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Abstract 

Students may be asked to deal with some summation limits that could not 
be solved directly by the integral method. In this short paper, we consider 
them and present some useful solving methods. 

1. Introduction 

Students in studying calculus may be asked to consider a type of summation 
limit as follows: 
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where ( )( )0mf  (the mth derivative of f at 0) exists for some positive integer m, and 

1k  and 2k  are two nonnegative integers with .21 kk <  The following are such types 

of exercises: 
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Since for the function ( )xf  of (1.1) and for the corresponding integer m, we have 

( )( )
( )( ) ( )nkjnk

n
j

m
f

n
jfin

jf
mm

i

m
i

im
211

1

0
1

1

1 1!
0~0!

1 ≤≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ+

σ−

=
σ+

σ

σ+

σ

∑  

as ,∞→n  

we may ask that whether one could deal with (1.1) by considering the limit 
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1 ?lim  By virtue of the differential method [1-3], we claim that the 

answer of the question is positive, and three theorems below present the existence of 
(1.1) and show us how to compute it. 

2. Main Results 

In case .1=m  

Theorem 1. Let ( )0xf ′  exist, ,1k  2k  be two integers with ,012 ≥> kk  and 

0>σ  be a fixed number. Then the limit 
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In case .1≥m  

Theorem 2. Let ,1≥m  ( )( )0xf m  exist, and ,1k  ,2k  σ be given as in Theorem 

1. Then the limit 
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Clearly, Theorem 1 is a corollary of Theorem 2. Moreover, Theorem 2 is the 
special case of the following general result. 

Theorem 3. Let ,1≥m  ( )( )0xf m  exist and ,1k  2k  be given as in Theorem 2. 

Let { } { } ( )1, ≥nba nn  be two strictly increasing and positive sequences such that 
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Then the limit 
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Proof of Theorem 3. By assumptions, it is easy to see that 
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By Stolz’s Theorem [1-3], both (b) and (c) of (2.5) imply that 
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( 0As 0 =c  by (2.3) (c), the second equality of (2.6) is also true for ).01 =k  

Since ( )( )0xf m  exists, by Taylor’s formula with Peano’s remainder [1-3], 
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Combining this with (2.6), we conclude that Theorem 3 is true.  
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3. Some Applications 

(i) For the limits of (1.2), let ( ) ( )xxf sinsin=  or ( ).arcsintan x  Then ( ) ,00 =f  

( ) ,10 =′f  and from Theorem 1, we have 
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(ii) As an another application of Theorem 3, we present the following example. 
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