THE MAXIMUM IDEMPOTENT SEPARATING CONGRUENCE ON EVENTUALLY REGULAR SEMIGROUPS

SUPAVINEE SATTAYAPORN

Department of Mathematics
Faculty of Science and Technology
Uttaradit Rajabhat University
Uttaradit 53000, Thailand
e-mail: supavinee_uru@windowslive.com

Abstract

The aim of this paper is to characterize an idempotent separating congruence on an eventually regular semigroup and the maximum idempotent separating congruence on its and on eventually regular *E*-semigroups which are analogous to the characterization of an eventually regular semigroup considered by Luo and Li [3] and to characterization of an eventually regular *E*-semigroup considered by Siripitukdet and Sattayaporn [5].

1. Introduction

Let S be a semigroup and E(S) denote the set of all idempotents of S. For $a \in S$, $V(a) := \{x \in S \mid a = axa, x = xax\}$ is the set of all inverses of element a and $W(a) := \{x \in S \mid x = xax\}$ is the set of all weak inverses of element a. An element a in a semigroup S is called E-inversive [6] if there exists $x \in S$ such that ax is an idempotent of S. A semigroup S is called E-inversive if for all S is S and S is S is S and S is S and S is S is S and S is S is S and S and S is S and S is S and S is S and S is S and

2000 Mathematics Subject Classification: 20M10.

Keywords and phrases: eventually regular semigroup, idempotent separating congruence.

Received October 7, 2009

inversive. A semigroup S is called an E-semigroup if E(S) forms a subsemigroup of S. A semigroup S is regular if and only if $V(a) \neq \emptyset$ for each $a \in S$ and a regular semigroup S is an orthodox if E(S) forms a subsemigroup of S. A semigroup S is an eventually regular [1] if every $a \in S$, there exists a positive integer S such that S is regular. For each S is S an eventually regular, we mean that S is the smallest positive integer for which S is regular. The class of eventually regular semigroups generalizes regular semigroups and finite semigroups.

Edwards [1] described basic properties and some results of an eventually regular semigroup. He proved that the maximum idempotent separating congruence exists. A congruence ρ on a semigroup S is an idempotent separating congruence on S if every ρ -class contains at most one idempotent, i.e., for all e, $f \in E(S)$ and $e\rho f$ implies e = f. Weipoltshammer [6] introduced the maximum idempotent separating congruence on an E-inversive E-semigroup which Luo and Li [3] generalized for eventually regular semigroups. In this paper, we investigated the maximum idempotent separating congruence on an eventually regular E-semigroup which are analogous to characterization of E-inversive E-semigroups considered by [5] and we instead for all $e \in E(S)$ as in [3] by for all $x \in H$ as in [4].

A subset H of a semigroup S is full [7] if $E(S) \subseteq H$. A subsemigroup H of a semigroup S is called *weakly self-conjugate* if for all $a \in S$, $x \in H$, $a' \in W(a)$, we have axa', $a'xa \in H$, for any subsets H and B of a semigroup S, let

$$H_{\omega_B} := \{ a \in S \mid ba \in H \text{ for some } b \in B \}.$$

If B=H, then H_{ω_H} will be denoted by H_{ω} and it is called the *closure of H*. If H is a subsemigroup of a semigroup S, then $H\subseteq H_{\omega}$. H is called a *closed subsemigroup* [7] of S if $H=H_{\omega}$.

A subset H of an eventually regular semigroup S is called *weakly self-conjugate* if for all $a \in S$, $(a^n)' \in W(a^n)$, where a^n is a-regular $aHa^{n-1}(a^n)' \subseteq H$ and $a^{n-1}(a^n)'Ha \subseteq H$.

Example 1. Let $S := \{a, b, c, d, e\}$ defined by the multiplication as below:

0	a	b	c	d	e
a	a	а	a	d	d
b	а	b	c	d	d
c	a	c	b	d d d a a	d
d	d	d	d	a	a
e	d	e	e	a	<i>a</i> .

Then S is an eventually regular semigroup under usual multiplication. Now, we have $E(S) = \{a, b\}$ and $a \in W(e^2)$, where e^2 is e-regular.

Let $H = \{a, b, c\}$. Then $E(S) \subseteq H$ and H satisfies a weakly self-conjugate subset of S.

For any nonempty subset H of a semigroup S, we define a relation τ on S as follows:

$$\tau := \{(a,b) \in S \times S \mid \forall a^{n-1}(a^n)' \in W(a) \exists b^{m-1}(b^m)' \in W(b) \text{ such that } axa^{n-1}(a^n)' \\ = bxb^{m-1}(b^m)', \quad a^{n-1}(a^n)'xa = b^{m-1}(b^m)'xb, \quad \forall x \in H, \text{ where } (a^n)' \in W(a^n), \quad a^n \text{ is } a\text{-regular and } (b^m)' \in W(b^m), \quad b^m \text{ is } b\text{-regular and } \forall b^{m-1}(b^m)' \in W(b) \exists a^{n-1}(a^n)' \in W(a) \text{ such that } axa^{n-1}(a^n)' = bxb^{m-1}(b^m)', \quad a^{n-1}(a^n)'xa = b^{m-1}(b^m)'xb, \quad \forall x \in H, \text{ where } (a^n)' \in W(a^n), \quad a^n \text{ is } a\text{-regular and } (b^m)' \in W(b^m), \quad b^m \text{ is } b\text{-regular} \}.$$

Note that τ may be an empty set. If S is an eventually regular semigroup, then $(a, a) \in \tau$, for all $a \in S$, so τ is not an empty set.

For basic concepts in semigroup theory, see [6] and [3].

The following results are used in this research.

Lemma 1.1. Let S be a semigroup and $a \in S$. If a^n is a-regular, then $W(a^n) \neq \emptyset$.

Proof. Let $n \in \mathbb{N}$ and a^n be a-regular, there exists $x \in S$ such that $a^n = a^n x a^n$ and $a^n x \in E(S)$. Then

$$a^n x = (a^n x)(a^n x),$$

$$(xa^n x)a^n (xa^n x) = x[(a^n x)(a^n x)](a^n x)$$

$$= x(a^n x)(a^n x) = xa^n x.$$

Thus $xa^n x \in W(a^n)$.

Proposition 1.2. Let S be any semigroup and \mathbb{N} be the positive integer. Then

(1) for all
$$(a^n)' \in W(a^n)$$
, $(a^n)'a^n$, $a^n(a^n)' \in E(S)$.

(2) for all
$$n \in \mathbb{N}$$
, $n > 1$, $(a^n)' \in W(a^n)$, $a^{n-1}(a^n)'a$, $a(a^n)'a^{n-1} \in E(S)$.

Proof. (1) Let $n \in \mathbb{N}$ and $(a^n)' \in W(a^n)$. Then $(a^n)' = (a^n)'a^n(a^n)'$ and $(a^n)'a^n = ((a^n)'a^n)((a^n)'a^n) = ((a^n)'a^n)^2$ and $a^n(a^n)' = (a^n)(a^n)'(a^n)(a^n)' = ((a^n)(a^n)')^2$.

(2) Let n > 1 and $(a^n)' \in W(a^n)$. Thus

$$(a^{n-1}(a^n)'a)(a^{n-1}(a^n)'a) = a^{n-1}(a^n)'(aa^{n-1})(a^n)'a$$

$$= a^{n-1}(a^n)'a^n(a^n)'a = a^{n-1}(a^n)'a.$$

$$(a(a^n)'a^{n-1})(a(a^n)'a^{n-1}) = a(a^n)'(a^{n-1}a)(a^n)'a^{n-1} = a(a^n)'a^{n-1}.$$

Proposition 1.3. If S is an E-semigroup, $a \in S$, a^n is a-regular and $e, f \in E(S)$, $(a^n)' \in W(a^n)$, then

(1)
$$e(a^n)', (a^n)'f, f(a^n)'e \in W(a^n),$$

(2)
$$a^n e(a^n)', (a^n)' e a^n \in E(S),$$

(3)
$$ae(a^{n-1})(a^n)', a^{n-1}(a^n)'ea \in E(S),$$

$$(4)\ a^{n-1}(a^n)', (a^n)'a^{n-1} \in W(a),$$

(5)
$$fa^{n-1}(a^n)', a^{n-1}(a^n)'e, fa^{n-1}(a^n)'e \in W(a),$$

(6)
$$f(a^n)'a^{n-1}$$
, $(a^n)'a^{n-1}e$, $f(a^n)'a^{n-1}e \in W(a)$.

Proof. (1) and (2) by [4].

(3) Note that

$$[aea^{n-1}(a^n)'][aea^{n-1}(a^n)'] = aea^{n-1}(a^n)'aea^{n-1}(a^n)'a^n(a^n)'$$

$$= a[ea^{n-1}(a^n)'a][ea^{n-1}(a^n)'a](a^{n-1})(a^n)'$$

$$= aea^{n-1}(a^n)'a(a^{n-1})(a^n)'$$

$$= aea^{n-1}[(a^n)'a^n(a^n)'] = aea^{n-1}(a^n)'$$

and

$$(a^{n-1}(a^n)'ea)(a^{n-1}(a^n)'ea) = a^{n-1}[(a^n)'a^n(a^n)']ea^n(a^n)'ea$$

$$= a^{n-1}(a^n)'[a^n(a^n)'e][a^n(a^n)'e]a$$

$$= a^{n-1}(a^n)'ea.$$

(4) If
$$(a^n)' \in W(a^n)$$
, then $a^{n-1}(a^n)'$, $(a^n)'a^{n-1} \in W(a)$. That is,
$$(a^{n-1}(a^n)')a(a^{n-1}(a^n)') = a^{n-1}(a^n)'a^n(a^n)' = a^{n-1}(a^n)'$$

and

$$((a^n)'a^{n-1})a(a^n)'a^{n-1} = (a^n)'a^n(a^n)'a^{n-1} = (a^n)'a^{n-1}.$$

(5) and (6) follow from (4) and by [4].

Proposition 1.4. If S is a semigroup, $((ac)^n)' \in W((ac)^n)$ and $(ac)^n$ is acregular, then $c(ac)^{n-1}((ac)^n)'a$, $c((ac)^n)'(ac)^{n-1}a \in E(S)$.

Proof. Let $((ac)^n)' \in W((ac)^n)$. Then

$$(c(ac)^{n-1}((ac)^n)'a)(c(ac)^{n-1}((ac)^n)'a) = c(ac)^{n-1}((ac)^n)'ac(ac)^{n-1}((ac)^n)'a$$
$$= c(ac)^{n-1}[((ac)^n)'(ac)^n((ac)^n)']a$$
$$= c(ac)^{n-1}((ac)^n)'a.$$

Similarly, we have $c((ac)^n)'(ac)^{n-1}a \in E(S)$.

Proposition 1.5. If S is an E-semigroup, a^n is a-regular and b^m is b-regular, then $W(b^m)W(a^n) \subseteq W(a^nb^m)$. If S is commutative, then $W(a^nb^n) = W((ab)^n)$.

Proof. Let
$$(a^n)' \in W(a^n)$$
, $(b^m)' \in W(b^m)$. Then

$$(b^{m})'(a^{n})'a^{n}b^{m}(b^{m})'(a^{n})' = (b^{m})'b^{m}(b^{m})'(a^{n})'a^{n}b^{m}(b^{m})'(a^{n})'a^{n}(a^{n})'$$
$$= (b^{m})'b^{m}(b^{m})'(a^{n})'a^{n}(a^{n})'$$
$$= (b^{m})'(a^{n})'.$$

Therefore, $(b^m)'(a^n)' \in W(a^nb^m)$ and so $W(b^m)W(a^n) \subseteq W(a^nb^m)$.

If *S* is commutative semigroup, then
$$W(a^n b^n) = W((ab)^n)$$
.

The following lemma, Edwards [1] investigated the maximum idempotent separating congruence on an eventually regular semigroup which used by Green's relations \mathcal{L} , \mathcal{R} and \mathcal{H} .

Lemma 1.6 [1]. The following are equivalent for a congruence ρ on an eventually regular semigroup S.

- (1) $\rho \subseteq \mu$,
- (2) for all $e \in E(S)$ and for all $b \in S$, $e \rho b$ implies $\mathcal{H}_e \leq \mathcal{H}_b$,
- (3) for all $a \in Reg(S)$ and for all $b \in S$, $a cond b implies <math>\mathcal{H}_a \leq \mathcal{H}_b$,
- (4) ρ is idempotent separating congruence on S,

where Edwards [1] defined a relation μ as follows:

 $(a, b) \in \mu \Leftrightarrow if \ x \in Reg(S)$, then each of xRxa, xRxb implies xaHxb and each of xLax, xLbx implies axHbx

and μ is the maximum idempotent separating congruence on an eventually regular semigroup.

Luo and Li [3] gave the maximum idempotent separating congruence on an eventually regular semigroup as follows.

Theorem 1.7 [3]. Let S be an eventually regular semigroup and ρ be a congruence on S. Then the following are equivalent:

- (1) $\rho \subseteq \mu$.
- (2) ρ is idempotent separating congruence, where

$$\mu := \left\{ (a, b) \in S \times S \middle| \left((\forall a' \in W(a)) (\exists b' \in W(b)), (aa' = bb, a'a = b'b) \right) \right\}.$$

Moreover, μ is the maximum idempotent separating congruence on S.

2. Main Results

The next theorem is analogous to the result for eventually regular semigroups as Theorem 2.4 in [3].

Theorem 2.1. Let S be an eventually regular semigroup and ρ be a congruence on S. Then ρ is an idempotent separating congruence on S if and only if $\rho \subseteq \mu^*$ where

$$\mu^* := \{(a,b) \in S \times S \mid \forall a^{n-1}(a^n)' \in W(a) \exists b^{m-1}(b^m)' \in W(b), where \ (a^n)' \in W(a^n),$$

$$a^n \quad is \quad a\text{-regular} \quad and \quad (b^m)' \in W(b^m), \quad b^m \quad is \quad b\text{-regular}, \quad such \quad that$$

$$a^{n-1}(a^n)' a = b^{m-1}(b^m)' b \quad and \quad aa^{n-1}(a^n)' = bb^{m-1}(b^m)' \quad and \quad \forall b^{m-1}(b^m)' \in W(b) \exists a^{n-1}(a^n)' \in W(a), \quad where \quad (a^n)' \in W(a^n), \quad a^n \quad is \quad a\text{-regular} \quad and$$

$$(b^m)' \in W(b^m), \quad b^m \quad is \quad b\text{-regular}, \quad such \quad that \quad a^{n-1}(a^n)' a = \quad b^{m-1}(b^m)' b,$$

$$aa^{n-1}(a^n)' = bb^{m-1}(b^m)' \}.$$

Moreover, μ^* is the maximum idempotent separating congruence on an eventually regular semigroup S.

Proof. (\Rightarrow) Let ρ be an idempotent separating congruence on S and $a, b \in S$ with $(a, b) \in \rho$. Let $a^{n-1}(a^n)' \in W(a)$, where $(a^n)' \in W(a^n)$, a^n is a-regular, we have $a^{n-1}(a^n)'a\rho a^{n-1}(a^n)'b$. Let m be the smallest positive integer such that $(a^{n-1}(a^n)'b)^m$ is $a^n(a^n)'b$ -regular. Since ρ is a congruence and $a^{n-1}(a^n)'a \in E(S)$, by Howie [2], $a^{n-1}(a^n)'a\rho(a^{n-1}(a^n)'b)^m$ and so $a^{n-1}(a^n)'a\mathcal{H}(a^{n-1}(a^n)'b)^m$ by Lemma 1.6 (3), that is, $(a^{n-1}(a^n)'b)^m \in H(a^{n-1}(a^n)'a)$. Let $(c^m)'$ is weak inverse of $(a^{n-1}(a^n)'b)^m$ in $H(a^{n-1}(a^n)'a)$. Consider

$$((c^{m})'(a^{n-1}(a^{n})'b)^{m-1}a^{n-1}(a^{n})')b((c^{m})'(a^{n-1}(a^{n})'b)^{m-1}a^{n-1}(a^{n})')$$

$$= ((c^{m})'(a^{n-1}(a^{n})'b)^{m}(c^{m})')(a^{n-1}(a^{n})'b)^{m-1}a^{n-1}(a^{n})'$$

$$= (c^{m})'(a^{n-1}(a^{n})'b)^{m-1}a^{n-1}(a^{n})'.$$

We have $(c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)' \in W(b)$ and so, we choose $b^{m-1}(b^m)' = (c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'$. Thus $b^{m-1}(b^m)'b = (c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'b$ = $(c^m)'(a^{n-1}(a^n)'b)^m = (a^{n-1}(a^n)'a)$ because \mathcal{H} -class contains at most one idempotent.

On the other hand, $b(b^{m-1}(b^m)' = b(c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'$ and $a^{n-1}(a^n)'a\rho(a^{n-1}(a^n)'b)^m$.

Thus

$$bb^{m-1}(b^m)' = b(c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'$$
$$= b(c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'aa^{n-1}(a^n)'$$

and

$$(b(c^m)'(a^{n-1}(a^n)'b)^{m-1}a^{n-1}(a^n)'aa^{n-1}(a^n)')\rho$$

$$= (b(c^m)'(a^{n-1}(a^n)'b)^{m-1}(a^{n-1}(a^n)'b)a^{n-1}(a^n)')\rho$$

and

$$b(c^m)'(a^{n-1}(a^n)'b)^{m-1}(a^{n-1}(a^n)'b)a^{n-1}(a^n)' = b(c^m)'(a^{n-1}(a^n)'b)^ma^{n-1}(a^n)'$$

but $b(c^m)'(a^{n-1}(a^n)'b)^m = a^{n-1}(a^n)'a$, we have
$$bb^{m-1}(b^m)'\rho b(c^m)'(a^{n-1}(a^n)'b)^ma^{n-1}(a^n)'\rho ba^{n-1}(a^n)'aa^{n-1}(a^n)' = ba^{n-1}(a^n)'$$
 and $ba^{n-1}(a^n)'\rho aa^{n-1}(a^n)'$ and ρ is an idempotent separating congruence on ρ , so
$$bb^{m-1}(b^m)' = aa^{n-1}(a^n)'.$$

We can show that for all $b^{m-1}(b^m)' \in W(b)$ there exists $a^{n-1}(a^n)' \in W(a)$ such that $b^{m-1}(b^m)'b = a^{n-1}(a^n)'a$, and $bb^{m-1}(b^m)' = aa^{n-1}(a^n)'$, hence $\rho \subseteq \mu^*$.

(\Leftarrow) Suppose that ρ is a congruence on S and $\rho \subseteq \mu^*$. To show that ρ is an idempotent separating congruence on S.

Let $e, f \in E(S)$ with $(e, f) \in \rho$ and let $e \in W(e)$. Then there exists $f' \in W(f)$ such that e = ee = ff' = f'f and so e = ef = fe. For all $f \in W(f)$ there exists $e' \in W(e)$ such that f = ff = e'e = ee' and ef = f = fe, hence e = f.

Therefore ρ is an idempotent separating congruence on S. An analog to the proof as Theorem 2.6 in [3], we get that μ^* is the maximum idempotent separating congruence on S.

Note that, every eventually regular semigroup is an E-inversive semigroup. In 2002, Weipoltshammer [6] gave some characterizations for idempotent separating congruence on an E-inversive E-semigroup, whose E(S) was a rectangular band, and $\mu := \{(a,b) \in S \times S | \forall a' \in W(a) \exists b' \in W(b) \text{ such that } aea' = beb', \ a'ea = b'eb, \text{ for all } e \in E(S) \text{ and } \forall b' \in W(b) \exists a' \in W(a) \text{ such that } aea' = beb', \ a'ea = b'eb, \text{ for all } e \in E(S) \}$. Luo and Li [3] gave μ for this kinds of congruences by mean defined above on an eventually orthodox semigroup. Now, we give a similar description for the maximum idempotent separating congruence on an eventually regular E-semigroup as Siripitukdet and Sattayaporn [5] did for E-inversive E-semigroups by using weakly self-conjugate subsemigroup E of E.

Theorem 2.2. Let S be an eventually regular E-semigroup and H be full and weakly self-conjugate subsemigroup of S. Then a relation

$$\tau := \{(a,b) \in S \times S \mid \forall a^{n-1}(a^n)' \in W(a) \exists b^{m-1}(b^m)' \in W(b) \text{ such that } axa^{n-1}(a^n)' \\ = bxb^{m-1}(b^m)', \ a^{n-1}(a^n)'xa = b^{m-1}(b^m)'xb, \ \forall x \in H, \text{ where } (a^n)' \in W(a^n), \\ a^n \text{ is } a\text{-regular } and \ (b^m)' \in W(b^m), \ b^m \text{ is } b\text{-regular } and \ \forall b^{m-1}(b^m)' \in W(b) \exists a^{n-1}(a^n)' \in W(a) \text{ such that } axa^{n-1}(a^n)' = bxb^{m-1}(b^m)', \ a^{n-1}(a^n)'xa \\ = b^{m-1}(b^m)'xb, \ \forall x \in H, \text{ where } (a^n)' \in W(a^n), \ a^n \text{ is } a\text{-regular } and \ (b^m)' \in W(b^m), \ b^m \text{ is } b\text{-regular} \}$$

is an idempotent separating congruence on S.

If $E(S) = H_{\omega_E}$, then τ is the maximum idempotent separating congruence on S.

Proof. Obviously, τ is reflexive and symmetric.

To show that τ is a transitive, let $a, b, c \in S$, $x \in H$ and $(a^n)' \in W(a^n)$, $(b^m)' \in W(b^m)$, where a^n is a-regular, b^m is b-regular be such that $a\tau b$ and $b\tau c$. Let $a^{n-1}(a^n)' \in W(a)$. Then there exists $(b^{m-1})(b^m)' \in W(b)$ such that $axa^{n-1}(a^n)' = bxb^{m-1}(b^m)'$, $a^{n-1}(a^n)'xa = b^{m-1}(b^m)'xb$, for all $x \in H$. Since $b\tau c$ and $b^{m-1}(b^m)' \in W(b)$, there exists $c^{k-1}(c^k)' \in W(c)$, where $(c^k)' \in W(c^k)$, c^k is c-regular, we have $bxb^{m-1}(b^m)' = cxc^{k-1}(c^k)'$, $b^{m-1}(b^m)'xb = c^{k-1}(c^k)'xc$, for all $x \in H$. Since m is the smallest positive integer, we have $axa^{n-1}(a^n)' = cxc^{k-1}(c^k)'$, $a^{n-1}(a^n)'xa = c^{k-1}(c^k)'xc$, for all $x \in H$. Similarly, we can show that for all $(c^{k-1})(c^k)' \in W(c)$, where $(c^k)' \in W(c^k)$, c^k is c-regular, there exists $a^{n-1}(a^n)' \in W(a)$, where $(a^n)' \in W(a^n)$, a^n is a-regular such that $axa^{n-1}(a^n)' = cxc^{k-1}(c^k)'$, $a^{n-1}(a^n)'xa = c^{k-1}(c^k)'xc$, for all $x \in H$. Hence $a\tau c$ and τ is a transitive. We shall show that τ is a compatible, let $a, b \in S$ with $a\tau b$ and let $(a^n)' \in W(a^n)$, where a^n is a-regular and $(b^m)' \in W(b^m)$, where b^m is b-regular.

For $a^{n-1}(a^n)' \in W(a)$, there exists $b^{m-1}(b^m)' \in W(b)$ such that $axa^{n-1}(a^n)' = bxb^{m-1}(b^m)'$, $a^{n-1}(a^n)'xa = b^{m-1}(b^m)'xb$, for all $x \in H$.

Let $c^{k-1}(c^k)' \in W(c)$, where $(c^k)' \in W(c^k)$ and c^k is c-regular. By $c^{k-1}(c^k)'a^{n-1}(a^n)' \in W(ac)$ and $c^{k-1}(c^k)'b^{m-1}(b^m)' \in W(bc)$, for all $x \in H$,

$$(ac)x(c^{k-1}(c^k)')a^{n-1}(a^n)' = a(cxc^{k-1}(c^k)')a^{n-1}(a^n)'$$

$$= b(cxc^{k-1}(c^k)')b^{m-1}(b^m)'$$

$$= (bc)x(c^{kn-1}(c^n)'b^{m-1}(b^m)') \quad (\because cxc^{k-1}(c^k)' \in H)$$

and

$$(c^{k-1}(c^k)'a^{n-1}(a^n)')xac = c^{k-1}(c^k)'(a^{n-1}(a^n)'xa)c$$

$$= c^{k-1}(c^k)'(b^{m-1}(b^m)'xb)c$$

$$= (c^{k-1}(c^k)'b^{m-1}(b^m)')x(bc) \quad (\because b^{m-1}(b^m)'xb \in H).$$

Similarly, we can show that the second part holds. Hence $ac\tau bc$, so τ is a right compatible. Similarly, we can show that τ is a left compatible. Therefore τ is a congruence on S. Let e, f be elements in S such that $e\tau f$. Since $e \in W(e)$, there exists $f' \in W(f)$ such that exe = f'xf = fxf', for all $x \in H$. Since H is full, $e \in H$ and e = eee = f'ef = fef', we have ef = (f'ef)f = f'ef = e. Now $f \in W(f)$. There exists $e' \in W(e)$ such that fxf = e'xe = exe', for all $x \in H$. Since $f \in H$, f = fff = e'fe = efe', it follows that ef = e(efe') = efe' = f. Therefore, e = f and so τ is an idempotent separating congruence on S.

Suppose that $E(S) = H_{\omega_E}$. To show that τ is the maximum idempotent separating congruence on S, let ρ be an arbitrary idempotent separating congruence on S. Let $a, b \in S$ be such that $a\rho b$. By Theorem 2.1, $\rho \subseteq \mu^*$. Then, for all $a^{n-1}(a^n)' \in W(a)$, there exists $b^{m-1}(b^m)' \in W(b)$ such that

$$a^{n-1}(a^n)'a = b^{m-1}(b^m)'b,$$

where a^n is a-regular, b^m is b-regular. Consider

$$a^{n-1}(a^n)' = (a^{n-1}(a^n)'a(a^{n-1}(a^n)')\rho b^{m-1}(b^m)'ba^{n-1}(a^n)'$$

and

$$b^{m-1}(b^m)'ba^{n-1}(a^n)' = b^{m-1}(b^m)'ba^{n-1}(a^n)'bb^{m-1}(b^m)'$$

and

$$[b^{m-1}(b^m)'ba^{n-1}(a^n)'bb^{m-1}(b^m)']\rho[b^{m-1}(b^m)'a(a^{n-1})(a^n)'bb^{m-1}(b^m)']$$

and

$$b^{m-1}(b^m)'a(a^{n-1})(a^n)'bb^{m-1}(b^m)'=b^{m-1}(b^m)'.$$

Hence $a^{n-1}(a^n)' \rho b^{m-1}(b^m)'$.

For any $x \in H$ and $a \rho b$, $a^{n-1}(a^n)' \rho b^{m-1}(b^m)'$, we have

$$a^{n-1}(a^n)'xa\rho b^{m-1}(b^m)'xb$$
 and $axa^{n-1}(a^n)'\rho bxb^{m-1}(b^m)'$.

Since H is a weakly self conjugate, we have $a^{n-1}(a^n)'xa$, $b^{m-1}(b^m)'xb \in H$. Since $E(S) = H_{\omega_E}$, we get

$$a^{n-1}(a^n)'xa = a^{n-1}(a^n)'aa^{n-1}(a^n)'xa \in H$$
,

so
$$a^{n-1}(a^n)'xa \in H_{\omega_E} = E(S)$$
.

Similarly, $b^{m-1}(b^m)'xb = b^{m-1}(b^m)'bb^{m-1}(b^m)'xb \in H$. So, $b^{m-1}(b^m)'xb \in H$. So, $b^{$

Corollary 2.3. Let S be an eventually regular E-semigroup. Then a relation

$$\zeta' := \{(a,b) \in S \times S \mid \forall a^{n-1}(a^n)' \in W(a) \exists b^{m-1}(b^m)' \in W(b) \text{ such that } aea^{n-1}(a^n)' = beb^{m-1}(b^m)', a^{n-1}(a^n)' ea = b^{m-1}(b^m)' eb \ \forall e \in E(S), \text{ where } (a^n)' \in W(a^n), \\ a^n \text{ is } a\text{-regular, } (b^m)' \in W(b^m), \quad b^m \text{ is } b\text{-regular } and \quad \forall b^{m-1}(b^m)' \in W(b) \exists a^{n-1}(a^n)' \in W(a) \text{ such that } aea^{n-1}(a^n)' = beb^{m-1}(b^m)', \quad a^{n-1}(a^n)' ea \\ = b^{m-1}(b^m)' eb, \quad \forall e \in E(S), \quad where \quad (a^n)' \in W(a^n), \quad a^n \text{ is } a\text{-regular, } (b^m)' \in W(b^m), \quad b^m \text{ is } b\text{-regular} \}$$

is the maximum idempotent separating congruence on S.

References

- [1] P. M. Edwards, Eventually regular semigroups, Bull. Austral. Math. Soc. 28(1) (1983), 23-38.
- [2] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
- [3] Y. F. Luo and X. L. Li, The maximum idempotent-separating congruence on eventually regular semigroups, Semigroup Forum 74(2) (2007), 306-318.
- [4] M. Siripitukdet and S. Sattayaporn, The least group congruence on *E*-inversive semigroups and *E*-inversive *E*-semigroups, Thai J. Math. 3(2) (2005), 163-169.
- [5] M. Siripitukdet and S. Sattayaporn, The maximum idempotent separating congruence on *E*-inversive *E*-semigroups, Int. J. Algebra 2(19) (2008), 925-931.
- [6] B. Weipoltshammer, Certain congruences on *E*-inversive *E*-semigroups, Semigroup Forum 65(2) (2002), 233-248.
- [7] B. Weipoltshammer, On classes of *E*-inversive semigroups and semigroups whose idempotents form a subsemigroup, Comm. algebra 32(8) (2004), 2929-2948.