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Abstract

Let { }nn YX ,  describe a HMM with values on a denumerable space,

being { }nY  the observable process. In this note, we present a class of

kernel estimates for the stable distribution of { }.nY  It is shown that the

estimates are strongly consistent with exponential rate of convergence.

Also, we exhibit situations where the stationary distribution of the non-

observable process { }nX  can be determined through the stable

distribution of { }.nY

1. Introduction

Hidden Markov Models (HMM) are based on a non-observable

Markov chain { }nX  which describes the evolution of the state of a system.

Associated with this chain we observe a sequence of conditionally

independent random variables { },nY  with the distribution of each nY

depending on the corresponding state .nX  HMM form a class of stochastic

processes models that play an important role in a wide variety of
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applications (see, for example, Rabiner [5]). A classical example occurs in

signal processing: a sequence of characters { }nX  from a finite alphabet is

transmitted, and a sequence { }nY  of corrupted signal, either by noise or

by transmission distortion, is received.

A central problem in these models is that of finding properties of the

chain { }nX  based on a finite number of observations from the process

{ }.nY  We will be concerned here with the problem of estimating the

stationary distribution of the chain.

Let { } 0≥nnX  be a Markov chain with state space S and transition

matrix P. The observable process { } 0≥nnY  with values on S satisfies

( )nnnnnn iXiXjYjYjYP ====|= −− ...,,,...,, 001100

( )
nn jinnnn QiXjYP ==|== (1)

and

( ) ....,,...,,
000000 nn jijinnnn QQiXiXjYjYP L===|== (2)

Assume that { }nX  is ergodic and that it converges at a geometric

rate, that is, there is a probability π on S and constants 0>γ  and

10 <ρ≤  such that

( ) ., SijP nn
ij ∈∀γρ≤π− (3)

Clearly, the equilibrium distribution π coincides with the unique

stationary distribution of the chain. Also, if S is finite the assumption of

ergodicity suffices to guarantee (3). Now let

( ) ( )∑
∈

π=ν
Si

ijQij . (4)

Then, in some sense, ν represents the distribution of nY  when the process

reaches some “stable” status. Though the knowledge of ( )⋅ν  does not

determine the stationary distribution π, in the Section 3 we exhibit

situations under which this can be accomplished.
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To estimate ν define for ,Si ∈

( ) ( )∑
=

=ν
n

k
kn YihW

n
i

1

,,,1 (5)

where the window 0>= nhh  and the weight kernel functions ( )⋅,, ihW

are suitably chosen. We can interpret (5) as weighted linear combination

of relative frequencies

( ) ( ) { }( )∑ ∑
∈ = 











=ν

Sj

n

k
kjn Y

n
jihWi .11,,

1

Also, as pointed out in Campos and Dorea [1], it can be viewed as a

discrete version of the kernel estimate ( )∑ kYxhW
nh

,,1  used when

( )xν  is a density function. Just regard h as the Lebesgue measure of






 +−

2
,

2
hxhx  and, in the discrete case, use counting measure around

{ }.i  Our main results, Theorem 1 and Corollary 1, provide sufficient

conditions for the strong consistency of ( )⋅νn  as well as its rate of

convergence. These results constitute a discrete version of Theorem 2

from Dorea and Zhao [4].

2. Preliminaries and Statement of the Results

Since ( )⋅νn  estimates a probability, it is natural to require ( )∑
∈

=ν
Si

n i ,1

that is, the kernel 0≥W  satisfies

( )∑
∈

∈∀=
Si

SjjihW ,1,,  and .0>h (6)

Also, Lemma 1 below shows that

( ) ( ) ( ) .0,,lim =ν−ν ∑
∈

∞→
Sj

nn
jihWii (7)

Thus, for asymptotic unbiasedness it is required that ( )⋅,, ihW  is a
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probability on S. For technical reasons, we further require that

00
∞→

→=<
nnhh   and  ( ) { }( ).1,,lim jjihW in

=
∞→

(8)

The simplest example of a kernel W is provided by the relative

frequencies estimate

( ) { }( )∑
=

=ν
n

k
kin Y

n
i

1

0 .11 (9)

Wang and Van Ryzin [7] consider several other kernels to estimate a

discrete distribution on the integers under the independent and

identically distributed setting, e.g., the uniform kernel function

( )







>−
=−

=−
=

,if0
,if1

,...,,1if2
,,

kij

ijh

kijkh

jihW

and the geometric kernel function

( ) ( )




=−
≥−−=

−

.if1
,1if21,,

ijh

ijhhjihW
ij

Lemma 1. For any probability µ on S, we have

( ) ( ) ( )∑ ∑
∈ ∈

∞→
=µ−µ

Si Sj
n

ijjihW ,0,,lim (10)

and ( )⋅νn  is asymptotically unbiased, i.e., ( )( ) ( ).lim iiE nn
ν=ν

∞→

Lemma 2. Let ( )⋅ν0
n  be defined by (9) and assume that, given ,0>ε

there exist constants ( )ε= 11 bb  and ( ) 022 >ε= bb  such that

( ( ) ( ) ) .,2
1

0 SiebiiP nb
n ∈∀≤ε≥ν−ν − (11)

Then, there exist constants ( )ε= 11 cc  and ( ) 022 >ε= cc  such that

( ) ( ) .2
1

nc

Si
n eciiP −

∈

≤









ε≥ν−ν∑ (12)
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Lemma 3 (Devroye [2]). Let nGGG ⊂⊂⊂ L10  be a sequence of

nested σ-algebras. Let U be a nG -measurable and integrable random

variable, and define the Doob martingale ( ).kk UEU G|=  Assume that

there exist 1−kG -measurable random variable kV  and constants ka  such

that .kkkk aVUV +≤≤  Then, given ,0>ε

( ) .2exp4
1

22













ε−≤ε≥− ∑
=

n

k
kaEUUP

Theorem 1. Given 0>ε  there exist constants ( )ε= 11 cc  and =2c

( ) 02 >εc  such that

( ) ( ) .2
1

nc

Si
n eciiP −

∈

≤









ε≥ν−ν∑ (13)

Note that (13) holds regardless of the initial distribution. Hence we

are not assuming here strict stationarity of the chain. Since ∑
≥

−

1
1

2

n

ncec

,∞<  an application of the Borel-Cantelli lemma gives the corollary

below.

Corollary 1. For any initial distribution the estimator ( )⋅νn  is

strongly consistent,

( ( ) ( )) .1lim =ν=ν
∞→

iiP nn

Moreover,

( ) ( ) .10lim =









=ν−ν∑

∈
∞→

Si
nn

iiP (14)

From Doob [3, Chapter 5], for finite S the necessary and sufficient
condition for the ergodicity of the chain, hence for its geometric ergodicity
( ),S  is given by the simple condition: there exist 0,0 >δ∈ Sj  and

10 ≥n  such that

.min 0
0

δ≥
∈

n
ijSi

P (15)
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Corollary 2. Let { }nX  be any Markov chain with finite state space S

that satisfies (15). Then, we have (14).

Corollary 3. Assume that the state space S is finite, the matrix =Q

( )ijQ  is non-singular and the stable distribution π satisfies that ( ) 0>π i

for every .Si ∈  Then

( ( ) ( )) ,1lim =π=π
∞→

iiP nn

where .1−ν=π Qnn

3. Estimation of π

Quite often the main objective in this problem would be to use the

estimate ( )⋅νn  of ( )⋅ν  in order to produce an estimate ( )⋅πn  for ( ).⋅π  In

this section we will discuss some aspects of this problem. Assume for the

rest of the section that { }NS ...,,1,0=  is finite and let Q be the matrix

with entries ( ),iXjYPQ nnij =|==  so that (4) can be written as

,Qπ=ν  where ( ) ( )( )Nνν=ν ...,,1  and similarly for π. Further, we will

assume that all entries in π are strictly positive and of course they must

sum to 1. Since the matrix Q is stochastic ,1






 =∑ j ijQ  it follows from

Qπ=ν  that ( ) ( )∑ ∑ =π=ν
j i

ij 1  and ( ) 0≥ν j  for every j.

Of course, if Qπ=ν  and ( ) ,0det ≠Q  then there is a unique 1−ν=π Q

that satisfies (4). Also in this case, since each column of Q must have at

least one positive entry, strict positivity of π also implies strict positivity

of ν. However, in our problem we want to define ,1−ν=π Qnn  and

although from the argument above it follows that ( ) ( )∑∑ =ν=π
j ni n ji ,1

we have no guarantee that the entries of nπ  would be non-negative. In

short, this problem is caused by the fact that if P  is the set of all

probabilities on S with strictly positive entries, then it is possible that

the set { }PQ ∈ππ=ν= :Q  is a proper subset of ,P  and even when ν

belongs to ,P  it may be that nν  as defined in (5) does not.
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Although the situation described above may happen for finite n,

Corollaries 2 and 3 assure that as ,∞→n  with probability 1 we will have

that 1−ν=π Qnn  will be a probability distribution on S with strictly

positive entries. To see this, observe that the mapping 1−ν=πν Qa  is

continuous, so that if for ν as in (4), we have that 1−ν=π Q  have positive

entries, the same must happen for all ∗ν  in a neighborhood of ν. Hence

Corollary 3 follows now from (14).

Below we discuss a few examples using kernels that concentrate

weight on a neighborhood of the target point i to illustrate these ideas.

Example 1 (Uniform link). Assume that when the signal i is

transmitted it is correctly interpreted with probability ,21>α=iiQ

while it will read as one of the remaining characters with equal

probability ,
1

1
−
α−=β=

N
Qij  .ij ≠  Hence ( ) ( ) ( ) ( )ijii

ij
απ=πβ+απ=ν ∑

≠

( )( ).1 iπ−β+  Hence ( ) ( ) ( ) ( )
( ) ( ) .

11
11

α−−α−
α−−ν−

=π
N

iN
i  Note that for π to have

positive entries we must have that ( ) ( ) ( ).11 −α−>ν Ni

Example 2. Let 
2
1>α=iiQ  and 

2
1 α−=β=ijQ  for 1−= ij  or

( ).mod1 Ni +  Here we have ( ) ( ) ( ) ( )[ ].11 +π+−πβ+απ=ν iiii  Since Q is

non-singular we have the solution .1ν=π −Q  For instance, for ,4=N

( ) ( )31 π=π

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )









ν−α+ν

α
−α+ν−α+ν

α
−α+α

−α
= 312

1
110

12
122

1 22

and

( ) ( ) ( ) (( ) ( ) ( )( ) ( ) ( ) ( ) ( )).32111301
122

142 22 να+−α+ν−α+ν+ν−α
−α

=π=π

Example 3. Let 21=iiQ  and 41=ijQ  for 1−= ij  or ( ).mod1 Ni +

Then we have ( ) ( ) ( ) ( )[ ].11
4
1

2
1 +π+−π+π=ν iiii  If 4≥N  is even, then
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( ) 0det =Q  and we can usually find many solutions. For instance, for

4=N  the system will have a solution only when ( ) ( ) ( ) −ν+ν−ν 321

( ) ,04 =ν  when we obtain for a given ( )4π  that ( ) ( ) ( ) ( )433221 ν+ν−ν=π

( ),4π−  ( ) ( ) ( ) ( )442222 π+ν−ν=π  and ( ) ( ) ( ) ( ) ( ).443223 π−ν+ν+ν−=π

Observe here that the condition ( ) 0det ≠Q  is not necessary in order to

have uniqueness of π for a given ν. Indeed, when 4=N  and for ( ) =ν 1

( )
8
32 =ν  and ( ) ( ) ,

8
143 =ν=ν  we have the unique solution ( ) ( )21 π=π

2
1=  and ( ) ( ) 043 =π=π  for π.

4. Proof of the Results

Proof of Lemma 1. (i) Since ( ) ,1,, ≤⋅ihW  we have by (8) and using

dominated convergence that

( ) ( ) ( )∑ ∈∞→
µ=µ

Sjn
ijjihW .,,lim

Given 0>ε  let εS  be a finite subset of S such that ( )∑
ε∈

ε−≥µ
Si

i .41  Let

εN  be such that for ,ε≥ Nn

( ) ( ) ( )∑ ∑
ε∈ ∈

ε≤µ−µ=
Si Sj

ijjihWA .4,,

Then,

( ) ( ) ( )∑ ∑ ∑
ε ε∈ ∈ ∈

ε−≥ε−µ≥µ=
Si Sj Si

ijjihWB 214,,

and

( ) ( ) ( ) ( )∑ ∑∑
∈ ∈∈ ε

ε≤µ++≤µ−µ
Si SiSj

iBAijjihW .,,

(ii) Assume that the chain is strictly stationary, that is, the initial

distribution is π. Then kX  has distribution π and by (1) and (4),
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( ) ( ) ( ) ( )∑ ∑ ν=π====
r r

rjrjkk jQrQrXPjYP .

From (5) we have

( )( ) ( )( ) ( ) ( )∑ ν==ν
j

kn jjihWYihWEiE .,,,,

And from (10) we have the asymptotic unbiasedness.

Now, assume that the initial distribution is .0π  Since (3) holds, it

follows from Roussas and Ioannides [6, Proposition 3.1] that there exists

a constant 0>γ′  such that

( )∑
∈

ργ′≤π−
Sj

kk
ij jP . (16)

It follows that

( )( ) ( ) ( ) ( ) ( ) ( )∑ ∑ ∑∑ π−π≤ν−
j r s

sj
k
rs

j
k QsPrjihWjjihWYihWE 0,,,,,,

( )∑ ργ′≤ργ′≤
j

kk
sjQjihW .,,

Then

( )( ) ( ) ( ) ∑∑
=

∞→
→ργ′≤ν−ν

n

k
n

k

j
n n

jjihWiE
1

01,,

and the desired result follows from (10).

Proof of Lemma 2. (i) Given 0>ε  let εS  be finite and such that

( )∑
ε∈

ε−≥ν
Si

i .81 (17)

From (10) there exists εN  satisfying for ,ε≥ Nn

( ) ( )∑
∈

ε≤ν−λ
Si

n ii ,
8

(18)
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where ( ) ( ) ( )∑
∈

ν=λ
Sj

n jjihWi .,,  From (11) there exist 1b′  and 02 >′b  such

that

( ) ( ) .
8

2
1

0 nb

Si
n ebiiP ′−

∈

′≤











 ε≥ν−ν∑
ε

(19)

(ii) We can write

( ) ( ) { }( ) ( ) ( )∑ ∑ ∑
∈ = ∈

ν==ν
Sj

n

k Sj
nkjn jjihWYjihW

n
i

1

0 .,,1,,1

Define ( ) ( ) ( )∑
ε∈

∗ ν=ν
Sj

nn jjihWi .,, 0  By (6), we have

( ) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

∗

ε ε

ν=ν=ν−ν
Si Si Sj Sj

nnnn
c c

jjjihWii .,, 00

From (19), we have

( ) ( ) nb

Si Si
n ebiiP 2

1
0 8 ′−

∈ ∈

′≤












ε−ν≤ν∑ ∑

ε ε

and from (17),

( ) .41 2
1

0 nb

Si
n ebiP ′−

∈

′≤












ε−≤ν∑

ε

Hence,

( ) ( ) ( ) .
43

2
1

0 nb

Si

n
Si

nn ebiPiiP
c

′−

∈∈

∗ ′≤















ε≥ν≤









 ε≥ν−ν ∑∑
ε

(20)

(iii) From (18), we have

( ) ( ) ( ) [ ( ) ( )] ( ) ( )∑ ∑ ∑ ∑∑
∈ ∈ ∈ ∈∈

∗

εε

ν+ν−ν≤λ−ν
Si Si Si SjSj

nnn
c

jjihWjjjihWii ,,,, 0

 ( ) ( ) ( )∑ ∑
ε ε

∈ ∈

ν+ν−ν≤
Sj Sj

n
c

jjj .0
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Then by (17) and (19),

( ) ( ) ( ) ( ) ( )















ε≥ν+












 ε≥ν−ν≤








 ε≥λ−ν ∑∑∑
εε ∈∈∈

∗

cSjSj
n

Si
nn jPjjPiiP

663
0

 .2
1

nbeb ′−′≤ (21)

By (18) we have for ,ε≥ Nn

( ) ( ) .0
3

=








 ε≥ν−λ∑
∈Si

n iiP (22)

Finally, from (20), (21) and (22) we have (12) with 11 2bc ′=  and .22 bc ′=

Proof of Theorem 1. (i) By Lemma 2 it is enough to show that (11)

holds. Hence, we must prove that given 0>ε  there exist ( )ε= 11 bb  and

( ) 022 >ε= bb  such that

( ) nb
n

j
iXn ebQ

n
iP

j
2

1
1

0 1 −

=

≤












ε≥−ν ∑ (23)

and

( ) .1 2
1

1

nb
n

j
iX ebQ

n
iP

j
−

=

≤












ε≥−ν ∑ (24)

Proceeding as in the proof of Lemma 1 it suffices to show (23) and

(24) when the initial distribution is the stationary distribution π. It will

be carried out using Lemma 3. Define ( )....,,, 10 nn XXXσ=F

(ii) Let [ ( ) ]∑
=

−=
=

n

j
iXY jij

QU
1

.1  Then

[ ( ) ( ( ) )]∑
=

|−=
==

n

j
jYY ijij

EU
1

.11 F (25)

Clearly, U is nF -measurable and .0=EU  Note that for kj ≤  we have

( ( ) ) ( )ijij YkYE
==

=| 11 F  and ( ) ,iXkiX jj
QQE =|F  while for ,kj >
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( ( ) ) ∑ ∑ =−=|− −−
=

l l

llll
.01 i

jk
Xi

jk
XkiXY QPQPQE

kkjij
F (26)

It follows that

( ) [ ( ) ]∑
=

−=|=
=

k

ij
iXYkk jij

QUEU .1F

Hence for 11 −= −kk UV  and 2=ka  we have the hypotheses of Lemma

3 satisfied. Using (25) we have (23) with 41 =b  and .22
2 ε=b

(iii) A key point in the proof of (23) is the identity (26). But for (24) we

cannot guarantee {( ( )) } 0=|ν− kiX iQE
j

F  for .kj >  This difficulty can

be handled by defining

( ) ( ) ( ) ( ) [ ( ) ( )]∑
≥

ν−|=ϕϕ+ν−=ϕ
+

1

.ˆ,ˆ
r

jiXjjiXj iQEXXiQX
rjj
F (27)

We have ϕ well-defined since by (4) and (16) we have

( ) ( ( )) ∑∑∑
≥≥

∞<ργ′≤π−=ϕ
11

.ˆ
r

r

r
i

r
Xj QPX

j
l

ll
l (28)

From (27) we can write

[ ( )] ( ) ( ) [ ( ) ( )]∑ ∑
= =

−ϕ−ϕ+ϕ−ϕ=ν−
n

j

n

j
jjniX XXXXiQ

j
1 2

11 .ˆˆ

By (28) we have ( ) ( )nXX ϕ−ϕ ˆ1  bounded and for n large

( ) ( )( ) .0ˆ1 =ε≥ϕ−ϕ nXXP n (29)

Now define [ ( ) ( )]∑
=

−ϕ−ϕ=
n

j
jj XXU

2
1ˆ  so that we will have (24) if

.
2

2
1

nbebnUP −≤




 ε≥ (30)

This would follow if the hypotheses of Lemma 3 are satisfied. First, note
that
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( ( ) ) ( ( ) ) [ ( ) ( )]∑
≥

−−− ν−|+|ν−=|ϕ
+

1
111

r
jiXjiXjj iQEiQEXE

rjj
FFF

[ ( ) ( )] ( ).ˆ
1

111∑
≥

−− ϕ=ν−|=
+−

s
jjiX XiQE

sj
F

Hence .0=EU  Also, for ,kj >

{( ( ) ( )) } { ( ( ) ( ) } .0ˆˆ 111 =|ϕ−ϕ=|ϕ−ϕ −−− jjjkjj XXEEXXE FF

Then ( ) [ ( ) ( )]∑
=

−ϕ−ϕ=|=
k

j
jjkk XXUEU

2
1 .ˆE  Just take MUV kk −= −1

and Mak 2=  with M satisfying ( ) ( ) .ˆ M≤⋅ϕ−⋅ϕ  And we have (29) with

41 =b  and .8 22
2 Mb ε=
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