
 

Far East Journal of Theoretical Statistics 
Volume 30, Number 1, 2010, Pages 1-39 
Published Online: January 5, 2010 
This paper is available online at http://www.pphmj.com
© 2010 Pushpa Publishing House 

 

:tionClassificaject Sub sMathematic 2010 91B28, 60H10, 60J65, 35B25. 

Keywords and phrases: fractional Brownian motion, Ornstein-Uhlenbeck process, fractional 
Ito-integral, stochastic differential equation, Black-Scholes equation, European call option. 

Received August 6, 2009 

ASYMPTOTICS FOR OPTION PRICING IN 
STOCHASTIC VOLATILITY ENVIRONMENT 

K. NARITA 

Department of Information Systems Creation 
Faculty of Engineering 
Kanagawa University 
Rokkakubashi 3-27-1, Kanagawa-ku 
Yokohama 221-8686, Japan 
e-mail: narita@math.ie.kanagawa-u.ac.jp 

Abstract 

In the classical Black-Scholes model, the risk asset is taken in a standard 
Brownian environment, where the risk is quantified by a constant 
volatility parameter. It has been proposed by many authors that the 
volatilities should be modeled by a stochastic process to obtain a more 
realistic model. For example, see Fouque et al. [7, 8], Cotton et al. [5], and 

Kallianpur and Karandikar [15]. Precedent is singular perturbation 
analysis for financial markets with stochastic volatility, which is a 
function of fast mean-reverting Ornstein-Uhlenbeck process driven by a 
standard Brownian motion. 

Here we consider the European call option in a fractional Black-Scholes 
model in a financial market that has two instruments: a risk-less asset and 
a risky asset. A risky asset process X is governed by a standard Brownian 
motion W, whereas stochastic volatility is a function of fast mean-
reverting Ornstein-Uhlenbeck process Y which is influenced by a 
fractional Brownian motion HB  with Hurst parameter ( ).1,21∈H  We 

are interested in three parameters describing Y: (i) the effective volatility 
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σ  which is obtained by the average with respect to the long-run 
distribution of Y, (ii) the rate of mean reversion α which is characterized 

in terms of ε1  with a small parameter ε, and (iii) the variance 2
Hν  of the 

long-run distribution of Y which is dependent on Hurst parameter H. 

Our aim is to obtain asymptotics of the price of a European call option as 
.0→ε  We can derive the pricing partial differential equation in terms of 

ε, and obtain that the corrected Black-Scholes price is given by sum of the 
classical Black-Scholes price with constant volatility and the corrected 
term. Our theorem is an extension of the results in Fouque et al. [7] and 
Kallianpur and Karandikar [15] to a fractional Black-Scholes model with 
uncorrelated W and .HB  

1. Stochastic Volatility 

The simplest financial derivative is a European call option, which can be priced 
by the classical Black-Scholes formula and the risk is quantified by a constant 
volatility parameter. A natural generalization is to model the volatility by a stochastic 
process. In reality, the volatility process cannot be directly observed. However 
through empirical studies of the stock price returns, one has observed that the 
estimated volatility fluctuates randomly around a mean level. The process is said to 
be mean-reverting. 

We are motivated by Fouque et al. [7] and interested in more realistic market 
models, particularly ones in which volatility is uncertain. Andersson [1], Cotton 
et al. [5], Fouque et al. [7, 8], Jonsson and Sircar [14] and Kallianpur and Karandikar 
[15] write the canonical class of stochastic volatility models as a positive function of 
a simple ergodic Ito process, a mean-reverting Ornstein-Uhlenbeck process: 

( ) ( ) ( ) ( ) ( ),tdWtXtdttXtdX σ+μ=  (1.1) 

( ) ( )( ),tYft =σ  (1.2) 

( ) ( )( ) ( ( ) ( )).1 2 tdBtdWdttYmtdY ρ−+ρβ+−α=  (1.3) 

Here ( )( )tW  and ( )( )tB  are independent standard Brownian motions with <−1  

1<ρ  the instantaneous correlation coefficient between asset price ( )( )tX  and 

volatility shocks. The factor ( )( )tY  is called the volatility-driving process and f is 

some positive suitably regular function whose specification is unimportant for the 
principal asymptotic approximation. 
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Recall that α measures the characteristic speed of mean-reversion of ( )( )tY  and 

( )αβ=ν 222  is the variance of the long-run distribution, measuring the typical 

size of the fluctuation of volatility-driving process. 

Our main references are Fouque et al. [7] and Kallianpur and Karandikar [15]; 
the authors introduce the scaling 

( ) ,2,1 εν=βε=α  

where 10 ε<  and ( )1O=ν  (fixed), to model fast mean-reversion (clustering) 

in market volatility, derive the pricing partial differential equation in terms of ε, and 
finally, obtain a corrected Black-Scholes price formula by singular perturbations. 

Let ( )( )tW  be a standard Brownian motion and ( )( )tBH  be a fractional 

Brownian motion with Hurst parameter ( ).1,21∈H  Then, our purpose is to obtain 

a corrected Black-Scholes price formula in a fractional Brownian environment, 
where ( )( )tW  and ( )( )tBH  are uncorrelated, influencing risky asset process ( )( )tX  

and volatility-driving process ( )( ),tY  respectively. Namely, our model corresponds 

to (1.1)-(1.3) with ( ) ( ){ }ρ;, tBtW  replaced by ( ) ( ){ }.0;, =ρtBtW H  

It remains to be proved that a corrected Black-Scholes price formula can be 
derived in the case where the sources of fluctuations ( ) ( ){ }ρ;, tBtW  in (1.1)-(1.3) 

are replaced by the following: 

  (i) ( ) ( ){ },0;, ≠ρtBtW H  

 (ii) ( ) ( ){ },0 or 0;, ≠ρ=ρtBtWH  

(iii) ( ) ( ){ },0 or 0;, ≠ρ=ρtBtW HH  

with another fractional Brownian motion ( ).tWH  However, if we appeal to the 

fractional Wick-Ito calculus, then the stochastic integral ( ) ( ) ( )tdWtXt Hσ  in 

equation (1.1) is defined in the sense of the Wick product such that ( ) ( )tXt ◊σ  

( ).tdWH◊  Further, we shall need the explicit form of the Malliavin φ-derivative, 

such that ( )tDs η
φ  of a random process ( ),tη  which appears in the fractional Ito 

formula. Furthermore, we shall need the explicit form of the fractional Girsanov 
formula for risk-neutral measure and the risk premium factor (market price). These 
provide us with more difficulty in calculations. 
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A simple model is the case where the risky asset ( )tX  is under a fractional 

Brownian motion and the volatility ( )tσ  is a rapidly varying deterministic function. 

Namely, let ( )tWH  be a fractional Brownian motion with Hurst parameter ∈H  

( )1,21  and ε be a small parameter such that .10 ε<  Let us consider the ε-

dependent market ( ( ) ( )),, tXtA ε  ,0 Tt ≤≤  such that 

( ) ( ) ( ) ,10, == AdttrAtdA  

( ) ( ) ( ) ( ) ( ) ( ) ,0, +
εεεεε ∈=σ+μ= RxXtdWtXtdttXtdX H  

( ) ( ).tYt εε =σ  

Here ( )tY ε  is the solution of the following ordinary differential equation: 

( ) [ ( )] ,0, TtdttYbatdY ≤≤−=ε εε  

( ) ,0 0 +
ε ∈= RyY  

with constants 0>a  and .0>b  Then we have 

( ) ( ) ,exp0 ⎟
⎠
⎞⎜

⎝
⎛

ε
−−+=ε tabybtY  

( ) btY →ε      as     0→ε      for     .0>t  

The constant b is also asymptotically stable value in the sense that ( ) btY →ε  as 

.∞→t  Let ( ) ( ( ))XtCXtC , resp., 0ε  be the European call option price as 

obtained by the fractional Black-Scholes formula with the deterministic volatility 

function ( )tεσ  (resp. the constant volatility b). Then, Narita [19] shows that as 

0→ε  

( ) ( ) ( )HOXtCXtC ε+=ε ,, 0       for     ,0>t  

where the constants appearing in the big-oh notation ( )⋅O  are independent of ε. 

2. Fractional Black-Scholes Model 

Fractional Brownian motion (fBm) has been applied to describe the behavior to 
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prices of assets and volatilities in stock markets. The long-range dependence self-
similarity properties make this process a suitable model to describe these quantities; 
we shall give some details of fBm in Section 3. 

Let us consider the fractional Black-Scholes (fractional BS) model with T the 
time of maturity, where the price of a risk-less asset (a bank account or bond) ( )tA  

at time [ ]Tt ,0∈  and the price of a risky asset (a stock) ( )tX  at time [ ]Tt ,0∈  are 

given by the following equations: 

( ) ( ) ( ) .10, == AdttrAtdA  

Here r represents the constant risk-less interest rate and hence ( ) ,rtetA =  

( ) ( ) ( ) ( ) ( ),tdWtXtdttXtdX σ+μ=  (2.1) 

( ) ( )( ),tYft =σ  (2.2) 

( ) ( )( ) ( ),tdBdttYmtdY Hβ+−α=  (2.3) 

with constants ( ),r>μ  ,0>m  0>α  and .0>β  

Assumption 2.1. We assume the following: 

  (i) ( )( )tW  is a one-dimensional standard Brownian motion. 

 (ii) ( )( )tBH  is a one-dimensional fractional Brownian motion (fBm) with Hurst 

parameter H. Throughout this paper, let H be fixed and it is assumed that 
.121 << H  

(iii) ( )( )tW  and ( )( )tBH  are independent. 

(iv) ,: RR →f  is continuous. 

The process ( )( )tY  is a mean-reverting fractional Ornstein-Uhlenbeck (fractional 

OU) process. Examples of functions f are ( ) yeyf =  (Scott model), ( ) yyf =  

(Stein-Stein model). 

For the future discussion, we shall introduce the terminology of mathematical 
finance in the following. 
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A European call option (a European option to buy) is a contract that gives the 
right (but not the obligation) to buy at time T (the maturity) a stock at price K (the 
strike or exercise price), which is fixed when the contract is signed. 

If ( ) ,KTX ≥  the option enables its owner to buy the asset at price K and then 

sell it immediately at price ( );TX  the payoff, that is, the difference ( ) KTX −  

between the two prices is realized gain. If ( ) ,KTX <  the gain is zero. For example, 

we can express the payoff ( )ωF  at time T of a European call option in the fractional 

BS model by 

( ) ( )( ) ( ){ }0,max: KTXKTXF −=−=ω +  

as given in the classical Black-Scholes (classical BS) model. 

More generally, we introduce the following concepts: 

The process ( )tu  ( )( )tvresp.  denotes the amount of the risk-less asset ( )tA  

(resp.  the risky asset ( ))tX  that is held at time t. Then, ( ) ( ) ( )( )tvtut ,=θ  is called 

portfolio. Consequently, the value, or wealth, of the portfolio at time t is 

( ) ( ) ( ) ( ) ( ) ( ).,: tXtvtAtutVtV +=ω= θθ  

A portfolio ( )tθ  is self-financing if 

( ) ( ) ( ) ( ) ( ) .0, TttdXtvtdAtutdV ≤≤+=θ  

Namely, an investment strategy is said to be self-financing if no extra funds are 
added or withdrawn from the initial investment. The cost of acquiring more units of 
one security in the portfolio is completely financed by the sale of some units of 
another security within the same portfolio. 

A portfolio ( )tθ  is said to provide an arbitrage opportunity if, with ( ) ,00 ≤θV  

we have ( ) 0≥θ TV  a.s. and 

Probab ( ( ) ) .00 >>θ TV  

Thus, an arbitrage opportunity means a self-financing trading strategy requiring no 
initial investment, having no probability of negative value at expiration, and yet 
having a possibility of a positive payoff. One of the fundamental concepts in the 
theory of option pricing is the absence of arbitrage opportunities, which is called 
arbitrage-free. We will allow ourselves to use no-arbitrage in place of arbitrage-free 
when convenient. 
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Let ( )ω= FF  be a European contingent T-claim (or just a T-claim); that is, 

F is a lower bounded random variable denoting the payoff. For F, if there exist an 
initial investment R∈z  and ( )tθ  such that 

( ) ( )ω=ω θ ,, TVF z       (a.s.), 

then the financial market is said to be complete. 

Suppose now that the T-claim ( )ωF  is attainable in the sense that there exists a 

portfolio ( ) ( ) ( )( )tvtut ,=θ  such that the value process equals F a.s. at the terminal 

time T, i.e., 
( ) ( )ω=ω FTV ,       (a.s.). 

If such a ( )tθ  exists, we call it a replicating or hedging portfolio for F. 

Remark 2.2. Under Assumption 2.1, let us mention the following results on the 
model (2.1)-(2.3) that are proved in Hu [11]: 

 (i) The market is incomplete and martingale measures are not unique. 

(ii) Set ( ) ( ) ( )trt σμ−=γ  and 

( ) ( ) ( ) ,2
1exp

0

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ−γ= ∫

T
dtttdWtdP

dQ  

where P is the probability measure in the underlying probability space. Then, Q is 
the minimal martingale measure associated with P. 

(iii) The risk minimizing hedging price of a European call option is given by 

[ ( )( ) ],~ +− −= KTXEeV Q
rT  

where QE  stands for the mathematical expectation with respect to Q. 

If tG  denotes the filtration generated by fBm, it holds that 

[ ( ( )( ) )]TQQ
rT KTXEEeV G|−= +−~  

 ( )( )[ ] ,,0 σ= − XCEe BSQ
rT  

where ( )∫ σ=σ
T

dss
0

2  and BSC  denotes the classical BS formula. 
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Remark 2.3. For the model (2.1)-(2.3), we shall introduce the scaling 

( )
,1

2
,1 H

H
HH

⎟
⎠
⎞⎜

⎝
⎛
εΓ

ν
=β

ε
=α  

where 10 ε<  and ( )1OH =ν  (fixed), to model fast mean-reversion in market 

volatility; Hν  is the parameter appearing in the long-run distribution ( )2, HmN ν  of 

( )( )tY  and ( )⋅Γ  is the Gamma function (Lemma 3.11 and Assumption 5.1). We 

shall derive the pricing partial differential equation in terms of ε (Lemma 4.1 and 
Lemma 5.2), and finally, obtain a corrected Black-Scholes price formula by singular 
perturbations (Theorem 6.1). 

It is helpful to one in comparing the fractional BS formula with the classical BS 
formula. In the following, let ( )tA  be the price at time t for the risk-less asset and 

( )tX  be the price at time t for the risky asset, characterized by a triple ( )σμ,,r  of 

positive constants. 

• The fractional BS model (see Hu and Øksendal [13] and Necula [20]) 

Let ( )tWH  be the fBm with Hurst parameter ( ).1,21∈H  

 (i) ( ) ( ) ( ) .10, == AdttrAtdA  

(ii) ( ) ( ) ( ) ( ) ( ) .00, >=σ+μ= xXtdWtXdttXtdX H  

Theorem 2.4 (Factional BS formula). The European call price at [ ]Tt ,0∈  

with strike price K and maturity T is given by 

( )( ) ( ) ( ) ( ) ( ),, 21 dNKedNtXtXtC tTr −−−=  

where 

( ) ( ) ( )
,2log

22

22
2

1 HH

HH

tT

tTtTrK
tX

d
−σ

−σ+−+⎟
⎠
⎞⎜

⎝
⎛

=  

( ) ( ) ( )
( ),2log

22
122

22
2

2
HH

HH

HH

tTd
tT

tTtTrK
tX

d −σ−=
−σ

−σ−−+⎟
⎠
⎞⎜

⎝
⎛

=  
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and ( )⋅N  is the cumulative probability of the standard normal distribution, i.e., 

( ) ∫ ∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

π
=

z
dyyzN .2exp

2
1 2

 

Theorem 2.5 (Factional BS equation). The price of a derivative on the stock 
price with bounded payoff ( )( )TXh  is given by ( )( ),, tXtC  where ( )XtC ,  is the 

solution of the following partial differential equation: 

( ) ,02

2
2122 =−

∂
∂+

∂
∂σ+

∂
∂ − rCX

CrX
X

CXtHt
C H  

( ) ( )., XhXTC =  

• The classical BS model (see Fouque et al. [7] and the references therein) 

Let ( )tW  be the standard Brownian motion. 

 (i) ( ) ( ) ( ) .10, == AdttrAtA  

(ii) ( ) ( ) ( ) ( ) ( ) .00, >=σ+μ= xXtdWtXdttXtdX  

Theorem 2.6 (Classical BS formula). The European call price at [ ]Tt ,0∈  

with strike price K and maturity T is given by 

( )( ) ( ) ( ) ( ) ( ),, 21 dNKedNtXtXtC tTr −−−=  

where 

( ) ( )
,

2log
2

1 tT

tTrK
tX

d
−σ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ++⎟
⎠
⎞⎜

⎝
⎛

=  

( ) ( )
( ),

2log

1

2

2 tTd
tT

tTrK
tX

d −σ−=
−σ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−+⎟
⎠
⎞⎜

⎝
⎛

=  

and ( )⋅N  is the cumulative probability of the standard normal distribution. 

Theorem 2.7 (Classical BS equation). The price of a derivative on the stock 
price with bounded payoff ( )( )TXh  is given by ( )( ),, tXtC  where ( )XtC ,  is the 
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solution of the following partial differential equation: 

,02
1

2

2
22 =−

∂
∂+

∂
∂σ+

∂
∂ rCX

CrX
X

CXt
C  

( ) ( )., XhXTC =  

3. Fractional Ornstein-Uhlenbeck Process 

We shall make preparations for our discussion and introduce the fractional 
stochastic calculus, omitting some details. 

Definition 3.1. A one-dimensional fractional Brownian motion (fBm) with 
Hurst parameter ( )1,0∈H  is a Gaussian stochastic process with ( ) ,00 =HB  such 

that 

( )[ ] ( ) ( )[ ] { }HHH
HHH ststsBtBEtBE 222

2
1,0 −−+==  

for all ., R∈ts  Here [ ]⋅E  denotes the mathematical expectation with respect to the 

probability law Hμ  for ( ).⋅HB  

Remark 3.2. FBm has the following properties: 

 (i) HB  is self-similar with self-similar index H, that is, for every ,0>c  the 

process ( ){ }R∈tctBH ;  is identical in distribution to { ( ) }.; R∈ttBc H
H  

 (ii) HB  has stationary increments. 

 (iii) If ,21=H  then HB  has independent increments. 

 (iv) If ,21>H  then HB  has long-range dependence. 

 (v) If ,21≠H  then HB  is non-Markovian. 

 (vi) If ,21≠H  then HB  is not a semimartingale. 

 (vii) The covariance between future and past increments is positive if 21>H  

and negative if .21<H  

If ,21=H  then the fBm 21B  is one-dimensional standard Brownian motion. 
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Definition 3.3. Throughout this paper, let H be a fixed parameter and it is 
assumed that .121 << H  For given ( ),1,21∈H  define +→×φ RRR:  by 

( ) ( ) .,,12:, 22 R∈−−=φ − tstsHHts H  

Then we notice that 

( )∫ ∫ =φ
t t Htdsdrrs
0 0

2 .,  

Let RR →:f  be Borel measurable such that 

( ) ( ) ( )∫ ∫ ∞<φ
R R

., dsdttstfsf  

Then the stochastic integral with respect to the fBm ( )⋅HB  is well defined. It 

follows from Gripenberg and Norros [9] and Nualart [21] that for any deterministic 

integrand ( ) ( )RRRR ,,, 12 LLgf ∩∈  

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫ φ=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
R RR R

., dsdttstgsftdBtgsdBsfE HH  

The stochastic integral with respect to the fBm ( )⋅HB  is extended to the case 

where the integrands are stochastic functions. We now follow from Duncan et al. 
[6], and Hu and Øksendal [13]. 

We will assume that Ω is the space ( )RS′  of tempered distributions on ,R  

which is the dual of the Schwartz space ( )RS  of rapidly decreasing functions on .R  

If ( )RS′∈ω  and ( ),RS∈f  we let ( )ff ω=ω,  denote the action of ω applied 

to f. It can be extended to all RR →:f  such that 

( ) ( ) ( )∫ ∫ ∞<φ=φ R R
.,:2 dsdttstfsff  

The space of all such functions f is denoted by ( ).2 RφL  

Defining the inner product 

( ) ( ) ( ) ( )∫ ∫ φφ ∈φ=
R R

R ,,,,:, 2Lgfdsdtsttgsfgf  

we notice that ( ( ) )φφ ⋅⋅,,2 RL  is a Hilbert space. 
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Remark 3.4 (Gaussian property). Let ( )., 2 Rφ∈ Lgf  Then, the stochastic 

integrals ( ) ( )∫
∞

0
sdBsf H  and ( ) ( )∫

∞

0
sdBsg H  are Gaussian random variables with 

mean 0 and variance ,2
φf  .2

φg  In particular, 

( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∫ ∫
∞ ∞

0 0
tdBtgsdBsfE HH  

( ) ( ) ( )∫ ∫
∞ ∞

φ=φ=
0 0

.,, gfdsdttstgsf  

For ( ) ,: RR →′=Ω SF  we denote by FDt
φ  the Malliavin φ-derivative of F 

at t; we shall cite a familiar notion in Definition 3.7 below. 

According to Hu [12, Proposition 6.25], we define ε∞
φ

,
L  to be the set of 

processes ( ) RR →Ω×ω :,tg  such that ( )sgDs
φ  exists for almost all R∈s  and 

( ) ( ) ( ) ( ( )) .,: 2, ∞<⎥
⎦

⎤
⎢
⎣

⎡
+φ= ∫ ∫ ∫ ∫ φε∞

φ R R R R
dsdttgDdsdttstgsgEg sL  

Then, by the method of the Wick product ◊ (the Wick calculus in white noise 

analysis), for ( ) ,, , ε∞
φ∈ωσ Lt  we can define ( ) ( )∫ ωσ

R
,, tdBt H  that is, the fractional 

Ito-integral of the process ( )ωσ ,t  with respect to ( ).tBH  

The Wick product is used instead of the ordinary product in the Riemann sums, 
e.g., 

( ) ( ) ( ) ( ) ( )( )∫ ∑
−

=
+→Δ

−◊ωσ=ωσ
b

a

n

k
kHkHkH tBtBttdBt

1

0
10

,,lim:,  

where 

( ).max,: 11010 kknkn ttbttta −=Δ=<<<=Δ +−≤≤  

Remark 3.5 ( nExpectatio of an integral of ).ε∞
φ∈ ,
Lf  An importance of this 

fractional Ito-integral is 
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( ) ( ) ,0, =⎥
⎦

⎤
⎢
⎣

⎡ ωσ∫R tdBtE H  

where [ ]⋅E  denotes the mathematical expectation with respect to the probability 

law Hμ  for ( );⋅HB  see Biagini et al. [2], Duncan et al. [6, pp. 588-592], Hu 

[12, pp. 56-58, 67-69], and Hu and Øksendal [13], and in particular the references 
therein. 

Compare the fractional Ito-integral with the fractional pathwise integral defined 
by 

( ) ( ) ( ) ( ) ( )( )∫ ∑
−

=
+→Δ

−ωσ=δωσ
b

a

n

k
kHkHkH tBtBttBt

1

0
10

.,lim:,  

Then, these integrals do not have expectation zero. Moreover, the financial market 
based on ( )tBH  could have an arbitrage opportunity if we use the fractional 

pathwise integral. However, we will get no-arbitrage if we use the fractional Ito-
integral; see Hu and Øksendal [13]. 

Remark 3.6 (Wick product). The Wick product has the following properties; 
see Holden et al. [10, Section 2.4 and Chapter 3]: 

 (i) In Wick product ,GF ◊  commutative law, associative law and distributive 

law hold. 

 (ii) If at least one of F and G is deterministic, e.g., ,0 R∈= aF  then the Wick 

product coincides with the ordinary product in the deterministic case, that is, 

,GFGF ⋅=◊      in particular,      if ,0=F  then .0=◊GF  

(iii) When applied to ordinary stochastic differential equations, derivative 
product rule holds as in the case of ordinary calculus: 

( ) .VUVUVU ′◊+◊′=′◊  

(iv) Wick product is easier to handle with use such that if Y is in Hida space of 
stochastic distribution, then 

( ) ( ) ( ) ( )∫ ∫ ◊=
R R

,dtttYtdBtY HH N  

where ( )tHN  is the fractional white noise, that is, ( ) ( ) ;dttdBt HH =N  see Hu and 
Øksendal [13, Definition 3.11] and Holden et al. [10, Section 2.5]. 
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We shall need the stochastic gradient according to Biagini et al. [3, p. 281], 
Duncan et al. [6], Hu [12, p. 51, p. 99], Hu and Øksendal [13, Definition 4.3] and 
Nualart [21, Chapter 1]. 

Definition 3.7 (The Malliavin φ-derivative). Let Φ be given by 

( ) ( ) ( ) ( ) ( )∫
∞

φ∈φ=Φ
0

2 .,,: RLgduuguttg  

Then the φ-derivative of a random variable ( ) ( )1≥Ω∈ pLF p  in the direction of 

,2
φ∈Φ Lg  where ( ),2 Rφ∈ Lg  is defined as 

( ) ( ) ( ) ( ) ,1lim:
00 ⎭

⎬
⎫

⎩
⎨
⎧

ω−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φδ+ω

δ
=ω ∫

⋅

→δΦ FduugFFD g  

if the limit exists in ( ).ΩpL  Further, if there exists a process ( )0; ≥φ sFDs  such that 

( )∫
∞ φ

Φ =
0

dssFgDFD sg  (a.s.) for all ,2
φ∈ Lg  then F is said to be φ-differentiable; 

FDs
φ  is an analogue of the Malliavin φ-derivative of F at s. 

Without rigor, we note as follows: Let ( ) .: RRS →′=ΩF  Then 

( ) ( ) ( )∫ ω
ω

=ωφ=φ

R
.,,, td

dFFDFdtDtsFD tts  

Here ( )ωFDt  is the stochastic gradient (or Hida/Malliavin derivative) of F at t. 

Note that – in spite of the notation – FDt  is not a derivative with respect to t but a 

(kind of) derivative with respect to ,Ω∈ω  such that  

( ) ( ) ( )tfsdBsfD Ht =⎟
⎠

⎞
⎜
⎝

⎛∫R      for      a.e. t       if      ( ).2 Rφ∈ Lf  

Remark 3.8 (Rules for differentiation). Let RR →:f  be smooth and Ω:F  

R→  be φ-differentiable. Then ( )Ff  is also φ-differentiable, satisfying 

( ) ( ) .FDFfFfD ss
φφ ′=  

Further, the following equations hold: If ( ),2 Rφ∈ Lf  then 
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( ) ( ) ( ) ( ) ( ) ( )∫∫
∞∞

φ Φ=φ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00

,, sfduufsuudBufD Hs  

where ( )., 2 Rφ∈ Lgf  Let ( ).2 Rφ∈ Lf  Let 0>T  be arbitrary and fixed. Then 

( ) ( ) ( ) [ ]( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
χφ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∫∫
∞

φφ

0
,0

0
, duufusuDudBufD ts

t
Hs  

( ) ( )∫ φ=
t

duufsu
0

,      for any     [ ].,0, Tts ∈  

In particular, 

( )( ) ( )∫ −φ =φ=
s H

Hs HsdususBD
0

12 .,  

For further details concerning stochastic integrals with respect to fBm, we 
are referred to Biagini et al. [3], Hu [12], Mishura [16] and Nualart [21], and in 
particular the references therein. Moreover, we shall use the following theorem: 

Theorem 3.9 (Fractional Ito formula). Consider the fractional SDE: 

( ) ( ) ( ) ( ) ,,,,, , ε∞
φ∈σμωσ+ωμ= LtdBtdtttdX H  

where ε∞
φ

,
L  is the set of processes as given after Remark 3.4, and the stochastic 

integral means the fractional Ito integral. If ( ),2,1 RR ×∈ +Cf  then we have 

( )( ) ( )( ) ( )( )∫ ∂
∂+=

t
dssXss

fXftXtf
0

,0,0,  

( )( ) ( ) ( )( ) ( ) ( )∫ ∫ σ
∂
∂+μ

∂
∂+

t t
H sdBssXsX

fdsssXsX
f

0 0
,,  

( )( ) ( ) ( )∫ φσ
∂
∂+

t
s dssXDssXs

X
f

0 2

2
.,  

Here ( )sXDs
φ  is the Malliavin φ-derivative of ( )sXF =:  at s in the sense of 

Definition 3.7. 
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Under preparations above, we consider the process of equation (2.3) with the 
initial state ( ) R∈= 00 yY  and the time interval [ ),,0 ∞  that is, 

( ) ( )( ) ( ) ,0, ≥β+−α= ttdBdttYmtdY H  

( ) ,0 0 R∈= yY  (3.1) 

with constants ,0>m  0>α  and .0>β  This is a linear fractional stochastic 

differential equation. It follows from Biagini et al. [2, 3] and Narita [17, 18] that the 
solution cannot explode and hence the solution is pathwise unique. For the details of 
stochastic differential equations in fractional Brownian environment, see Holden 
et al. [10], Mishura [16] and Nualart [21]. 

We shall need the following estimates on the integrals: 

Lemma 3.10. Let ( )rs,φ  be the function as given in Definition 3.3. Define ( )xA  

and ( )xB  by 

( ) ( )∫ ∫ ⎟
⎠
⎞⎜

⎝
⎛ <<ξξ=ξξ= −ξ−−ξ

x x HH HdexBdexA
0 0

1212 .12
1,,  

Then, for any constant ,0>α  the following hold: 

  (i)  ( )( ) ( )∫ ∫ φ+α
t t

dsdrrsrs
0 0

,exp  

( ) ( ) ( ){ }tBttAH
H

αα+α⎟
⎠
⎞⎜

⎝
⎛
α

= 2exp1 2
     for     .0≥t  (3.2) 

 (ii)  ( )( ) ( )∫ ∫ φ+α−
t t

dsdrrsrs
0 0

,exp  

( ) ( ) ( ){ }tAttBH
H

αα−+α⎟
⎠
⎞⎜

⎝
⎛
α

= 2exp1 2
     for    .0≥t  (3.3) 

(iii)  ( ) ( )∫ φα
s

drrsr
0

,exp  

( ) ( ) ( ) .1expexp
12

12

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−α=
−

− sBsssH
H

H  (3.4) 
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Proof. We shall show equation (3.3). Put 

⎪⎩

⎪
⎨
⎧

=−

=+

,

,

vrs

urs
       

and hence       

( )

( )⎪⎩

⎪
⎨
⎧

−=

+=

.2

,2

vur

vus
 

Consider the domain ( ){ }.0,0:, trtsrsD ≤≤≤≤=  Then, D is transformed to 

the following domain :D′  

( ){ } ,20,20:, 21 DDtvutvuvuD ′′=≤−≤≤+≤=′ ∪  

( ){ },,0:,1 uvutuvuD ≤≤−≤≤=′  

( ){ }.22,2:,2 tuvtututvuD +−≤≤−≤≤=′  

The Jacobian ( )vuJJ ,=  of the coordinate transformation above is given by 

.2
1

2
1

2
1

2
1

2
1

−=
−

=

∂
∂

∂
∂

∂
∂

∂
∂

=

v
r

u
r

v
s

u
s

J  

Thus we have 

( ) ( )( ) ( )∫ ∫ −−−+α−=
D

H dsdrrsHHrstI 2212exp:  

( ) ( )∫ ∫ ′

−−α−=
D

H dsdrJvHHu 2212exp  

( ) ( ),21 tItI +=  

( ) ( ) ( )∫ ∫ ′

−−α−=
1

,12exp2
1: 22

1
D

H dudvvHHutI  

( ) ( ) ( )∫ ∫ ′

−−α−=
2

.12exp2
1: 22

2
D

H dudvvHHutI  



K. NARITA 18 

Step 1. 

( ) ( ) ( )∫ ∫−
−−α−=

t u

u
H dvvHHduutI

0

22
1 12exp2

1  

( ) ( )∫ ∫ −−α−=
t u H dvvHHduu
0 0

2212exp  

( )∫ ⎟
⎠
⎞⎜

⎝
⎛ <<α−= −

t H HduuuH
0

12 12
1exp  

( ) ( ) ∫ ξξ=α⎟
⎠
⎞⎜

⎝
⎛
α

= −ξ−
x H

H
dexBtBH

0
12

2
.,1  

Step 2. 

( ) ( ) ( )
( )∫ ∫
−

−−

−−α−=
t

t

ut

ut

H dvvHHduutI
2 2

2

22
2 12exp2

1  

( ) ( )∫ ∫
−

−−α−=
t

t

ut H dvvHHduu
2 2

0
2212exp  

( )( )∫ ⎟
⎠
⎞⎜

⎝
⎛ <<−α−= −t

t

H HduutuH
2 12 12

12exp  

( ) ( ) ( )∫ =−αα−= −
t H zutdzzztH
0

12 2exp2exp  

( ) ( ) ( ) ∫ ξξ=αα−⎟
⎠
⎞⎜

⎝
⎛
α

= −ξ
x H

H
dexAtAtH

0
12

2
.,2exp1  

By Steps 1-2, we obtain equation (3.3). The same argument as taken in the preceding 
leads us to equation (3.2). Finally, we shall show equation (3.4). Integration by parts 
implies that 

( ) ( )∫ φα
s

drrsr
0

,exp  

( ) ( )∫ α−−= −s H drrrsHH
0

22 exp12  
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( ) ( ) ( )∫ α−−= −s H drrrsHH
0

22 exp12  

( ) ( ) ( )∫ ⎟
⎠
⎞⎜

⎝
⎛ <<

′

⎭⎬
⎫

⎩⎨
⎧ −

−
−α−= −s H HdrrsHrHH

0

12 12
1

12
1exp12  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−αα+= ∫ −−
s HH drrsrsH

0

1212 exp  

( ) ( ) ( )zrsdzzzssH
s HH =−

⎭
⎬
⎫

⎩
⎨
⎧

α−αα+= ∫ −−

0
1212 expexp  

( ) ( ) ( )ξ=α
⎭
⎬
⎫

⎩
⎨
⎧

ξξξ−⎟
⎠
⎞⎜

⎝
⎛
α

αα+= ∫
α

−− zdssH
s H

H
H

0
12

2
12 exp1exp  

( ) ( ) ( ) ∫ ξξ=
⎭
⎬
⎫

⎩
⎨
⎧

αα⎟
⎠
⎞⎜

⎝
⎛
α

+= −ξ−
−

−
x H

H
H dexBsBssH

0
12

12
12 ,,exp1  

which yields equation (3.4). This completes the proof of Lemma 3.10.  

Lemma 3.11. Let ( )tY  be the solution of (3.1). Then 

( ) ( ) ( )∫ αα−α− β+−+=
t

H
stt sdBeemyemtY

0
0 .  (3.5) 

Hence ( )tY  is a Gaussian stochastic process and has the long-run distribution 

which is the normal distribution ( )2, HmN ν  with mean m and variance ,2
Hν  such 

that 

( ),21 2
22 HH

H
H Γ⎟

⎠
⎞⎜

⎝
⎛
α

β=ν  (3.6) 

where ( )⋅Γ  is the Gamma function; ( ) ∫
∞ −ξ− ξξ=Γ
0

1 .dex x  

Proof. Remark 3.6 implies that 

( ) ( )( ) ( ) ( ) 00, yYttYmdt
tdY

H =β+−α= N  
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with the fractional white noise ( ) ( ) .dttdBt HH =N  This a linear differential 

equation of the first order, and hence 

( ) ( ) ( ){ } ⎥
⎦

⎤
⎢
⎣

⎡
+β+α= ∫ αα−

t
H

st ydssmeetY
0

0N  

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+β+α= ∫ ∫ ααα−

t t
H

sst ydssedsmee
0 0

0N  

[ ] ( )∫ α−αα−αα− +β+−=
t t

H
sttt yesdBeeeme

0
0,1  

which yields equation (3.5). Recall (ii) of Remark 3.6 and equation (3.2) of 
Lemma 3.10. Then we notice that the fractional Ito integral ( ) ( )∫

t
H sdBsf

0
 with 

deterministic integrand ( ) sesf α=  is well-defined; see the explanation after 

Definition 3.3 and Gripenberg and Norros [9]. Take the mathematical expectation on 
equation (3.5). Then, by Remark 3.5, we have 

( ) ( )[ ] ( ) .:ˆ
0

temymtYEtM α−−+==  

Moreover, by Remark 3.4 and equation (3.2) of Lemma 3.10, we get 

( ) ( )[ ] ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β== ∫ αα−

2

0
22:ˆ

t
H

st sdBeEetYVtV  

( ) ( )∫ ∫ φβ= +αα−
t t rst dsdrrsee
0 0

22 ,  

{ ( ) ( )}tBetAHe t
H

t α+α⎟
⎠
⎞⎜

⎝
⎛
α

β= αα− 2
2

22 1  

{ ( ) ( )},1 2
2

2 tBtAeH t
H

α+α⎟
⎠
⎞

⎜
⎝
⎛
α

β= α−  

where 

( ) ( )∫ ∫ ⎟
⎠
⎞⎜

⎝
⎛ <<ξξ=ξξ= −ξ−−ξ

x x HH HdexBdexA
0 0

1212 .12
1,,  
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Observe the expression (3.5). Then, by Remark 3.4, we obtain that ( )tY  is a 

Gaussian process and hence has the normal distribution ( ( ) ( ))tVtMN ˆ,ˆ  with mean 

( )tM̂  and variance ( ).ˆ tV  Notice that 

( ) ( ) ,0
2

lim
2

limlimlim
12

2

1

2
2 ====

−

∞→

−2

∞→∞→
−

∞→ x

H

xx

Hx

xxx
x

x e
x

e
xe

e
xAxAe  

( ) ( )∫
∞

−ξ−
∞→

Γ=ξξ=
0

12 .2lim HdexB H
x

 

Then we obtain that as ∞→t  

( ) ( ) ( ).21ˆ,ˆ
2

2 HHtVmtM
H
Γ⎟

⎠
⎞⎜

⎝
⎛
α

β→→  

By characteristic of the normal distribution, the limit distribution as ∞→t  is also 
the normal distribution, which yields equation (3.6). This completes the proof of 

Lemma 3.11.  

Lemma 3.12. Let ( )tY  be the solution of equation (3.1). If ( ),2,1 RR ×∈ +Cf  

then we have 

( )( ) ( )( ) ( )( )∫ ∂
∂+=

t
dssYss

fYftYtf
0

,0,0,  

( )( ) ( )( ) ( )( ) ( )∫ ∫ β
∂
∂+−α

∂
∂+

t t
H sdBsYsy

fdssYmsYsy
f

0 0
,,  

( )( )∫ ∂
∂+

t
sYs

y
f

0 2

2
,  

( ) ( ) ,1exp
12

122 dssBssH
H

H

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β×
−

−  (3.7) 

where  

( ) ∫ ξξ= −ξ−
x H dexB

0
12 .  
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Proof. Apply the fractional Ito formula (Theorem 3.9) to ( ).tY  Then we have 

( )( ) ( )( ) ( )( )∫ ∂
∂

+=
t

dssYs
s
fYftYtf

0
,0,0,  

( )( ) ( )( ) ( )( ) ( )∫ ∫ β
∂
∂+−α

∂
∂+

t t
H sdBsYsy

fdssYmsYsy
f

0 0
,,  

( )( ) ( )∫ φβ
∂
∂+

t
s dssYDsYs

y
f

0 2

2
.,  

Here ( )sYDs
φ  is the Malliavin φ-derivative of ( )sYF =:  at s in the sense of 

Definition 3.7. Lemma 3.11 implies that ( )tY  has the explicit form (3.5). Therefore, 

by Remark 3.8 and equation (3.4) of Lemma 3.10, we can calculate the Malliavin 

φ-derivative ( )sYDs
φ  as follows: 

( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα−β= ∫φφ

s
Hss rdBrDssYD

0
expexp  

( ) ( ) ( )∫ φαα−β=
s

drrsrs
0

,expexp  

( ) ( ) ( ) ( ) ,1expexpexp
12

12

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−αα−β=
−

− sBsssHs
H

H  

where  

( ) ∫ ξξ= −ξ−
x H dexB

0
12 .  

This completes the proof of Lemma 3.12.  

4. Asset Pricing 

In the following sections, we take the same argument as given by Fouque et al. 
[7]; we also owe the proof to the introductory method in Andersson [1]. 

Under Assumption 2.1, we consider the model (2.1)-(2.3). In this case, there is 
one risky asset X and two random sources W and .HB  Namely, there are two 
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sources of randomness instead of one as in the classical BS model. When 
constructing a portfolio, the derivatives cannot be perfectly hedged with just the 
underlying asset. Instead we also need a benchmark derivative called G. A risk-less 
portfolio Π is formed, containing the quantity XΔ−  of the underlying asset X, the 

quantity GΔ−  of another traded asset G (Benchmark option) and the priced 

derivative P. The total value of the portfolio is 

.GXP GX Δ−Δ−=Π  (4.1) 

The differential of the portfolio value is needed to construct a risk-less and 
no-arbitrage, satisfying 

.dGdXdPd GX Δ−Δ−=Π  (4.2) 

Notice that the model (2.1)-(2.3) can be written by the vector form 

( )

( )
.

0

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

β
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−α

μ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

HB

W
d

XYf
dt

Ym

X

Y

X
d  

Then, the classical Ito formula and the fractional one (Lemma 3.12) are applied to 
dP and dG as follows: 

( ) 2
2

2
22

2

2

2
1 β

∂
∂+⎢

⎣

⎡

∂
∂+

∂
∂=Π H

y
PXyf

X
P

t
Pd  

( ) ( ) dttBtt
H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−×
−

−
12

12 1exp  

dXdYy
PdXX

P
XΔ−

∂
∂+

∂
∂+  

( ) 2
2

2
22

2

2

2
1 β

∂
∂+

⎩
⎨
⎧
⎢
⎣

⎡

∂
∂+

∂
∂Δ− H

y
GXyf

X
G

t
G

G  

( ) ( ) dttBtt
H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−×
−

−
12

12 1exp  

.
⎭
⎬
⎫

∂
∂+

∂
∂+ dYy

GdXX
G  (4.3) 
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Collecting the dX and dY terms, we have 

dYy
G

y
PdXX

G
X
Pd GXG ⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ−

∂
∂+⎥⎦

⎤
⎢⎣
⎡ Δ−

∂
∂Δ−

∂
∂=Π  

( )⎢
⎣

⎡

∂
∂+

∂
∂+ 22

2

2

2
1 Xyf

X
P

t
P  

( ) ( ) dttBttH
y
P H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
−

12
122

2

2 1exp  

( )⎢
⎣

⎡

∂
∂+

∂
∂Δ− 22

2

2

2
1 Xyf

X
G

t
G

G  

( ) ( ) .1exp
12

122
2

2
dttBttH

y
G H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
−  (4.4) 

We want this portfolio to be risk-less by eliminating the coefficients in front of dX 
and dY, and hence 

,0=Δ−
∂
∂Δ−

∂
∂

XG X
G

X
P  (4.5) 

.0=
∂
∂Δ−

∂
∂

y
G

y
P

G  (4.6) 

From the equations above, XΔ  and GΔ  are solved as follows: 

,
1−

⎟
⎠
⎞⎜

⎝
⎛
∂
∂

⎟
⎠
⎞⎜

⎝
⎛
∂
∂=Δ y

G
y
P

G  (4.7) 

.
1−

⎟
⎠
⎞⎜

⎝
⎛
∂
∂

⎟
⎠
⎞⎜

⎝
⎛
∂
∂

∂
∂−

∂
∂=Δ y

G
y
P

X
G

X
P

X  (4.8) 

Thus, if the portfolio is well-balanced according to (4.7) and (4.8), the risk is 
eliminated. Moreover, we want ( )tΠ  to be risk-less with instantaneous interest rate 

r, such that 

( ) ( ) .dttrtd Π=Π  
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Namely, 

( )⎢
⎣

⎡

∂
∂+

∂
∂=Π 22

2

2

2
1 Xyf

X
P

t
Pd  

( ) ( ) dttBttH
y
P H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
−

12
122

2

2 1exp  

( )⎢
⎣

⎡

∂
∂+

∂
∂Δ− 22

2

2

2
1 Xyf

X
G

t
G

G  

( ) ( ) dttBttH
y
G H

H
⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
−

12
122

2

2 1exp  

,dtrΠ=  (4.9) 

where .GXP GX Δ−Δ−=Π  Substitute GΔ  and ,XΔ  which are given by equations 

(4.7) and (4.8), into the equation (4.9), and then multiply both sides by .yG ∂∂  Then 

we obtain 

( )⎢
⎣

⎡

∂
∂+

∂
∂ 22

2
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2
1 Xyf

X
P

t
P  

( ) ( )
⎭
⎬
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H
12

122
2

2 1exp  
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⎟
⎠
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⎝
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∂
∂

⎥
⎦

⎤
∂
∂+− y
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X
PrXrP  
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⎣

⎡

∂
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∂
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2
1 Xyf

X
G

t
G  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
− tBttH

y
G H

H
12

122
2

2 1exp  

.
1−

⎟
⎠
⎞⎜

⎝
⎛
∂
∂

⎥
⎦

⎤
∂
∂+− y

G
X
GrXrG  (4.10) 

The left hand side in equation (4.10) does only depend on P and the right hand side 
does only depend on G. Both sides are thus equal to some function ( ).,, yXtk  
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Lemma 4.1. The equation governing P can be written as 

( ) 22
2

2

2
1 Xyf

X
P

t
P

∂
∂+

∂
∂  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+α−β
∂
∂+

−
− tBttH

y
P H

H
12

122
2

2 1exp  

X
PrXrP

∂
∂+−  

( ) .,, y
PyXtk
∂
∂=  (4.11) 

The terminal condition for P is the contract function ( ),Xh  i.e., ( ) =yXTP ,,  

( )( );TXh  for example, ( )( ) ( )( )+−= KTXTXh  with T and K, the time of maturity 

and the strike price, respectively. 

Proof. The argument in the preceding and equation (4.10) leads us to equation 
(4.11). This completes the proof of Lemma 4.1.  

The function k cannot be determined by arbitrage theory alone. However, it is 
completely determined in terms of the traded benchmark asset G. One can say that 
the market knows the function k. 

For a moment, recall the model (1.1)-(1.3), where the asset process ( )( )tX  and 

the volatility driving process ( )( )tY  are governed by a standard Brownian motion 

( )( )tW  and another standard Brownian motion ( ( )),ˆ tB  respectively, such that 

( ) ( ) ( ).1ˆ 2 tBtWtB ρ−+ρ=  (4.12) 

Here ( )( )tW  and ( )( )tB  are independent Brownian motions with 11 <ρ<−  the 

instantaneous correlation coefficient between asset price and volatility shocks. Then, 
according to Fouque et al. [7], the function k is taken by 

( ) ( ) ( ),,,,, yXtymyXtk Λβ−−α=  (4.13) 

where 

( ) ( ) ( ) 21,,,, ρ−γ+⎟
⎠
⎞⎜

⎝
⎛ −μρ=Λ yXtyf

ryXt  (4.14) 

with an arbitrary function ( ).,, yXtγ  
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Under Assumption 2.1, our model (2.1)-(2.3) corresponds to the case of 
(1.1)-(1.3) where 

( ) ( ) ,0, =ρ= tBtB H       and hence      ( ) ( ).ˆ tBtB H=  

Hereafter, in our model (2.1)-(2.3), it is convenient to assume that 

( ) ( ) ( ),,,,, 2
1

yXtymyXtk
H
βγα−−α=

−
 (4.15) 

appealing to the Hurst parameter .21>H  We notice that equation (4.15) is equal to 

equation (4.13), if 21=H  is formally substituted into equation (4.15). Further, for 

simplicity, we assume that the function γ depends only on the variable y. Therefore, 
we assume the following: 

Assumption 4.2. 

( ) ( ) ( ).,, 2
1

yymyXtk
H
βγα−−α=

−
 (4.16) 

5. The Pricing PDE in Terms of ε 

Here we consider the model (2.1)-(2.3). Lemma 3.11 implies that the fractional 

OU process ( )( )tY  has the long-run distribution ( )2, HmN ν  as ,∞→t  that is, the 
density 

( ) ( ) ,
2

exp
2

1
2

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
−−

πν
=

HH

myyn  (5.1) 

where 

( ),21 2
22 HH

H
H Γ⎟

⎠
⎞⎜

⎝
⎛
α

β=ν  (5.2) 

and ( )⋅Γ  is the Gamma function; ( ) ∫
∞ −ξ− ξξ=Γ
0

1 .dex x  

We take the same argument as taken by Fouque et al. [7] and assume the 
following: 

Assumption 5.1. 

(i) The rate of mean reversion α or its inverse, the typical correlation time of 
( )( ),tY  is characterized by a small parameter ε, such that 

.1
α

=ε  
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(ii) Let 2
Hν  be given by equation (5.2), which controls the long-run size of the 

volatility fluctuations. Then we assume that this quantity remains fixed as we 
consider smaller and smaller values of ε, such that 

( ) ( )
.1

2
1

2 H
H

H
H

HHHH ε⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
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⎞
⎜⎜
⎝

⎛
Γ
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−

 

Under Assumptions 4.2 and 5.1, we observe the multiplier of the second 

derivative 22 yP ∂∂  in the partial differential equation (4.11), that is, 

( ) ( ) ( ) ∫ ξξ=α⎟
⎠
⎞⎜

⎝
⎛
α

β+α−β −ξ−
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−
x H
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H
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The L’Hospital rule for limits of indeterminate form yields that for ,0>t  

( ) ( ) ( ) ( )
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Step 2. 
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( ) ⎟
⎠
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We notice that 

( ) ( )∫ Γ→ξξ= −ξ−
x H HdexB

0
12 2      as    .∞→x  

Then the L’Hospital rule for limits of indeterminate form yields that for ,0>t  
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Thus, we have that for ,0>t  

( ) ( )111 2
12

2 otBH H
H
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⎛

ε
ν=α⎟

⎠
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 (5.4) 

for ε small enough; .1
α

=ε  

Further, let ( )yXtk ,,  be the function as given in equation (4.16). Then, under 

Assumption 5.1, we have the following: 

Step 3. 
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Lemma 5.2. Under Assumptions 4.2 and 5.1, for ε small enough, the pricing 
PDE (4.11) can be written in terms of ε as follows: 
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+
ε

y
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HH
ym H  (5.6) 

for Tt <  with the terminal condition ( ) ( ),,, XhyXTP =ε  where ( )Xh  stands for 

the nonnegative payoff function. 

Proof. Observe the multiplier of 22 yP ∂∂  in PDE (4.11). Then the equations 

(5.3), (5.4) and (5.5) yield equation (5.6). This completes the proof of Lemma 5.2.  
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6. Asymptotic Solution 

We shall solve PDE (5.6) by singular perturbation analysis. We write PDE (5.6) 
with the notation as follows: 

,011
210 =⎟
⎠
⎞⎜

⎝
⎛ +

ε
+

ε
εPLLL  (6.1) 

where we define 

( ) ,2

2
2

0 yym
y

H ∂
∂−+

∂
∂ν=L  (6.2) 
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21 yy
HH

H
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⎛
Γ
ν

−=L  (6.3) 

( )( ) ( ) .12
1

2

2
22

2 ⎟
⎠
⎞⎜

⎝
⎛ −

∂
∂+

∂
∂+

∂
∂== XXr

X
XyftyfBSLL  (6.4) 

Here ( )σBSL  is the classical Black-Scholes operator with the deterministic volatility 

parameter σ, that is, 

( ) .12
1

2

2
22 ⎟

⎠
⎞⎜

⎝
⎛ −

∂
∂+

∂
∂σ+

∂
∂=σ XXr

X
XtBSL  (6.5) 

We look for an expansion 

+εε+ε+ε+=ε
3210 PPPPP  (6.6) 

for small ε, where …,, 10 PP  are functions of ( )yXT ,,  to be determined by the 

terminal conditions 

( ) ( ) ( ) 0,,,,,0 == yXTPXhyXTP i       for     .1≥i  

Substituting equation (6.6) into equation (6.1) and collecting powers of ε, we have 

( )011000
11 PPP LLL +
ε

+
ε

 

( )021120 PPP LLL +++  

( )122130 PPP LLL ++ε+  

+  

.0=  (6.7) 
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For equation (6.7), step by step, the terms of order …,1,1 εε  will be studied. 

Term of order .ε1  At order ,1 ε  we have 

.000 =PL  (6.8) 

The operator 0L  contains partial derivatives with respect to y but no derivatives with 

respect to X. Hence 0P  must be a constant with respect to the variable y, which 

implies that 

( )XtPP ,00 =  (6.9) 

with terminal condition ( ) ( ).,0 XhXTP =  

Term of order .ε1  At order ,1 ε  we have 

.00110 =+ PP LL  (6.10) 

Notice that 0P  only depends on t and X and that the operator 1L  involves the 

derivative with respect to y. Then we have that ,001 =PL  and hence equation (6.10) 

is reduced to .010 =PL  The operator 0L  involves derivatives with respect to y. 

Thus, 1P  must be a constant with respect to y, which implies that ( ),,11 XtPP =  

with the terminal condition ( ) .0,1 =XTP  

Thus, we note that the term 10 PP ε+  in equation (6.6) will not depend on y. 

Zeroth order-term. At order 1, we have 

.0021120 =++ PPP LLL  (6.11) 

The discussion above implies that 0P  and 1P  only depend on ( )Xt,  and that 1L  

and 0L  involve derivatives with respect to y. Thus, ,011 =PL  and hence equation 

(6.11) is reduced to 

.00220 =+ PP LL  (6.12) 

Here, 0P  only depends on t and X. When regarding X as fixed, 02PL  only depends 

on y. Hence the equation (6.12) is a Poisson equation for 2P  with respect to ,0L  that 

is, .0220 PP LL −=  
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In the following, we let ⋅  denote the averaging with respect to the invariant 

distribution ( )2, HmN ν  of the fractional OU process ( )( )tY  (see Lemma 3.11 and 

equation (5.1)): 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
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πν
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2
exp

2

1
2

2

2
dymyygdyynygg

HH

 

Notice that this averaged quantity does not depend on ε. 

In order to have a solution to the Poisson equation (6.12), 02PL  must be in the 

orthogonal complement of the null space of ,0
∗L  where ∗

0L  is the adjoint operator of 

,0L  such that 

( )( ) 2

2
2

0
y

ppymyp H
∂

∂ν+−
∂
∂−=∗L  (6.13) 

for ( ).2 RCp ∈  This solvability condition is equivalent to saying that 20PL  has 

mean zero with respect to the invariant distribution, which yields 

[ ] ( )∫
∞

∞−
=== ,0020202 dyynPPPE LLL  (6.14) 

where ( )yn  in equation (5.1) solves .00 =∗nL  Namely, the solvability condition 

above implies that .002 =PL  Since 0P  does not depend on y, the solvability 

condition is reduced to 

( ) ,00 =σ PBSL  (6.15) 

where ( )σ= BSLL2  and σ  is the effective constant volatility defined by 

( ) ( )∫
∞

∞−
==σ ,222 dyynyff  (6.16) 

which is the average with respect to the invariant distribution of the process Y. 

Therefore, 0P  is the solution of Black-Scholes equations with terminal condition 

( ) ( )XhXTP =,0  and the effective constant volatility 2σ=σ  as given by 

equation (6.16). 
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Observe the equation (6.12), again, that is, 

.0220 PP LL −=  (6.17) 

Apply the same solvability condition as given in equation (6.14). Then, since 
,002 =PL  we see that 02PL  in the right hand side of equation (6.17) can be 

written as 

( ( ) ) .2
1

2
0

2
222

020202
X
PXyfPPP

∂

∂
σ−=−= LLL  (6.18) 

Thus, equation (6.17) is given by 

( ( ) ) .2
1

2
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2
222
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X
PXyfP

∂

∂
σ−−=L  (6.19) 

The solution of the Poisson equation in equation (6.19) is given by 

( ( ) ) 2
0

2
2221

02 2
1

X
PXyfP

∂

∂
σ−−= −L  

( ) ( )( ) ,,2
1

2
0

2
2

X
PXXtcy

∂

∂
+ψ−=  (6.20) 

where ( )yψ  is the solution of the Poisson equation 

( ) 22
0 σ−=ψ yfL  (6.21) 

and ( )Xtc ,  is a constant that may depend on ( )., Xt  

Term of order .ε  At order ,ε  we have 

.0122130 =++ PPP LLL  (6.22) 

This is a Poisson equation for 3P  with respect to ,0L  which is written by 

( ).122130 PPP LLL +−=  (6.23) 

Again, applying the same solvability condition as given in equation (6.14), we obtain 

.01221 =+ PP LL  (6.24) 
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Hence 
,2112 PP LL −=  (6.25) 

where 2P  is already known by equation (6.20). In the following, we investigate 

.12PL  

Notice that 1P  does not depend on y and consider that ( ).2 σ= BSLL  Then we 

have that the left hand side of equation (6.25) is equal to ( ) .1PBS σL  Observe the 

right hand side of equation (6.25) with 2P  replaced by equation (6.20). Then we 

find 

( ) ( )( ) 2
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121 ,2
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PXXtcyP
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+ψ=− LL  
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2
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PXy

∂

∂
ψ= L  (6.26) 

where ψ is a solution of the Poisson equation (6.21); here we used that 
( ) 0,1 =XtcL  since 1L  does only involve the variable y. Hence, by equations (6.25) 

and (6.26), we obtain 
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ψ=σ LL  (6.27) 

Let ( )Xϕ  be a general function. Then we can compute as follows: 
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In equation (6.28), set ( ) .2
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and the terminal condition is ( ) .0,1 =XTP  According to Fouque et al. [7], we 

denote the first correction by 

( ) ( ),,,~
11 XtPXtP ε=  (6.30) 
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which is a solution of 

( ) ( ),,~
1 XtHPBS =σL  (6.31) 

and the terminal condition ( ) .0,~
1 =XTP  Here we define the source term ( )XtH ,  

by 

( ) ;, 2
0

2
2

2
X
PXVXtH

∂

∂
=  (6.32) 

2V  is a small coefficient, given in terms of ε=α 1  by 

( )
.

22
11

2 ψ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

α
−=

HH
V H  (6.33) 

The first correction satisfies the classical Black-Scholes equation (6.31) with a zero 
terminal condition and a small source term computed from derivative of the leading 
term ( ).,0 XtP  

Finally, we want to find the explicit form of the solution 1
~P  to equation (6.31). 

Now, a straightforward calculation yields that for ,1≥n  

( ) ( )( ).0
0 P

X
X

X
PX BSn

n
n

n

n
n

BS σ
∂
∂=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
σ LL  (6.34) 

Further, it holds that 

( ) ( ) ( )( ) ( ) ( ) ( ).,, XtHtTHXtHtT BSBS σ−−=−−σ LL  (6.35) 

Here, equations (6.32) and (6.34) yield 

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
σ=σ 2

0
2

2
2,

X
PXVXtH BSBS LL  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
σ= 2

0
2

2
2

X
PXV BSL  

( )( )02

2
2

2 P
X

XV BS σ
∂
∂= L  

,0=  



ASYMPTOTICS FOR OPTION PRICING 37 

since ( ) 00 =σ PBSL  by equation (6.15). Therefore, equation (6.35) is reduced to 

( ) ( ) ( )( ) ., HXtHtTBS =−−σL  

Hence the solution of the Black-Scholes equation (6.31) is explicitly given by 

( ) ( ) ( ) ( ) .,,~
2
0

2
2

21 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−−=−−=

X
PXVtTXtHtTXtP  (6.36) 

Theorem 6.1. Under Assumptions 2.1, 4.2 and 5.1, for ε small enough, the 
corrected Black-Scholes price is given by 

( ) ,~
2
0

2
2

2010 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−−=+≈

X
PXVtTPPPP  (6.37) 

where 0P  is the solution of the classical Black-Scholes equation with effective 

constant volatility σ  as given by equation (6.16), i.e., ( ) 00 =σ PBSL  with terminal 

condition ( ) ( )XhXTP =,0  for a payoff function ( ).Xh  Further, the function 2V  is 

given by equation (6.33) with Hν  the parameter of the normal distribution 

( )2, HmN ν  as given by equation (5.1). 

Proof. By equations (6.6), (6.15), (6.30), (6.31) and (6.36), we obtain equation 

(6.37), thereby completing the proof of Theorem 6.1.  

Remark 6.2. Recall the model (1.1)-(1.3), where the volatility driving process 

( )( )tY  is governed by ( ) ( ) ( ).1ˆ 2 tBtWtB ρ−+ρ=  Here ( )( )tW  and ( )( )tB  are 

independent standard Brownian motions with 11 <ρ<−  the instantaneous 

correlation coefficient between asset price and volatility shocks. Then, Fouque et al. 
[7] obtain the corrected price function of the form 

( ) ,~
3
0

3
3

32
0

2
2

2010 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−−=+≈

X
PXV

X
PXVtTPPPP  

where 0P  and 1
~P  satisfy 

( ) ( ) ( ).,~,~,0 1110 XtHPPPP BSBS =σε==σ LL  



K. NARITA 38 

Here ( )XtH ,  is given by 

( ) 3
0

3
3

32
0

2
2

2,
X
PXV

X
PXVXtH

∂

∂
+

∂

∂
=  

with the functions 2V  and ,3V  such that 

( ) ,
2

,2
2 32 ψ′

α
ρν=ψ′γ−ψ′ρ

α
ν= fVfV  

,22,2,1 22
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
β=εβ=ν

ε
ν=β

ε
=α  

where ν is the parameter appearing in the invariant distribution ( )2, νmN  for the 

volatility driving process ( )( )tY  in equation (1.3), ψ is the solution of the Poisson 

equation (6.21), and Λ is the function as given by equation (4.14). 

In Theorem 6.1, if we replace H by 21=H  formally, then we obtain the same 

result as given by Fouque et al. [7, equation (5.43), p. 96] in the case of ;0=ρ  

( )
α
β=Γ⎟

⎠
⎞⎜

⎝
⎛
α

β=ν 221 22
22 HH

H
H       if     .2

1=H  

We also note that under suitable scaling, Theorem 6.1 corresponds to an extension of 
the result in Kallianpur and Karandikar [15, Theorem 13.7], where asymptotic 
analysis is given for models (1.1)-(1.3) with correlation coefficient .0=ρ  
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