder e, we have

LoPs + 4P, + LR = 0.

This is a Poisson equation for P; with respect to £y, which is written by

LoP3 = ~(4Ps + LoR).

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

Again, applying the same solvability condition as given in equation (6.14), we obtain

(4P, + LoR) = 0.

(6.24)



ASYMPTOTICS FOR OPTION PRICING 35
Hence
(L2R) = ~(LaPp), (6.25)
where P, is already known by equation (6.20). In the following, we investigate
(LoPy).

Notice that P, does not depend on y and consider that (£,) = Lps(G). Then we
have that the left hand side of equation (6.25) is equal to Lgs(c)P,. Observe the
right hand side of equation (6.25) with P, replaced by equation (6.20). Then we
find

(Gl + ot X)X il

N| =

—(4P) =

2
(Law(y)) X2 axpo (6.26)

I'\)|H

where y is a solution of the Poisson equation (6.21); here we used that
Lic(t, X) =0 since £; does only involve the variable y. Hence, by equations (6.25)

and (6.26), we obtain
_ 1 o°R,
Les(G) R = 5 (Law(y)) X ? yg- (6.27)

Let o(X) be a general function. Then we can compute as follows:

(1000 = [ et 0 S a0

(6.28)

[Wj@(y)w (¥) o(X).

2
In equation (6.28), set ¢(X )= X z[a—PgJ. Then, by equation (6.27), we obtain
oX

1

Lgs (G)P, = _E(W] ()W (y) X2

and the terminal condition is P(T, X) = 0. According to Fouque et al. [7], we

(6.29)

denote the first correction by

Rt X) = VeR(t, X), (6.30)
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which is a solution of

Lgs(G)R = H(t, X), (6.31)
and the terminal condition Py(T, X) = 0. Here we define the source term H(t, X)

by

2
H(t, X) = VX2 —ZXPS ; (6.32)

V, is a small coefficient, given in terms of o = 1/e by

11 A% '
V, = _ﬁE(ﬁJW ). (6.33)

The first correction satisfies the classical Black-Scholes equation (6.31) with a zero
terminal condition and a small source term computed from derivative of the leading
term Py(t, X).

Finally, we want to find the explicit form of the solution I51 to equation (6.31).

Now, a straightforward calculation yields that for n > 1,

Lgs (3)[X " Z)(—Pr?] = X" ;(—n(ﬁss (G)R)- (6.34)

Further, it holds that
Lps(G)(=(T —t)H(t, X)) =H — (T —t)Lgg(G)H(t, X). (6.35)

Here, equations (6.32) and (6.34) yield

_ _ » %Py
Lgs(G)H(t, X) = Lgs(0)| Vo X —
oX
2
B _ 2 0°Ry
—Vzﬁss(ﬁ)[x _asz

02 _
=V, X2 @(_Z(LBS(G)PO)

:0,
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since Lgs(S)Py = 0 by equation (6.15). Therefore, equation (6.35) is reduced to
Lgs () (~(T —t)H(t, X)) = H.

Hence the solution of the Black-Scholes equation (6.31) is explicitly given by
5 2 0°Ry
P(t, X)=—T —t)H(t, X)=—(T —t)| Vo X — | (6.36)
oX

Theorem 6.1. Under Assumptions 2.1, 4.2 and 5.1, for ¢ small enough, the
corrected Black-Scholes price is given by

_ 2
P~Py+PR =P —(T —t)(vzxz‘zx—%’} (6.37)

where P, is the solution of the classical Black-Scholes equation with effective
constant volatility G as given by equation (6.16), i.e., Lgs(G)Py = 0 with terminal
condition Py(T, X) = h(X) for a payoff function h(X). Further, the function V, is
given by equation (6.33) with vy the parameter of the normal distribution

N(m, vZ) as given by equation (5.1).

Proof. By equations (6.6), (6.15), (6.30), (6.31) and (6.36), we obtain equation
(6.37), thereby completing the proof of Theorem 6.1. O

Remark 6.2. Recall the model (1.1)-(1.3), where the volatility driving process

(Y(t)) is governed by B(t) = pW(t) + y1— p2B(t). Here (W(t)) and (B(t)) are
independent standard Brownian motions with -1<p <1 the instantaneous

correlation coefficient between asset price and volatility shocks. Then, Fouque et al.
[7] obtain the corrected price function of the form

_ 2 3
PxPy+P =P —(T-t) v2x2@+v3x3@ :
X X

where P, and 51 satisfy

Lps(@)Py =0, P =+veP, Lgs(G)P =H(t, X).
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Here H(t, X) is given by
2 3
Ht X) =V,x2 200 Pg +vex? TR Pg
oX oX

with the functions V, and V3, such that

Vp = %(ZP“W')‘(YW')), Vg = %(W'%

1 _V\/E 2_B28 [32
_E B Jgi [V - "5 y

- 2 20
where v is the parameter appearing in the invariant distribution N(m, v2) for the
volatility driving process (Y(t)) in equation (1.3), y is the solution of the Poisson

equation (6.21), and A is the function as given by equation (4.14).

In Theorem 6.1, if we replace H by H =1/2 formally, then we obtain the same

result as given by Fouque et al. [7, equation (5.43), p. 96] in the case of p = 0;

aj redy =2 i om-l

V'Z" :BZH( 20,

We also note that under suitable scaling, Theorem 6.1 corresponds to an extension of
the result in Kallianpur and Karandikar [15, Theorem 13.7], where asymptotic
analysis is given for models (1.1)-(1.3) with correlation coefficient p = 0.
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