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Abstract

The aim of this paper is to characterize an idempotent separating
congruence on an eventually regular semigroup and the maximum
idempotent separating congruence on its and on eventually regular E-
semigroups which are analogous to the characterization of an eventually
regular semigroup considered by Luo and Li [3] and to characterization
of an eventually regular E-semigroup considered by Siripitukdet and
Sattayaporn [5].

1. Introduction

Let S be a semigroup and E(S) denote the set of all idempotents of S. For
aeS, V(a):={x e S|a=axa, x = xax} is the set of all inverses of element a and
W(a) = {x € S|x = xax} is the set of all weak inverses of element a. An element a

in a semigroup S is called E-inversive [6] if there exists x € S such that ax is an
idempotent of S. A semigroup S is called E-inversive if for all a< S, a is E-
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inversive. A semigroup S is called an E-semigroup if E(S) forms a subsemigroup of
S. A semigroup S is regular if and only if V(a) # & for each a € S and a regular
semigroup S is an orthodox if E(S) forms a subsemigroup of S. A semigroup S is an
eventually regular [1] if every a € S, there exists a positive integer n such that a"
is regular. For each a € S, a" is a-regular, we mean that n is the smallest positive
integer for which a" is regular. The class of eventually regular semigroups

generalizes regular semigroups and finite semigroups.

Edwards [1] described basic properties and some results of an eventually regular
semigroup. He proved that the maximum idempotent separating congruence exists.
A congruence p on a semigroup S is an idempotent separating congruence on S if

every p-class contains at most one idempotent, i.e., for all e, f € E(S) and epf
implies e = f. Weipoltshammer [6] introduced the maximum idempotent separating

congruence on an E-inversive E-semigroup which Luo and Li [3] generalized for
eventually regular semigroups. In this paper, we investigated the maximum
idempotent separating congruence on an eventually regular E-semigroup which are
analogous to characterization of E-inversive E-semigroups considered by [5] and we
instead for all e € E(S) asin [3] by forall x e H asin [4].

A subset H of a semigroup S is full [7] if E(S) < H. A subsemigroup H of a
semigroup S is called weakly self-conjugate if for all ae S, xe H, a' e W(a),

we have axa’, a'’xa € H, for any subsets H and B of a semigroup S, let
H,, =1{aeS|baeH for some b € B}.

If B =H, then H,, will be denoted by H,, and it is called the closure of H.
If H is a subsemigroup of a semigroup S, then H < H,. H is called a closed

subsemigroup [7] of Sif H = H,.

A subset H of an eventually regular semigroup S is called weakly self-conjugate
if for all ae S, (an)' eW(a"), where a" is a-regular aHan_l(an), c H and

a”‘l(a”)’Ha c H.
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Example 1. Let S = {a, b, ¢, d, e} defined by the multiplication as below:

cla b ¢ d e
ala a a d d
bla b ¢ d d
cla ¢ b d d

d|{d d d a a

e|d e e a a.
Then S is an eventually regular semigroup under usual multiplication. Now, we have
E(S) = {a, b} and a € W(e?), where e’ is e-regular.
Let H ={a, b, c}. Then E(S)c H and H satisfies a weakly self-conjugate
subset of S.

For any nonempty subset H of a semigroup S, we define a relation t on S as

follows:
t:={(a,b)e SxS|va"(@") eW(a)3b™(b™) eW(b) such that axa"(a")

— bxb™ (™), a"!(@") xa = b™ ' (b™) xb, Vx € H, where (a") e
w(@"), a" is a-regular and (bm)’ eW(b™), b™ is b-regular and
v b™ ! (b™) eW(b)3a"'(a") eW(a) such that axa"'(@") =

bxb™1(b™), a"!(a") xa=b™'(b™) xb, Vx e H, where (a") e

w(@"), a" is a-regular and (bm)/ eW(@®™), b™ is b-regular}.
Note that t may be an empty set. If S is an eventually regular semigroup, then
(a,a) e, forall a €S, sotisnotan empty set.
For basic concepts in semigroup theory, see [6] and [3].

The following results are used in this research.

n

Lemma 1.1. Let S be a semigroup and aeS. If a" is a-regular, then

w@") = @.
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Proof. Let ne N and a" be a-regular, there exists X €S such that a" =a"xa"

and a"x € E(S). Then
a"x = (a"x)(a"x),
(xa"x)a"(xa"x) = x[(a"x)(a"x)](a"x)

= x(a"x)(a"x) = xa"x.
Thus xa"x e W(a"). u]

Proposition 1.2. Let S be any semigroup and N be the positive integer. Then
(1) forall @") ew(@"), @")a", a"@") e E(S).
@forallneN, n>1, (a") ew(@"), a"'(@a") a a@@") a"" < E(S).
Proof. (1) Let ne N and (a") eW(a"). Then (a") =(a")a"(@") and
(") a" = (@")a")(@")a") = (a") ")’ and a"(@") = (a")(@") (@")(@") =
((a")(@")).
2)Let n > 1 and (a") eW(a"). Thus
(a"(@")a)(a" ' (@")a) =a"!(a") (aa"")(@") a
-a" '@ a"@" a=a""@a")a
a@")a"(a@")a"") = a@") @"'a)@") a"! = a@@")a"". o

Proposition 1.3. If S is an E-semigroup, a e S, a" is a-regular and e, f

E(S), (@") ew(a"), then
(1) e@"), (@") f, f(a")e eW(a"),
) a"e(@"), (a") ea" € E(S),

(3) ae(@™1)(@"), a"(a") ea € E(S),
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@ a™'@"), @") a"" eW(a),
(5) fa"'(a"), a"'(@a") e, fa"'(a") e e W(a),
(6) f(a“)ya”_l, (a”)’a"‘le, f(a”)’a"‘le eW(a).

Proof. (1) and (2) by [4].

(3) Note that
[aea"'(a") ][aca"'(a") ] = aea"'(a") aea"'(a") a"(a")
= alea""'(a") a][ea" " (a") a)(a" " (a")
- aea"(a") a(@" 1) (@")
- aea"'[(a")a"(@") ] = aea"'(a")
and
(a"'(@") ea)(@""'(a") ea) = a"'[(@") a"(a") Jea"(a") ea
=a"!(@")[a"(@") e][a"(a") e]a
= a"!@a") ea.
@ If (a") eW(@"), then a"'(a"), (a") a"! e W(a). Thatis,
(a"'@")a@""@")=a""@"a"@" =a""'@"
and
(@"a"Ma@")a"! = (" a"(@@")a"" = (") a"".
(5) and (6) follow from (4) and by [4]. O

Proposition 1.4. If S is a semigroup, ((ac)“)l eW((ac)") and (ac)" is ac-

regular, then c(ac)"'((ac)") a, c((ac)") (ac)"'a € E(S).
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Proof. Let ((ac)") eW((ac)"). Then
(c(ac)" ((20)") a)(c(ac)" ' (ac)") &) = c(ac)" ! ((ac)") ac(ac)" ' ((ac)") a
= c(ac)""[((20)") (ac)"(ac)") ]a
= c(ac)"'((ac)")

Similarly, we have c((ac)") (ac)"'a e E(S). o

n

Proposition 1.5. If S is an E-semigroup, a" is a-regular and b™ is b-regular,

then W(b™)W(a") c W (a"b™). If S is commutative, then W (a"b") = W ((ab)").
Proof. Let (") e W(a"), (b™) e W (b™). Then
(™) (@") a"™(b™) (") = (6™)b"(b™) (a") a"b™(b™) (a") a"(a")
= (™) b™(b"™) (2") a"(@")
= (™) (@").
Therefore, (b™) (a") e W (a"™) and so W(b™W (") c W(a"b™).
If S is commutative semigroup, then W (a"b") = W ((ab)"). O

The following lemma, Edwards [1] investigated the maximum idempotent
separating congruence on an eventually regular semigroup which used by Green’s
relations £, R and H.

Lemma 1.6 [1]. The following are equivalent for a congruence p on an
eventually regular semigroup S.

Mpcw,
(2)forall e € E(S) andforall b € S, epb implies H < Hy,
(3)forall a € Reg(S) andforall b € S, apb implies H, < H,,,

(4) p is idempotent separating congruence on S,
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where Edwards [1] defined a relation p as follows:

(a, b) e p © if x € Reg(S), then each of xRxa, xXRxbimplies xaHxb and each

of xLax, xLbx implies axHbx

and p is the maximum idempotent separating congruence on an eventually regular
semigroup.

Luo and Li [3] gave the maximum idempotent separating congruence on an
eventually regular semigroup as follows.

Theorem 1.7 [3]. Let S be an eventually regular semigroup and p be a
congruence on S. Then the following are equivalent:

M pch
(2) p is idempotent separating congruence, where

. {(a, b)c S xS l[(Va' eW(a))(3@b' eW(b)), (aa’ = bb, a'a = b'b)]}.

(vb' eW(b))(Fa' e W(a)), (aa' = bb, a'a = b'b)

Moreover, u is the maximum idempotent separating congruence on S.
2. Main Results

The next theorem is analogous to the result for eventually regular semigroups as
Theorem 2.4 in [3].

Theorem 2.1. Let S be an eventually regular semigroup and p be a congruence
on S. Then p is an idempotent separating congruence on S if and only if p c p*

where
w*:=1{(a,b)eSxS|va"l(a") eW(a)3b™ ' (b™) eW(b), where (a") eW(a"),
a" is aregular and (b™) eW(b™), b™ is b-regular, such that
a"(a")a=b""'(b™)b and aa"(a") =bb™(b™) and Vb (b™) e
W(b)3a"(@") eW(a), where (@") eW(a"), a" is a-regular and
(™) eW(b™), b™ is b-regular, such that a"'(a")a= b™'(b™)b,

aa"(a") =bb™(b™) }.



120 SUPAVINEE SATTAYAPORN

*

Moreover, p” is the maximum idempotent separating congruence on an eventually

regular semigroup S.

Proof. (=) Let p be an idempotent separating congruence on S and a, b € S
with (a, b) e p. Let a"!(a" )' eW(a), where (an)' ew(@"), a" is a-regular,
we have a"!(a" )' apan_l(an)’ b. Let m be the smallest positive integer such that
(an_l(an)'b)m is an(an)’b—regular. Since p is a congruence and an_l(an)la €
E(S), by Howie [2], 2" }(a") ap(a™!(a") b)™ and so a"'(a") aH(a"'(a") b)"
by Lemma 1.6 (3), that is, (a"'(a" )’b)m € H(an_l(an)’a). Let (Cm)’ is weak

inverse of (a"!(a") b)™ in H(@"'(a") a). Consider
(€ @@ b)"a" @) b((c™) (@™ (@") b)"'a"(@") )
= (™) @@ p)"(™)) @ @") )" " @")
= (™) @@ b)""a"(a").
We have (™) (a"'(@") b)™'a"!(a") e W (b) and so, we choose b™!(b™) =
™) (@ @")b)™'a""(@"). Thus b™'(b™)b=(c") (a"'(@") b)™'a"!(a")b
= (™) (@ Y @")b)" = (@"'(a") a) because H-class contains at most one

idempotent.
On the other hand, b(b™'(b™) =b(c™) (a"'(@")b)"'a"'(a") and
a"!(@") ap(@"' (@) b)".
Thus
bb™ ' (b™) = b(c™) (@"'(@") b)"'a"(a")
=bc™) @™ (@") )" 'a" ! (@") aa""!(@")
and
(b(c™) @ (@") )" 'a" ! (@") aa" " (@") )p

= (b(c™) (@"'(@") b)" (@ " (@") b)a" ' (@") )p
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and

b(c™) (@™ (@") )" (@"(@") b)a"'(@") = b(c™) ("' (@")b)"a""'(@")
but b(Cm)’(an—l(an )'b)m =a"!(a" )'a, we have
bbm—l(bm)'pb(cm)’(an—l(an)'b)man—l(an )'pban—l(an)'aan—l(an)' _ ban—l(an)'

’ ’
and ba""!(a") paa"~'(a") and p is an idempotent separating congruence on S, so
’

bbm—l(bm)' _ aan—l(an)

We can show that for all bm_l(bm)’ e W(b) there exists a"'(a" )’ eW(a)

such that bm_l(bm),b —a"l(a" )' a, and bbm_l(bm)l = aan—l(an)” hencep c p.

(<) Suppose that p is a congruence on S and p < p”. To show that p is an

idempotent separating congruence on S.

Let e, f e E(S) with (e, f)ep and let e eW(e). Then there exists f'eW(f)
suchthat e =ee = ff'= f'f andso e =ef = fe. Forall f e W(f) there exists

e'eW(e) suchthat f = ff =e’'e =ee’ and ef = f = fe, hence e = f.

Therefore p is an idempotent separating congruence on S. An analog to the
proof as Theorem 2.6 in [3], we get that u* is the maximum idempotent separating
congruence on S. o

Note that, every eventually regular semigroup is an E-inversive semigroup. In

2002, Weipoltshammer [6] gave some characterizations for idempotent separating

congruence on an E-inversive E-semigroup, whose E(S) was a rectangular band,
and u:={(a,b)e SxS|va'eW(a)3ab’eW(b) such that aea’ = beb’, a'ea = b'eb, for
all e € E(S) and Vb’ e W(b)3a' e W(a) such that aea’ = beb’, a'ea = b'eb, for
all e € E(S)}. Luo and Li [3] gave p for this kinds of congruences by mean defined

above on an eventually orthodox semigroup. Now, we give a similar description for
the maximum idempotent separating congruence on an eventually regular E-
semigroup as Siripitukdet and Sattayaporn [5] did for E-inversive E-semigroups by

using weakly self-conjugate subsemigroup H of S.
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Theorem 2.2. Let S be an eventually regular E-semigroup and H be full and
weakly self-conjugate subsemigroup of S. Then a relation

t:={(a,b)eSxS|va"(a") eW(a)ab™(b™) eW(b) such that axa"'(a")
—bxb™(b™), a"!(a") xa=b™ " (b™) xb, Vx e H, where (a") ew(a"),
a" is a-regular and (b™) e W(b™), b™ is b-regular and Vb™ ' (b™) e
W(b)3a""(a") eW(a) such that axa™'(a") =bxb™(b™), a"!(a") xa
=b™(b™) xb, Wx € H, where (@") eW(a"), a"is a-regular and (b™) e
W (b™), b™ is b-regular}
is an idempotent separating congruence on S.

If E(S)=H then t is the maximum idempotent separating congruence on S.

OE >
Proof. Obviously, 7 is reflexive and symmetric.

To show that T is a transitive, let a,b,ce S, xe H and (an)’ ew(@"),
(bm)' eW(b™), where a" is a-regular, b™ is b-regular be such that ath and
brc. Let a"'(a" )’ e W (a). Then there exists (bm_l)(bm)’ e W(b) such that
axa"@") =bxb™(b™), a"'(a") xa = b™!(b™) xb, for all x € H. Since
btc and bm_l(bm)’ e W(b), there exists Ck_l(ck)’ e W(c), where (Ck)' € W(Ck),
ck is c-regular, we have bxb™1(b™) = exc¥(cX), b™ (™) xb = ¥ (ck) xc,
for all x € H. Since m is the smallest positive integer, we have axan_l(an)' =
cxckfl(ck)’, anfl(an), xa = ckfl(ck)' xc, for all x € H. Similarly, we can show
that for all (Ck_l)(ck)’ e W(c), where (Ck)’ € W(Ck ), ck is c-regular, there exists
a"l(@" )' eW(a), where (an)' eW(a"), a" is a-regular such that axanfl(an)' =
oxc1(ck), a"'(@") xa = c¥'(c¥) xc, for all x € H. Hence atc and 7 is a
transitive. We shall show that t is a compatible, let a, b € S with atb and let

(a“), eW(a"), where a" is a-regular and (b™ ), eW(b™), where b™ is b-regular.
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For a"'(a" )’ e W (a), there exists bm_l(bm)’ e W(b) such that axan_l(an)' =

bxbm_l(bm)', a”—l(an),xa = bm—l(bm)'xb, forall x € H.

Let Ck_l(ck),eW(C), where (Ck)'eW(Ck) and cX is cregular. By

ckI(ckya(a") ew(ac) and c*7'(c¥) b™(b™) e W(bc), forall x € H,
(ac)x(c* ' (c*))a"'(@") = a(oc* () )a"@")
= b(exe* (%) )b (b™)
= (bo)x(E™ e b (B™)) (- oxck(cF) e H)
and
(*(c*ya" (@) )xac = ¢*'(c*) (@™ (") xa)c
= Ity (0™ (™) xb)e
= (@)™ (™)) x(be) (b (b") xbe H).

Similarly, we can show that the second part holds. Hence acthc, so t is a right

compatible. Similarly, we can show that t is a left compatible. Therefore t is a

congruence on S. Let e, f be elements in S such that et f. Since e e W(e), there
exists f’ e W(f) such that exe = f'xf = fxf’, for all x € H. Since H is full,
ecH and e=eee= féf = fef’, we have ef =(f&f)f = f&f =e. Now f eW(f).
There exists €' € W(e) such that fxf = e'xe = exe’, for all x € H. Since f e H,
f =1fff =e'fe=efe, it follows that ef = e(efe’) = efe’ = f. Therefore, e = f

and so 7 is an idempotent separating congruence on S.

Suppose that E(S)= HOJE’ To show that t is the maximum idempotent

separating congruence on S, let p be an arbitrary idempotent separating congruence

onS. Let a,beS be such that apb. By Theorem 2.1, p < u*. Then, for all

a"!@" )’ eW (a), there exists bm_l(bm)’ €W (b) such that

a"!(a")a =b™"!(b™)b,
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where a" is a-regular, b™ is b-regular. Consider

anfl(an )' _ (anfl(an)'a(anfl(an)')pbmfl(bm)'banfl(an )'

and
™! (b™Yba"!(@") = b™!(b™)ba"" (") bb™ ! (b™)
and
[0 (") ba" (") bb™ (b Jo 6™ (6" aa" ) (@") b (b") ]
and

b™!(b™) a(@™ ") (@") bb™ ' (b™) = b™ ' (b™).
Hence a"'(a" )'pbmfl(bm)'.
Forany X € H and apb, an_l(an),pbm_l(bm)', we have
a" ! (@") xapb™ ! (b™) xb and axa"!(a") pbxb™ ! (b™) .

Since H is a weakly self conjugate, we have a"'(a" )’ xa, bm_l(bm)’ xb e H.
Since E(S) = H_, we get
a"™(@") xa=a""'(a")aa"!(a") xa e H,

so a"(a") xa e Hoe = E(S).

Similarly, b™!(b™) Xb = b™!(6™)'bb™ ' (6™) xb € H. So, b™(b™) xb
Hop = E(S). Since p is an idempotent separating congruence, we get an_l(arI ), xa

= bm_l(bm)’xb. The proof of the second part is similarly. Therefore, p < t. Hence

T is the maximum idempotent separating congruence on S. o
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Corollary 2.3. Let S be an eventually regular E-semigroup. Then a relation

'={(a b)eSxS|va"'(a") eW(a)3b™ ' (b™) eW(b) such thataea"!(a") =
beb™ 1 (b™), a"(a") ea=b™" (b™) eb Ve € E(S), where (a") eW(a"),
a" is a-regular, (b™) eW(b™), b™ is b-regular and ¥b™(b™) e
W(b)3a"(a") eW(a) such that aea"!(a") =beb™ ! (b™), a"'(a") ea
—b™(bM)eh, VeeE(S), where (a") ew(a"), a" is a-regular,
(™) eW(b™), b™ is b-regular}

is the maximum idempotent separating congruence on S.
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