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Abstract

Students may be asked to deal with some summation limits that could not
be solved directly by the integral method. In this short paper, we consider
them and present some useful solving methods.

1. Introduction

Students in studying calculus may be asked to consider a type of summation
limit as follows:
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where f(m)(O) (the mth derivative of f at 0) exists for some positive integer m, and
k; and k, are two nonnegative integers with k; < k,. The following are such types

of exercises:
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Since for the function f(x) of (1.1) and for the corresponding integer m, we have

1

i
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as n— oo,

we may ask that whether one could deal with (1.1) by considering the limit

an el
lim Z LG ? By virtue of the differential method [1-3], we claim that the
n—o .
j=kn+1

answer of the question is positive, and three theorems below present the existence of
(1.1) and show us how to compute it.

2. Main Results

Incase m =1.

Theorem 1. Let f'(xg) exist, k;, k, be two integers with k, > k; >0, and
c > 0 be a fixed number. Then the limit
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Incase m > 1.
Theorem 2. Let m > 1, f(m)(xo) exist, and k;, k,, o be given as in Theorem

1. Then the limit
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exists and satisfies
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Clearly, Theorem 1 is a corollary of Theorem 2. Moreover, Theorem 2 is the
special case of the following general result.

Theorem 3. Let m > 1, f(m)(xo) exist and kj, ko be given as in Theorem 2.

Let {a,}, {b,} (n = 1) be two strictly increasing and positive sequences such that

a, —a
(@) lim a, = oo, lim 2=l _1
n— oo

n—w 8n-1 ~ 8p_2

b M
(b) IMy, > 0st 2 < 2 (n > 1),
an n (2.3)

(c) Vk=1 2, .. ky, 3¢ st. lim b = Cy

n—w 8y —an_1

(if k =0, we may set by = cq = 0).

Then the limit
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(If kg =0, then k¢, = 0).

Proof of Theorem 3. By assumptions, it is easy to see that

. bj My
(@) Yn=>1Vj=kn+1 kn+2, ..k, 0< e TZ
n
kn
b:
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2 k

n—w 8y —an_1 n—w 8y — an—l.

(b) Yk =12, .., Ky, n>1, . (2.5)

By Stolz’s Theorem [1-3], both (b) and (c) of (2.5) imply that

kn kn

2.0 DI
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=key 1<k <ky) and

k2n

lim = koCy. — kqCy. . 2.6
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(As cg = 0 by (2.3) (c), the second equality of (2.6) is also true for k; = 0).

Since f(m)(xo) exists, by Taylor’s formula with Peano’s remainder [1-3],
we have f(xp+X)= z (XO) x* +o(x™)(x — 0). This implies that for each

n=0
€ > 0, there exists 8 > 0 such that

f(xg + X) - Z (XO)X“ <g[x|™ for |x|<3é. (2.7)
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n
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Let x = o . Since n > 6m2 implies n2 < 8. By (2.5) (a), we have

1
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Sm
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Associating this with (2.7), we obtain
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Taking sum from j = ksn +1 to kon, it follows that for all n > ko
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Combining this with (2.6), we conclude that Theorem 3 is true. O

l+o

Proof of Theorem 2. Assume a, =n""°, b, =n° and o > 0. Then both

sequences {a,} and {b,} are strictly increasing and positive. Since lim a, = +ox,

n—oo
. ap—an bon  (kon)® kS
lim —Sn—%n-1 _q %2 :(i) =2 and
n—w 8n-1 ~ an-2 an ntte n
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kG
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Theorem 3, Theorem 2 is true. O

we can see that My, = ky and ¢, = for each k =1, 2, ..., ko. And so, by
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3. Some Applications

(i) For the limits of (1.2), let f(x) = sin(sin x) or tan(arcsin x). Then f(0)=0,

f'(0) = 1, and from Theorem 1, we have

(a) nli’noO jzlsm(sm n—z] ==431 "3 (because k; =0, k, =3and o =1).
2n 4 1+4  q1+4
(b) lim Z tan| arcsin 1= | = Eat S (because k; =1, ko = 2 and
Nsoo | B 1+4 5
j=n+1
c = 4).
i oy v, 1.3 1.5 5 : _
(c) Let g(x)=sinx. Then sin x X+ ;X" =g X +0(x”)(x — 0). Since m =5,
©)

c=6 k =0, ky =7, gs_l(O) = il by Theorem 2, we have

1 1 3

/n 6\5 6\5 6\5 - (5) 6+1 _ 6+1 6
lim ZSinJ—7 — 1—7 +i| J—7 :Sm (0)7 0 27—.
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]:
(i) As an another application of Theorem 3, we present the following example.

Let f(x) be rth differentiable at x5, R(x) = d|xI +--+dg and Py (x) =

emX" +---+ €y be Ith and mth positive coefficient polynomials with | > m > 1. If
a, = B(n) and b, = P,(n), then both {a,} and {b,} (n > 1) are strictly increasing

and positive sequences with lim a, = +o0 and lim @78 g For any
n—o n—w dn_1 — an_2
integer k > 1, we have
0 ifl>m+1
bkn emkm , '
~ - ¢ =3e.km : n — oo).
an —an_1 |d|n|_m_1 X er , dfl=m+1, ( )
|
€k
b ki ek’ dy _
Moreover, since —2% ~ *m2_ (n _, ) ang M2 o , there exists
nodn'm dyn!=m n

bkzn Mk2 .
My, > 0 such that = < forall n >1. And so, by Theorem 3, we obtain
n
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kon L r-1 () 13
, Pn (i)Y f ¥ (x) (Pn(i)r
i > e () | (e
j=kn+1 p=0
0(I >m+1),
=1 1000 em kS - k™Y
mr!ld, (I =m+1).
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