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Abstract 

The aim of this paper is to characterize an idempotent separating 
congruence on an eventually regular semigroup and the maximum 
idempotent separating congruence on its and on eventually regular E-
semigroups which are analogous to the characterization of an eventually 
regular semigroup considered by Luo and Li [3] and to characterization 
of an eventually regular E-semigroup considered by Siripitukdet and 
Sattayaporn [5]. 

1. Introduction 

Let S be a semigroup and ( )SE  denote the set of all idempotents of S. For 

,Sa ∈  ( ) { }xaxxaxaaSxaV ==|∈= ,:  is the set of all inverses of element a and 

( ) { }xaxxSxaW =|∈=:  is the set of all weak inverses of element a. An element a 

in a semigroup S is called E-inversive [6] if there exists Sx ∈  such that ax is an 
idempotent of S. A semigroup S is called E-inversive if for all ,Sa ∈  a is E-
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inversive. A semigroup S is called an E-semigroup if ( )SE  forms a subsemigroup of 

S. A semigroup S is regular if and only if ( ) ∅≠aV  for each Sa ∈  and a regular 

semigroup S is an orthodox if ( )SE  forms a subsemigroup of S. A semigroup S is an 

eventually regular [1] if every ,Sa ∈  there exists a positive integer n such that na  

is regular. For each ,Sa ∈  na  is a-regular, we mean that n is the smallest positive 

integer for which na  is regular. The class of eventually regular semigroups 
generalizes regular semigroups and finite semigroups. 

Edwards [1] described basic properties and some results of an eventually regular 
semigroup. He proved that the maximum idempotent separating congruence exists. 
A congruence ρ on a semigroup S is an idempotent separating congruence on S if 
every ρ-class contains at most one idempotent, i.e., for all e, ( )SEf ∈  and feρ  

implies .fe =  Weipoltshammer [6] introduced the maximum idempotent separating 

congruence on an E-inversive E-semigroup which Luo and Li [3] generalized for 
eventually regular semigroups. In this paper, we investigated the maximum 
idempotent separating congruence on an eventually regular E-semigroup which are 
analogous to characterization of E-inversive E-semigroups considered by [5] and we 
instead for all ( )SEe ∈  as in [3] by for all Hx ∈  as in [4]. 

A subset H of a semigroup S is full [7] if ( ) .HSE ⊆  A subsemigroup H of a 

semigroup S is called weakly self-conjugate if for all ,Sa ∈  ,Hx ∈  ( ),aWa ∈′  

we have ,, Hxaaaax ∈′′  for any subsets H and B of a semigroup S, let 

{ }.somefor: BbHbaSaH B ∈∈|∈=ω  

If ,HB =  then HHω  will be denoted by ωH  and it is called the closure of H. 

If H is a subsemigroup of a semigroup S, then .ω⊆ HH  H is called a closed 

subsemigroup [7] of S if .ω= HH  

A subset H of an eventually regular semigroup S is called weakly self-conjugate 

if for all ,Sa ∈  ( ) ( ),nn aWa ∈′  where na  is a-regular ( ) HaaHa nn ⊆′−1  and 

( ) .1 HHaaa nn ⊆′−  



THE MAXIMUM IDEMPOTENT SEPARATING CONGRUENCE … 115 

Example 1. Let { }edcbaS ,,,,:=  defined by the multiplication as below: 

.aaeede

aadddd

ddbcac

ddcbab

ddaaaa

edcba

 

Then S is an eventually regular semigroup under usual multiplication. Now, we have 

( ) { }baSE ,=  and ( ),2eWa ∈  where 2e  is e-regular. 

Let { }.,, cbaH =  Then ( ) HSE ⊆  and H satisfies a weakly self-conjugate 

subset of S. 

For any nonempty subset H of a semigroup S, we define a relation τ on S as 
follows: 

{( ) ( ) ( ) ( ) ( )bWbbaWaaSSba mmnn ∈′∃∈′∀|×∈=τ −− 11,:  such that ( )′− nn aaxa 1  

( ) ,1 ′= − mm bbxb  ( ) ( ) ,11 xbbbxaaa mmnn ′=′ −−  ,Hx ∈∀  where ( ) ∈′na  

( ),naW  na  is a-regular and ( ) ( ),mm bWb ∈′  mb  is b-regular and 

( ) ( ) ( ) ( )aWaabWbb nnmm ∈′∃∈′∀ −− 11  such that ( ) =′− nn aaxa 1  

( ) ,1 ′− mm bbxb  ( ) ( ) ,11 xbbbxaaa mmnn ′=′ −−  ,Hx ∈∀  where ( ) ∈′na  

( ),naW  na  is a-regular and ( ) ( ),mm bWb ∈′  mb  is }.regular-b  

Note that τ may be an empty set. If S is an eventually regular semigroup, then 
( ) ,, τ∈aa  for all ,Sa ∈  so τ is not an empty set. 

For basic concepts in semigroup theory, see [6] and [3]. 

The following results are used in this research. 

Lemma 1.1. Let S be a semigroup and .Sa ∈  If na  is a-regular, then 

( ) .∅≠naW  
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Proof. Let N∈n  and na  be a-regular, there exists Sx∈  such that nnn xaaa =  

and ( ).SExan ∈  Then 

( ) ( ),xaxaxa nnn =  

( ) ( ) [( ) ( )]( )xaxaxaxxxaaxxa nnnnnn =  

( ) ( ) .xxaxaxax nnn ==  

Thus ( ).nn aWxxa ∈  □ 

Proposition 1.2. Let S be any semigroup and N  be the positive integer. Then 

(1) for all ( ) ( ),nn aWa ∈′  ( ) ( ) ( )., SEaaaa nnnn ∈′′  

(2) for all ,N∈n  ,1>n  ( ) ( ),nn aWa ∈′  ( ) ( ) ( )., 11 SEaaaaaa nnnn ∈′′ −−  

Proof. (1) Let N∈n  and ( ) ( ).nn aWa ∈′  Then ( ) ( ) ( )′′=′ nnnn aaaa  and 

( ) (( ) ) (( ) ) (( ) )2nnnnnnnn aaaaaaaa ′=′′=′  and ( ) ( ) ( ) ( ) ( ) =′′=′ nnnnnn aaaaaa  

(( ) ( ) ) .2′nn aa  

(2) Let 1>n  and ( ) ( ).nn aWa ∈′  Thus 

( ( ) ) ( ( ) ) ( ) ( )( ) aaaaaaaaaaaa nnnnnnnn ′′=′′ −−−− 1111  

( ) ( ) ( ) .11 aaaaaaaa nnnnnn ′=′′= −−  

( ( ) )( ( ) ) ( ) ( )( ) ( ) .11111 −−−−− ′=′′=′′ nnnnnnnnnn aaaaaaaaaaaaaaa  □ 

Proposition 1.3. If S is an E-semigroup, ,Sa ∈  na  is a-regular and ∈fe,  

( ),SE  ( ) ( ),nn aWa ∈′  then 

(1) ( ) ( ) ( ) ( ),,, nnnn aWeaffaae ∈′′′  

(2) ( ) ( ) ( ),, SEeaaaea nnnn ∈′′  

(3) ( )( ) ( ) ( ),, 11 SEeaaaaaae nnnn ∈′′ −−  
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(4) ( ) ( ) ( ),, 11 aWaaaa nnnn ∈′′ −−  

(5) ( ) ( ) ( ) ( ),,, 111 aWeafaeaaafa nnnnnn ∈′′′ −−−  

(6) ( ) ( ) ( ) ( ).,, 111 aWeaafeaaaaf nnnnnn ∈′′′ −−−  

Proof. (1) and (2) by [4]. 

(3) Note that 

[ ( ) ][ ( ) ] ( ) ( ) ( )′′′=′′ −−−− nnnnnnnnnn aaaaeaaaeaaaeaaaea 1111  

[ ( ) ][ ( ) ]( )( )′′′= −−− nnnnnn aaaaeaaaeaa 111  

( ) ( )( )′′= −− nnnn aaaaaea 11  

[( ) ( ) ] ( )′=′′= −− nnnnnn aaeaaaaaea 11  

and 

( ( ) ) ( ( ) ) [( ) ( ) ] ( ) eaaeaaaaaeaaaeaaa nnnnnnnnnn ′′′=′′ −−− 111  

( ) [ ( ) ][ ( ) ]aeaaeaaaa nnnnnn ′′′= −1  

( ) .1 eaaa nn ′= −  

(4) If ( ) ( ),nn aWa ∈′  then ( ) ( ) ( )., 11 aWaaaa nnnn ∈′′ −−  That is, 

( ( ) ) ( ( ) ) ( ) ( ) ( )′=′′=′′ −−−− nnnnnnnnnn aaaaaaaaaaa 1111  

 and 

(( ) ) ( ) ( ) ( ) ( ) .1111 −−−− ′=′′=′′ nnnnnnnnnn aaaaaaaaaaa  

(5) and (6) follow from (4) and by [4]. □ 

Proposition 1.4. If S is a semigroup, (( ) ) (( ) )nn acWac ∈′  and ( )nac  is ac-

regular, then ( ) (( ) ) (( ) ) ( ) ( )., 11 SEaacaccaacacc nnnn ∈′′ −−  
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Proof. Let (( ) ) (( ) ).nn acWac ∈′  Then 

( ( ) (( ) ) )( ( ) (( ) ) ) ( ) (( ) ) ( ) (( ) ) aacacacacaccaacaccaacacc nnnnnnnn ′′=′′ −−−− 1111  

( ) [(( ) ) ( ) (( ) ) ]aacacacacc nnnn ′′= −1  

( ) (( ) ) .1 aacacc nn ′= −  

Similarly, we have (( ) ) ( ) ( ).1 SEaacacc nn ∈′ −  □ 

Proposition 1.5. If S is an E-semigroup, na  is a-regular and mb  is b-regular, 

then ( ) ( ) ( ).mnnm baWaWbW ⊆  If S is commutative, then ( ) (( ) ).nnn abWbaW =  

Proof. Let ( ) ( ),nn aWa ∈′  ( ) ( ).mm bWb ∈′  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )′′′′′′=′′′′ nnnmmnnmmmnmmnnm aaabbaabbbabbaab  

( ) ( ) ( ) ( )′′′′= nnnmmm aaabbb  

( ) ( ) .′′= nm ab  

Therefore, ( ) ( ) ( )mnnm baWab ∈′′  and so ( ) ( ) ( ).mnnm baWaWbW ⊆  

If S is commutative semigroup, then ( ) (( ) ).nnn abWbaW =  □ 

The following lemma, Edwards [1] investigated the maximum idempotent 
separating congruence on an eventually regular semigroup which used by Green’s 
relations ,L  R  and .H  

Lemma 1.6 [1]. The following are equivalent for a congruence ρ on an 
eventually regular semigroup S. 

(1) ,μ⊆ρ  

(2) for all ( )SEe ∈  and for all ,Sb ∈  beρ  implies ,be HH ≤  

(3) for all ( )SRega ∈  and for all ,Sb ∈  baρ  implies ,ba HH ≤  

(4) ρ is idempotent separating congruence on S, 
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where Edwards [1] defined a relation μ as follows: 

( ) ⇔μ∈ba,  if ( ),SRegx ∈  then each of xbxaimpliesxbxxax HRR ,  and each 

 of bxxaxx LL ,  implies bxaxH  

and μ is the maximum idempotent separating congruence on an eventually regular 
semigroup. 

Luo and Li [3] gave the maximum idempotent separating congruence on an 
eventually regular semigroup as follows. 

Theorem 1.7 [3]. Let S be an eventually regular semigroup and ρ be a 
congruence on S. Then the following are equivalent: 

(1) .μ⊆ρ  

(2) ρ is idempotent separating congruence, where 

( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

.
,,
,,

,:
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

′=′=′∈′∃∈′∀

′=′=′∈′∃∈′∀
|×∈=μ

bbaabbaaaWabWb
bbaabbaabWbaWa

SSba  

Moreover, μ is the maximum idempotent separating congruence on S. 

2. Main Results 

The next theorem is analogous to the result for eventually regular semigroups as 
Theorem 2.4 in [3]. 

Theorem 2.1. Let S be an eventually regular semigroup and ρ be a congruence 

on S. Then ρ is an idempotent separating congruence on S if and only if ∗μ⊆ρ  

where 

{( ) ( ) ( ) ( ) ( ),,: 11 bWbbaWaaSSba mmnn ∈′∃∈′∀|×∈=μ −−∗  where ( ) ( ),nn aWa ∈′  

na  is a-regular and ( ) ( ),mm bWb ∈′  mb  is b-regular, such that 

( ) ( ) bbbaaa mmnn ′=′ −− 11  and ( ) ( )′=′ −− mmnn bbbaaa 11  and ( ) ∈′∀ − mm bb 1  

( ) ( ) ( ),1 aWaabW nn ∈′∃ −  where ( ) ( ),nn aWa ∈′  na  is a-regular and 

( ) ( ),mm bWb ∈′  mb  is b-regular, such that ( ) =′− aaa nn 1  ( ) ,1 bbb mm ′−  

( ) ( ) }.11 ′=′ −− mmnn bbbaaa  
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Moreover, ∗μ  is the maximum idempotent separating congruence on an eventually 

regular semigroup S. 

Proof. ( )⇒  Let ρ be an idempotent separating congruence on S and Sba ∈,  

with ( ) ., ρ∈ba  Let ( ) ( ),1 aWaa nn ∈′−  where ( ) ( ),nn aWa ∈′  na  is a-regular, 

we have ( ) ( ) .11 baaaaa nnnn ′ρ′ −−  Let m be the smallest positive integer such that 

( ( ) )mnn baa ′−1  is ( ) baa nn ′ -regular. Since ρ is a congruence and ( ) ∈′− aaa nn 1  

( ),SE  by Howie [2], ( ) ( ( ) )mnnnn baaaaa ′ρ′ −− 11  and so ( ) ( ( ) )mnnnn baaaaa ′′ −− 11 H  

by Lemma 1.6 (3), that is, ( ( ) ) ∈′− mnn baa 1  ( ( ) ).1 aaaH nn ′−  Let ( )′mc  is weak 

inverse of ( ( ) )mnn baa ′−1  in ( ( ) ).1 aaaH nn ′−  Consider 

(( ) ( ( ) ) ( ) ) (( ) ( ( ) ) ( ) )′′′′′′ −−−−−− nnmnnmnnmnnm aabaacbaabaac 111111  

(( ) ( ( ) ) ( ) ) ( ( ) ) ( )′′′′′= −−−− nnmnnmmnnm aabaacbaac 1111  

( ) ( ( ) ) ( ) .111 ′′′= −−− nnmnnm aabaac  

We have ( ) ( ( ) ) ( ) ( )bWaabaac nnmnnm ∈′′′ −−− 111  and so, we choose ( ) =′− mm bb 1  

( ) ( ( ) ) ( ) .111 ′′′ −−− nnmnnm aabaac  Thus ( ) ( ) ( ( ) ) ( ) baabaacbbb nnmnnmmm ′′′=′ −−−− 1111  

( ) ( ( ) ) ( ( ) )aaabaac nnmnnm ′=′′= −− 11  because H -class contains at most one 

idempotent. 

On the other hand, ( ( ) ( ) ( ( ) ) ( )′′′=′ −−−− nnmnnmmm aabaacbbbb 1111  and 

( ) ( ( ) ) .11 mnnnn baaaaa ′ρ′ −−  

Thus 

( ) ( ) ( ( ) ) ( )′′′=′ −−−− nnmnnmmm aabaacbbbb 1111  

( ) ( ( ) ) ( ) ( )′′′′= −−−− nnnnmnnm aaaaabaacb 1111  

and 

( ( ) ( ( ) ) ( ) ( ) )ρ′′′′ −−−− nnnnmnnm aaaaabaacb 1111  

( ( ) ( ( ) ) ( ( ) ) ( ) )ρ′′′′= −−−− nnnnmnnm aabaabaacb 1111  
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and 

( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ( ) ) ( )′′′=′′′′ −−−−−− nnmnnmnnnnmnnm aabaacbaabaabaacb 111111  

but ( ) ( ( ) ) ( ) ,11 aaabaacb nnmnnm ′=′′ −−  we have 

( ) ( ) ( ( ) ) ( ) ( ) ( ) ( )′=′′ρ′′′ρ′ −−−−−− nnnnnnnnmnnmmm abaaaaabaaabaacbbbb 111111  

and ( ) ( )′ρ′ −− nnnn aaaaba 11  and ρ is an idempotent separating congruence on S, so 

( ) ( ) .11 ′=′ −− nnmm aaabbb  

We can show that for all ( ) ( )bWbb mm ∈′−1  there exists ( ) ( )aWaa nn ∈′−1  

such that ( ) ( ) ,11 aaabbb nnmm ′=′ −−  and ( ) ( ) ,11 ′=′ −− nnmm aaabbb  hence .∗μ⊆ρ  

( )⇐  Suppose that ρ is a congruence on S and .∗μ⊆ρ  To show that ρ is an 

idempotent separating congruence on S. 

Let ( )SEfe ∈,  with ( ) ρ∈fe,  and let ( ).eWe∈  Then there exists ( )fWf ∈′  

such that ffffeee ′=′==  and so .effee ==  For all ( )fWf ∈  there exists 

( )eWe ∈′  such that eeeefff ′=′==  and ,efffe ==  hence .fe =  

Therefore ρ is an idempotent separating congruence on S. An analog to the 

proof as Theorem 2.6 in [3], we get that ∗μ  is the maximum idempotent separating 

congruence on S. □ 

Note that, every eventually regular semigroup is an E-inversive semigroup. In 
2002, Weipoltshammer [6] gave some characterizations for idempotent separating 
congruence on an E-inversive E-semigroup, whose ( )SE  was a rectangular band, 

and ( ) ( ) ( ){ bWbaWaSSba ∈′∃∈′∀|×∈=μ ,:  such that ,bbeaae ′=′  ,ebbeaa ′=′  for 

all ( )SEe ∈  and ( ) ( )aWabWb ∈′∃∈′∀  such that ,bbeaae ′=′  ,ebbeaa ′=′  for 

all ( )}.SEe ∈  Luo and Li [3] gave μ for this kinds of congruences by mean defined 

above on an eventually orthodox semigroup. Now, we give a similar description for 
the maximum idempotent separating congruence on an eventually regular E-
semigroup as Siripitukdet and Sattayaporn [5] did for E-inversive E-semigroups by 
using weakly self-conjugate subsemigroup H of S. 
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Theorem 2.2. Let S be an eventually regular E-semigroup and H be full and 
weakly self-conjugate subsemigroup of S. Then a relation 

{( ) ( ) ( ) ( ) ( )bWbbaWaaSSba mmnn ∈′∃∈′∀|×∈=τ −− 11,:  such that ( )′− nn aaxa 1  

( ) ,1 ′= − mm bbxb  ( ) ( ) ,11 xbbbxaaa mmnn ′=′ −−  ,Hx∈∀  where ( ) ( ),nn aWa ∈′  

na  is a-regular and ( ) ( ),mm bWb ∈′  mb  is b-regular and ( ) ∈′∀ − mm bb 1  

( ) ( ) ( )aWaabW nn ∈′∃ −1  such that ( ) ( ) ,11 ′=′ −− mmnn bbxbaaxa  ( ) xaaa nn ′−1  

( ) ,1 xbbb mm ′= −  ,Hx ∈∀  where ( ) ( ),nn aWa ∈′  na  is a-regular and ( ) ∈′mb  

( ),mbW  mb  is }regularb-  

is an idempotent separating congruence on S. 

If ( ) ,EHSE ω=  then τ is the maximum idempotent separating congruence on S. 

Proof. Obviously, τ is reflexive and symmetric. 

To show that τ is a transitive, let ,,, Scba ∈  Hx ∈  and ( ) ( ),nn aWa ∈′  

( ) ( ),mm bWb ∈′  where na  is a-regular, mb  is b-regular be such that baτ  and 

.cbτ  Let ( ) ( ).1 aWaa nn ∈′−  Then there exists ( ) ( ) ( )bWbb mm ∈′−1  such that 

( ) ( ) ,11 ′=′ −− mmnn bbxbaaxa  ( ) ( ) ,11 xbbbxaaa mmnn ′=′ −−  for all .Hx ∈  Since 

cbτ  and ( ) ( ),1 bWbb mm ∈′−  there exists ( ) ( ),1 cWcc kk ∈′−  where ( ) ( ),kk cWc ∈′  

kc  is c-regular, we have ( ) ( ) ,11 ′=′ −− kkmm ccxcbbxb  ( ) ( ) ,11 xcccxbbb kkmm ′=′ −−  

for all .Hx ∈  Since m is the smallest positive integer, we have ( ) =′− nn aaxa 1  

( ) ,1 ′− kk ccxc  ( ) ( ) ,11 xcccxaaa kknn ′=′ −−  for all .Hx ∈  Similarly, we can show 

that for all ( ) ( ) ( ),1 cWcc kk ∈′−  where ( ) ( ),kk cWc ∈′  kc  is c-regular, there exists 

( ) ( ),1 aWaa nn ∈′−  where ( ) ( ),nn aWa ∈′  na  is a-regular such that ( ) =′− nn aaxa 1  

( ) ,1 ′− kk ccxc  ( ) ( ) ,11 xcccxaaa kknn ′=′ −−  for all .Hx ∈  Hence caτ  and τ is a 

transitive. We shall show that τ is a compatible, let a, Sb ∈  with baτ  and let 

( ) ( ),nn aWa ∈′  where na  is a-regular and ( ) ( ),mm bWb ∈′  where mb  is b-regular. 
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For ( ) ( ),1 aWaa nn ∈′−  there exists ( ) ( )bWbb mm ∈′−1  such that ( ) =′− nn aaxa 1  

( ) ,1 ′− mm bbxb  ( ) ( ) ,11 xbbbxaaa mmnn ′=′ −−  for all .Hx ∈  

Let ( ) ( ),1 cWcc kk ∈′−  where ( ) ( )kk cWc ∈′  and kc  is c-regular. By 

( ) ( ) ( )acWaacc nnkk ∈′′ −− 11  and ( ) ( ) ( ),11 bcWbbcc mmkk ∈′′ −−  for all ,Hx ∈  

( ) ( ( ) ) ( ) ( ( ) ) ( )′′=′′ −−−− nnkknnkk aaccxcaaaccxac 1111  

( ( ) ) ( )′′= −− mmkk bbccxcb 11  

( ) ( ( ) ( ) )′′= −− mmnkn bbccxbc 11    ( ( ) )Hccxc kk ∈′−1∵  

and 

( ( ) ( ) ) ( ) ( ( ) )cxaaaccxacaacc nnkknnkk ′′=′′ −−−− 1111  

( ) ( ( ) )cxbbbcc mmkk ′′= −− 11  

( ( ) ( ) ) ( )bcxbbcc mmkk ′′= −− 11    ( ( ) ).1 Hxbbb mm ∈′−∵  

Similarly, we can show that the second part holds. Hence ,bcacτ  so τ is a right 

compatible. Similarly, we can show that τ is a left compatible. Therefore τ is a 
congruence on S. Let e, f be elements in S such that .feτ  Since ( ),eWe ∈  there 

exists ( )fWf ∈′  such that ,fxffxfexe ′=′=  for all .Hx ∈  Since H is full, 

He∈  and ,ffeeffeeee ′=′==  we have ( ) .eefffeffef =′=′=  Now ( ).fWf ∈  

There exists ( )eWe ∈′  such that ,eexxeefxf ′=′=  for all .Hx ∈  Since ,Hf ∈  

,eeffeeffff ′=′==  it follows that ( ) .feefeefeef =′=′=  Therefore, fe =  

and so τ  is an idempotent separating congruence on S. 

Suppose that ( ) .EHSE ω=  To show that τ is the maximum idempotent 

separating congruence on S, let ρ be an arbitrary idempotent separating congruence 

on S. Let Sba ∈,  be such that .baρ  By Theorem 2.1, .∗μ⊆ρ  Then, for all 

( ) ( ),1 aWaa nn ∈′−  there exists ( ) ( )bWbb mm ∈′−1  such that 

( ) ( ) ,11 bbbaaa mmnn ′=′ −−  
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where na  is a-regular, mb  is b-regular. Consider 

( ) ( ( ) ( ( ) ) ( ) ( )′′ρ′′=′ −−−−− nnmmnnnnnn ababbaaaaaaa 11111  

 and 

( ) ( ) ( ) ( ) ( )′′′=′′ −−−−− mmnnmmnnmm bbbababbababb 11111   

 and 

[ ( ) ( ) ( ) ] [ ( ) ( ) ( ) ( ) ]′′′ρ′′′ −−−−−− mmnnmmmmnnmm bbbaaabbbbbababb 111111  

and 

( ) ( )( ) ( ) ( ) .1111 ′=′′′ −−−− mmmmnnmm bbbbbaaabb  

 Hence ( ) ( ) .11 ′ρ′ −− mmnn bbaa  

For any Hx ∈  and ,baρ  ( ) ( ) ,11 ′ρ′ −− mmnn bbaa  we have 

( ) ( ) xbbbxaaa mmnn ′ρ′ −− 11  and ( ) ( ) .11 ′ρ′ −− mmnn bbxbaaxa  

Since H is a weakly self conjugate, we have ( ) ,1 xaaa nn ′−  ( ) .1 Hxbbb mm ∈′−  

Since ( ) ,EHSE ω=  we get 

( ) ( ) ( ) ,111 Hxaaaaaaxaaa nnnnnn ∈′′=′ −−−  

 so ( ) ( ).1 SEHxaaa E
nn =∈′

ω
−  

Similarly, ( ) ( ) ( ) .111 Hxbbbbbbxbbb mmmmmm ∈′′=′ −−−  So, ( ) ∈′− xbbb mm 1  

( ).SEH E =ω  Since ρ is an idempotent separating congruence, we get ( ) xaaa nn ′−1  

( ) .1 xbbb mm ′= −  The proof of the second part is similarly. Therefore, .τ⊆ρ  Hence 

τ is the maximum idempotent separating congruence on S. □ 
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Corollary 2.3. Let S be an eventually regular E-semigroup. Then a relation 

{( ) ( ) ( ) ( ) ( )bWbbaWaaSSba mmnn ∈′∃∈′∀|×∈=ζ′ −− 11,:  such that ( ) =′− nn aaea 1  

( ) ( ) ( ) ( ),, 111 SEeebbbeaaabbeb mmnnmm ∈∀′=′′ −−−  where ( ) ( ),nn aWa ∈′  

na  is a-regular, ( ) ( ),mm bWb ∈′  mb  is b-regular and ( ) ∈′∀ − mm bb 1  

( ) ( ) ( )aWaabW nn ∈′∃ −1  such that ( ) ( ) ,11 ′=′ −− mmnn bbebaaea  ( ) eaaa nn ′−1  

( ) ,1 ebbb mm ′= −  ( ),SEe ∈∀  where ( ) ( ),nn aWa ∈′  na  is a-regular, 

( ) ( ),mm bWb ∈′  mb  is }regularb-  

is the maximum idempotent separating congruence on S. 
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