STATIONARY DISTRIBUTION ESTIMATION IN HIDDEN MARKOV MODELS

C. C. Y. DOREA, G. L. GILARDONI and C. R. GONÇALVES
Instituto de Ciências Exatas
Universidade de Brasília
70910-900 Brasília - DF, Brazil

Abstract

Let $\left\{X_{n}, Y_{n}\right\}$ describe a HMM with values on a denumerable space, being $\left\{Y_{n}\right\}$ the observable process. In this note, we present a class of kernel estimates for the stable distribution of $\left\{Y_{n}\right\}$. It is shown that the estimates are strongly consistent with exponential rate of convergence. Also, we exhibit situations where the stationary distribution of the nonobservable process $\left\{X_{n}\right\}$ can be determined through the stable distribution of $\left\{Y_{n}\right\}$.

1. Introduction

Hidden Markov Models (HMM) are based on a non-observable Markov chain $\left\{X_{n}\right\}$ which describes the evolution of the state of a system. Associated with this chain we observe a sequence of conditionally independent random variables $\left\{Y_{n}\right\}$, with the distribution of each Y_{n} depending on the corresponding state X_{n}. HMM form a class of stochastic processes models that play an important role in a wide variety of 2000 Mathematics Subject Classification: Primary 62M09, 62 G 07.

Key words and phrases: hidden Markov model, kernel estimate, stationary distribution.
Partially supported by CAPES/PROCAD-Brazil.
Partially supported by CNPq, FINEP/PRONEX-Brazil.
Received August 11, 2003
applications (see, for example, Rabiner [5]). A classical example occurs in signal processing: a sequence of characters $\left\{X_{n}\right\}$ from a finite alphabet is transmitted, and a sequence $\left\{Y_{n}\right\}$ of corrupted signal, either by noise or by transmission distortion, is received.

A central problem in these models is that of finding properties of the chain $\left\{X_{n}\right\}$ based on a finite number of observations from the process $\left\{Y_{n}\right\}$. We will be concerned here with the problem of estimating the stationary distribution of the chain.

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state space S and transition matrix P. The observable process $\left\{Y_{n}\right\}_{n \geq 0}$ with values on S satisfies

$$
\begin{align*}
& P\left(Y_{n}=j_{n} \mid Y_{0}=j_{0}, \ldots, Y_{n-1}=j_{n-1}, X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
= & P\left(Y_{n}=j_{n} \mid X_{n}=i_{n}\right)=Q_{i_{n} j_{n}} \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
P\left(Y_{0}=j_{0}, \ldots, Y_{n}=j_{n} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=Q_{i_{0} j_{0}} \cdots Q_{i_{n} j_{n}} \tag{2}
\end{equation*}
$$

Assume that $\left\{X_{n}\right\}$ is ergodic and that it converges at a geometric rate, that is, there is a probability π on S and constants $\gamma>0$ and $0 \leq \rho<1$ such that

$$
\begin{equation*}
\left|P_{i j}^{n}-\pi(j)\right| \leq \gamma \rho^{n}, \quad \forall i \in S \tag{3}
\end{equation*}
$$

Clearly, the equilibrium distribution π coincides with the unique stationary distribution of the chain. Also, if S is finite the assumption of ergodicity suffices to guarantee (3). Now let

$$
\begin{equation*}
v(j)=\sum_{i \in S} \pi(i) Q_{i j} . \tag{4}
\end{equation*}
$$

Then, in some sense, v represents the distribution of Y_{n} when the process reaches some "stable" status. Though the knowledge of $v(\cdot)$ does not determine the stationary distribution π, in the Section 3 we exhibit situations under which this can be accomplished.

To estimate v define for $i \in S$,

$$
\begin{equation*}
v_{n}(i)=\frac{1}{n} \sum_{k=1}^{n} W\left(h, i, Y_{k}\right) \tag{5}
\end{equation*}
$$

where the window $h=h_{n}>0$ and the weight kernel functions $W(h, i, \cdot)$ are suitably chosen. We can interpret (5) as weighted linear combination of relative frequencies

$$
v_{n}(i)=\sum_{j \in S} W(h, i, j)\left[\frac{1}{n} \sum_{k=1}^{n} 1_{\{j\}}\left(Y_{k}\right)\right]
$$

Also, as pointed out in Campos and Dorea [1], it can be viewed as a discrete version of the kernel estimate $\frac{1}{n h} \sum W\left(h, x, Y_{k}\right)$ used when $v(x)$ is a density function. Just regard h as the Lebesgue measure of $\left(x-\frac{h}{2}, x+\frac{h}{2}\right)$ and, in the discrete case, use counting measure around $\{i\}$. Our main results, Theorem 1 and Corollary 1, provide sufficient conditions for the strong consistency of $v_{n}(\cdot)$ as well as its rate of convergence. These results constitute a discrete version of Theorem 2 from Dorea and Zhao [4].

2. Preliminaries and Statement of the Results

Since $v_{n}(\cdot)$ estimates a probability, it is natural to require $\sum_{i \in S} v_{n}(i)=1$, that is, the kernel $W \geq 0$ satisfies

$$
\begin{equation*}
\sum_{i \in S} W(h, i, j)=1, \quad \forall j \in S \text { and } h>0 \tag{6}
\end{equation*}
$$

Also, Lemma 1 below shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|v_{n}(i)-v(i) \sum_{j \in S} W(h, i, j)\right|=0 \tag{7}
\end{equation*}
$$

Thus, for asymptotic unbiasedness it is required that $W(h, i, \cdot)$ is a
probability on S. For technical reasons, we further require that

$$
\begin{equation*}
0<h=h_{n} \underset{n \rightarrow \infty}{\rightarrow} 0 \text { and } \lim _{n \rightarrow \infty} W(h, i, j)=1_{\{i\}}(j) \tag{8}
\end{equation*}
$$

The simplest example of a kernel W is provided by the relative frequencies estimate

$$
\begin{equation*}
v_{n}^{0}(i)=\frac{1}{n} \sum_{k=1}^{n} 1_{\{i\}}\left(Y_{k}\right) \tag{9}
\end{equation*}
$$

Wang and Van Ryzin [7] consider several other kernels to estimate a discrete distribution on the integers under the independent and identically distributed setting, e.g., the uniform kernel function

$$
W(h, i, j)= \begin{cases}h / 2 k & \text { if }|j-i|=1, \ldots, k \\ 1-h & \text { if } j=i \\ 0 & \text { if }|j-i|>k\end{cases}
$$

and the geometric kernel function

$$
W(h, i, j)= \begin{cases}(1-h) h^{|j-i|} / 2 & \text { if }|j-i| \geq 1 \\ 1-h & \text { if } j=i\end{cases}
$$

Lemma 1. For any probability μ on S, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i \in S}\left|\sum_{j \in S} W(h, i, j) \mu(j)-\mu(i)\right|=0 \tag{10}
\end{equation*}
$$

and $v_{n}(\cdot)$ is asymptotically unbiased, i.e., $\lim _{n \rightarrow \infty} E\left(v_{n}(i)\right)=v(i)$.
Lemma 2. Let $v_{n}^{0}(\cdot)$ be defined by (9) and assume that, given $\varepsilon>0$, there exist constants $b_{1}=b_{1}(\varepsilon)$ and $b_{2}=b_{2}(\varepsilon)>0$ such that

$$
\begin{equation*}
P\left(\left|v_{n}^{0}(i)-v(i)\right| \geq \varepsilon\right) \leq b_{1} e^{-b_{2} n}, \quad \forall i \in S \tag{11}
\end{equation*}
$$

Then, there exist constants $c_{1}=c_{1}(\varepsilon)$ and $c_{2}=c_{2}(\varepsilon)>0$ such that

$$
\begin{equation*}
P\left(\sum_{i \in S}\left|v_{n}(i)-v(i)\right| \geq \varepsilon\right) \leq c_{1} e^{-c_{2} n} \tag{12}
\end{equation*}
$$

Lemma 3 (Devroye [2]). Let $\mathcal{G}_{0} \subset \mathcal{G}_{1} \subset \cdots \subset \mathcal{G}_{n}$ be a sequence of nested σ-algebras. Let U be a \mathcal{G}_{n}-measurable and integrable random variable, and define the Doob martingale $U_{k}=E\left(U \mid \mathcal{G}_{k}\right)$. Assume that there exist \mathcal{G}_{k-1}-measurable random variable V_{k} and constants a_{k} such that $V_{k} \leq U_{k} \leq V_{k}+a_{k}$. Then, given $\varepsilon>0$,

$$
P(|U-E U| \geq \varepsilon) \leq 4 \exp \left\{-2 \varepsilon^{2} / \sum_{k=1}^{n} a_{k}^{2}\right\}
$$

Theorem 1. Given $\varepsilon>0$ there exist constants $c_{1}=c_{1}(\varepsilon)$ and $c_{2}=$ $c_{2}(\varepsilon)>0$ such that

$$
\begin{equation*}
P\left(\sum_{i \in S}\left|v_{n}(i)-v(i)\right| \geq \varepsilon\right) \leq c_{1} e^{-c_{2} n} \tag{13}
\end{equation*}
$$

Note that (13) holds regardless of the initial distribution. Hence we are not assuming here strict stationarity of the chain. Since $\sum_{n \geq 1} c_{1} e^{-c_{2} n}$ $<\infty$, an application of the Borel-Cantelli lemma gives the corollary below.

Corollary 1. For any initial distribution the estimator $v_{n}(\cdot)$ is strongly consistent,

$$
P\left(\lim _{n \rightarrow \infty} v_{n}(i)=v(i)\right)=1
$$

Moreover,

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} \sum_{i \in S}\left|v_{n}(i)-v(i)\right|=0\right)=1 \tag{14}
\end{equation*}
$$

From Doob [3, Chapter 5], for finite S the necessary and sufficient condition for the ergodicity of the chain, hence for its geometric ergodicity (S), is given by the simple condition: there exist $j_{0} \in S, \delta>0$ and $n_{0} \geq 1$ such that

$$
\begin{equation*}
\min _{i \in S} P_{i j_{0}}^{n_{0}} \geq \delta \tag{15}
\end{equation*}
$$

Corollary 2. Let $\left\{X_{n}\right\}$ be any Markov chain with finite state space S that satisfies (15). Then, we have (14).

Corollary 3. Assume that the state space S is finite, the matrix $Q=$ $\left(Q_{i j}\right)$ is non-singular and the stable distribution π satisfies that $\pi(i)>0$ for every $i \in S$. Then

$$
P\left(\lim _{n \rightarrow \infty} \pi_{n}(i)=\pi(i)\right)=1
$$

where $\pi_{n}=v_{n} Q^{-1}$.

3. Estimation of π

Quite often the main objective in this problem would be to use the estimate $v_{n}(\cdot)$ of $v(\cdot)$ in order to produce an estimate $\pi_{n}(\cdot)$ for $\pi(\cdot)$. In this section we will discuss some aspects of this problem. Assume for the rest of the section that $S=\{0,1, \ldots, N\}$ is finite and let Q be the matrix with entries $Q_{i j}=P\left(Y_{n}=j \mid X_{n}=i\right)$, so that (4) can be written as $v=\pi Q$, where $v=(v(1), \ldots, v(N))$ and similarly for π. Further, we will assume that all entries in π are strictly positive and of course they must sum to 1 . Since the matrix Q is stochastic $\left(\sum_{j} Q_{i j}=1\right)$, it follows from $v=\pi Q$ that $\sum_{j} v(j)=\sum_{i} \pi(i)=1$ and $v(j) \geq 0$ for every j.

Of course, if $v=\pi Q$ and $\operatorname{det}(Q) \neq 0$, then there is a unique $\pi=v Q^{-1}$ that satisfies (4). Also in this case, since each column of Q must have at least one positive entry, strict positivity of π also implies strict positivity of v. However, in our problem we want to define $\pi_{n}=v_{n} Q^{-1}$, and although from the argument above it follows that $\sum_{i} \pi_{n}(i)=\sum_{j} v_{n}(j)=1$, we have no guarantee that the entries of π_{n} would be non-negative. In short, this problem is caused by the fact that if \mathcal{P} is the set of all probabilities on S with strictly positive entries, then it is possible that the set $\mathcal{Q}=\{v=\pi Q: \pi \in \mathcal{P}\}$ is a proper subset of \mathcal{P}, and even when v belongs to \mathcal{P}, it may be that v_{n} as defined in (5) does not.

Although the situation described above may happen for finite n, Corollaries 2 and 3 assure that as $n \rightarrow \infty$, with probability 1 we will have that $\pi_{n}=v_{n} Q^{-1}$ will be a probability distribution on S with strictly positive entries. To see this, observe that the mapping $v \mapsto \pi=v Q^{-1}$ is continuous, so that if for v as in (4), we have that $\pi=v Q^{-1}$ have positive entries, the same must happen for all v^{*} in a neighborhood of v. Hence Corollary 3 follows now from (14).

Below we discuss a few examples using kernels that concentrate weight on a neighborhood of the target point i to illustrate these ideas.

Example 1 (Uniform link). Assume that when the signal i is transmitted it is correctly interpreted with probability $Q_{i i}=\alpha>1 / 2$, while it will read as one of the remaining characters with equal probability $Q_{i j}=\beta=\frac{1-\alpha}{N-1}, j \neq i$. Hence $v(i)=\alpha \pi(i)+\beta \sum_{j \neq i} \pi(j)=\alpha \pi(i)$ $+\beta(1-\pi(i))$. Hence $\pi(i)=\frac{(N-1) v(i)-(1-\alpha)}{(N-1) \alpha-(1-\alpha)}$. Note that for π to have positive entries we must have that $v(i)>(1-\alpha) /(N-1)$.

Example 2. Let $Q_{i i}=\alpha>\frac{1}{2}$ and $Q_{i j}=\beta=\frac{1-\alpha}{2}$ for $j=i-1$ or $i+1(\bmod N)$. Here we have $v(i)=\alpha \pi(i)+\beta[\pi(i-1)+\pi(i+1)]$. Since Q is non-singular we have the solution $\pi=Q^{-1} v$. For instance, for $N=4$,

$$
\begin{aligned}
& \pi(1)=\pi(3) \\
= & \frac{1}{2(2 \alpha-1)}\left(\frac{\left(\alpha^{2}+2 \alpha-1\right)}{\alpha} v(0)+(\alpha-1) v(1)+\frac{(\alpha-1)^{2}}{\alpha} v(2)+(\alpha-1) v(3)\right)
\end{aligned}
$$

and
$\pi(2)=\pi(4)=\frac{1}{2(2 \alpha-1)}\left((\alpha-1)(v(0)+v(3))+(\alpha-1)^{2} v(1)+\left(\alpha^{2}-1+2 \alpha\right) v(3)\right)$.
Example 3. Let $Q_{i i}=1 / 2$ and $Q_{i j}=1 / 4$ for $j=i-1$ or $i+1(\bmod N)$. Then we have $v(i)=\frac{1}{2} \pi(i)+\frac{1}{4}[\pi(i-1)+\pi(i+1)]$. If $N \geq 4$ is even, then
$\operatorname{det}(Q)=0$ and we can usually find many solutions. For instance, for $N=4$ the system will have a solution only when $v(1)-v(2)+v(3)-$ $v(4)=0$, when we obtain for a given $\pi(4)$ that $\pi(1)=v(2)-2 v(3)+3 v(4)$ $-\pi(4), \quad \pi(2)=2 v(2)-2 v(4)+\pi(4)$ and $\pi(3)=-v(2)+2 v(3)+v(4)-\pi(4)$. Observe here that the condition $\operatorname{det}(Q) \neq 0$ is not necessary in order to have uniqueness of π for a given v. Indeed, when $N=4$ and for $v(1)=$ $v(2)=\frac{3}{8}$ and $v(3)=v(4)=\frac{1}{8}$, we have the unique solution $\pi(1)=\pi(2)$ $=\frac{1}{2}$ and $\pi(3)=\pi(4)=0$ for π.

4. Proof of the Results

Proof of Lemma 1. (i) Since $W(h, i, \cdot) \leq 1$, we have by (8) and using dominated convergence that

$$
\lim _{n \rightarrow \infty} \sum_{j \in S} W(h, i, j) \mu(j)=\mu(i)
$$

Given $\varepsilon>0$ let S_{ε} be a finite subset of S such that $\sum_{i \in S_{\varepsilon}} \mu(i) \geq 1-\varepsilon / 4$. Let N_{ε} be such that for $n \geq N_{\varepsilon}$,

$$
A=\sum_{i \in S_{\varepsilon}}\left|\sum_{j \in S} W(h, i, j) \mu(j)-\mu(i)\right| \leq \varepsilon / 4
$$

Then,

$$
B=\sum_{i \in S_{\varepsilon}} \sum_{j \in S} W(h, i, j) \mu(j) \geq \sum_{i \in S_{\varepsilon}} \mu(i)-\varepsilon / 4 \geq 1-\varepsilon / 2
$$

and

$$
\sum_{i \in S}\left|\sum_{j \in S} W(h, i, j) \mu(j)-\mu(i)\right| \leq A+B+\sum_{i \in S_{\varepsilon}} \mu(i) \leq \varepsilon .
$$

(ii) Assume that the chain is strictly stationary, that is, the initial distribution is π. Then X_{k} has distribution π and by (1) and (4),

$$
P\left(Y_{k}=j\right)=\sum_{r} P\left(X_{k}=r\right) Q_{r j}=\sum_{r} \pi(r) Q_{r j}=v(j)
$$

From (5) we have

$$
E\left(v_{n}(i)\right)=E\left(W\left(h, i, Y_{k}\right)\right)=\sum_{j} W(h, i, j) v(j) .
$$

And from (10) we have the asymptotic unbiasedness.
Now, assume that the initial distribution is π_{0}. Since (3) holds, it follows from Roussas and Ioannides [6, Proposition 3.1] that there exists a constant $\gamma^{\prime}>0$ such that

$$
\begin{equation*}
\sum_{j \in S}\left|P_{i j}^{k}-\pi(j)\right| \leq \gamma^{\prime} \rho^{k} \tag{16}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left|E\left(W\left(h, i, Y_{k}\right)\right)-\sum_{j} W(h, i, j) v(j)\right| & \leq \sum_{j} W(h, i, j) \sum_{r} \pi_{0}(r) \sum_{s}\left|P_{r s}^{k}-\pi(s)\right| Q_{s j} \\
& \leq \sum_{j} W(h, i, j) Q_{s j} \gamma^{\prime} \rho^{k} \leq \gamma^{\prime} \rho^{k} .
\end{aligned}
$$

Then

$$
\left|E\left(v_{n}(i)\right)-\sum_{j} W(h, i, j) v(j)\right| \leq \frac{1}{n} \sum_{k=1}^{n} \gamma^{\prime} \rho^{k} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

and the desired result follows from (10).
Proof of Lemma 2. (i) Given $\varepsilon>0$ let S_{ε} be finite and such that

$$
\begin{equation*}
\sum_{i \in S_{\varepsilon}} v(i) \geq 1-\varepsilon / 8 \tag{17}
\end{equation*}
$$

From (10) there exists N_{ε} satisfying for $n \geq N_{\varepsilon}$,

$$
\begin{equation*}
\sum_{i \in S}\left|\lambda_{n}(i)-v(i)\right| \leq \frac{\varepsilon}{8} \tag{18}
\end{equation*}
$$

where $\lambda_{n}(i)=\sum_{j \in S} W(h, i, j) v(j)$. From (11) there exist b_{1}^{\prime} and $b_{2}^{\prime}>0$ such that

$$
\begin{equation*}
P\left(\sum_{i \in S_{\varepsilon}}\left|v_{n}^{0}(i)-v(i)\right| \geq \frac{\varepsilon}{8}\right) \leq b_{1}^{\prime} e^{-b_{2}^{\prime} n} \tag{19}
\end{equation*}
$$

(ii) We can write

$$
v_{n}(i)=\frac{1}{n} \sum_{j \in S} W(h, i, j) \sum_{k=1}^{n} 1_{\{j\}}\left(Y_{k}\right)=\sum_{j \in S} W(h, i, j) v_{n}^{0}(j)
$$

Define $v_{n}^{*}(i)=\sum_{j \in S_{\varepsilon}} W(h, i, j) v_{n}^{0}(j)$. By (6), we have

$$
\sum_{i \in S}\left|v_{n}(i)-v_{n}^{*}(i)\right|=\sum_{i \in S} \sum_{j \in S_{\varepsilon}^{c}} W(h, i, j) v_{n}^{0}(j)=\sum_{j \in S_{\varepsilon}^{c}} v_{n}^{0}(j)
$$

From (19), we have

$$
P\left(\sum_{i \in S_{\varepsilon}} v_{n}^{0}(i) \leq \sum_{i \in S_{\varepsilon}} v(i)-\varepsilon / 8\right) \leq b_{1}^{\prime} e^{-b_{2}^{\prime} n}
$$

and from (17),

$$
P\left(\sum_{i \in S_{\varepsilon}} v_{n}^{0}(i) \leq 1-\varepsilon / 4\right) \leq b_{1}^{\prime} e^{-b_{2}^{\prime} n}
$$

Hence,

$$
\begin{equation*}
P\left(\sum_{i \in S}\left|v_{n}(i)-v_{n}^{*}(i)\right| \geq \frac{\varepsilon}{3}\right) \leq P\left(\sum_{i \in S_{\varepsilon}^{c}} v_{n}^{0}(i) \geq \frac{\varepsilon}{4}\right) \leq b_{1}^{\prime} e^{-b_{2}^{\prime} n} \tag{20}
\end{equation*}
$$

(iii) From (18), we have

$$
\begin{aligned}
\sum_{i \in S}\left|v_{n}^{*}(i)-\lambda_{n}(i)\right| & \leq \sum_{i \in S}\left|\sum_{j \in S_{\varepsilon}} W(h, i, j)\left[v_{n}^{0}(j)-v(j)\right]\right|+\sum_{i \in S} \sum_{j \in S_{\varepsilon}^{c}} W(h, i, j) v(j) \\
& \leq \sum_{j \in S_{\varepsilon}}\left|v_{n}^{0}(j)-v(j)\right|+\sum_{j \in S_{\varepsilon}^{c}} v(j)
\end{aligned}
$$

Then by (17) and (19),

$$
\begin{align*}
P\left(\sum_{i \in S}\left|v_{n}^{*}(i)-\lambda_{n}(i)\right| \geq \frac{\varepsilon}{3}\right) & \leq P\left(\sum_{j \in S_{\varepsilon}}\left|v_{n}^{0}(j)-v(j)\right| \geq \frac{\varepsilon}{6}\right)+P\left(\sum_{j \in S_{\varepsilon}^{c}} v(j) \geq \frac{\varepsilon}{6}\right) \\
& \leq b_{1}^{\prime} e^{-b_{2}^{\prime} n} \tag{21}
\end{align*}
$$

By (18) we have for $n \geq N_{\varepsilon}$,

$$
\begin{equation*}
P\left(\sum_{i \in S}\left|\lambda_{n}(i)-v(i)\right| \geq \frac{\varepsilon}{3}\right)=0 \tag{22}
\end{equation*}
$$

Finally, from (20), (21) and (22) we have (12) with $c_{1}=2 b_{1}^{\prime}$ and $c_{2}=b_{2}^{\prime}$.
Proof of Theorem 1. (i) By Lemma 2 it is enough to show that (11) holds. Hence, we must prove that given $\varepsilon>0$ there exist $b_{1}=b_{1}(\varepsilon)$ and $b_{2}=b_{2}(\varepsilon)>0$ such that

$$
\begin{equation*}
P\left(\left|v_{n}^{0}(i)-\frac{1}{n} \sum_{j=1}^{n} Q_{X_{j} i}\right| \geq \varepsilon\right) \leq b_{1} e^{-b_{2} n} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left|v(i)-\frac{1}{n} \sum_{j=1}^{n} Q_{X_{j i} i}\right| \geq \varepsilon\right) \leq b_{1} e^{-b_{2} n} . \tag{24}
\end{equation*}
$$

Proceeding as in the proof of Lemma 1 it suffices to show (23) and (24) when the initial distribution is the stationary distribution π. It will be carried out using Lemma 3. Define $\mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)$.
(ii) Let $U=\sum_{j=1}^{n}\left[1_{\left(Y_{j=i}\right)}-Q_{X_{j} i}\right]$. Then

$$
\begin{equation*}
U=\sum_{j=1}^{n}\left[1_{\left(Y_{j=i}\right)}-E\left(1_{\left(Y_{j=i}\right)} \mid \mathcal{F}_{j}\right)\right] \tag{25}
\end{equation*}
$$

Clearly, U is \mathcal{F}_{n}-measurable and $E U=0$. Note that for $j \leq k$ we have $E\left(1_{\left(Y_{j=i}\right)} \mid \mathcal{F}_{k}\right)=1_{\left(Y_{j=i}\right)}$ and $E\left(Q_{X_{j} i} \mid \mathcal{F}_{k}\right)=Q_{X_{j} i}$, while for $j>k$,

$$
\begin{equation*}
E\left(1_{\left(Y_{j=i}\right)}-Q_{X_{j} i} \mid \mathcal{F}_{k}\right)=\sum_{\ell} P_{X_{k} \ell}^{k-j} Q_{\ell i}-\sum_{\ell} P_{X_{k} \ell}^{k-j} Q_{\ell i}=0 \tag{26}
\end{equation*}
$$

It follows that

$$
U_{k}=E\left(U \mid \mathcal{F}_{k}\right)=\sum_{j=i}^{k}\left[1_{\left(Y_{j=i}\right)}-Q_{X_{j i}}\right]
$$

Hence for $V_{k}=U_{k-1}-1$ and $a_{k}=2$ we have the hypotheses of Lemma 3 satisfied. Using (25) we have (23) with $b_{1}=4$ and $b_{2}=\varepsilon^{2} / 2$.
(iii) A key point in the proof of (23) is the identity (26). But for (24) we cannot guarantee $E\left\{\left(Q_{X_{j} i}-v(i)\right) \mid \mathcal{F}_{k}\right\}=0$ for $j>k$. This difficulty can be handled by defining

$$
\begin{equation*}
\varphi\left(X_{j}\right)=Q_{X_{j} i}-v(i)+\hat{\varphi}\left(X_{j}\right), \quad \hat{\varphi}\left(X_{j}\right)=\sum_{r \geq 1}\left[E\left(Q_{X_{j+r} i} \mid \mathcal{F}_{j}\right)-v(i)\right] . \tag{27}
\end{equation*}
$$

We have φ well-defined since by (4) and (16) we have

$$
\begin{equation*}
\left|\hat{\varphi}\left(X_{j}\right)\right|=\left|\sum_{r \geq 1} \sum_{\ell}\left(P_{X_{j} \ell}^{r}-\pi(\ell)\right) Q_{\ell i}\right| \leq \sum_{r \geq 1} \gamma^{\prime} \rho^{r}<\infty . \tag{28}
\end{equation*}
$$

From (27) we can write

$$
\sum_{j=1}^{n}\left[Q_{X_{j} i}-v(i)\right]=\varphi\left(X_{1}\right)-\hat{\varphi}\left(X_{n}\right)+\sum_{j=2}^{n}\left[\varphi\left(X_{j}\right)-\hat{\varphi}\left(X_{j-1}\right)\right]
$$

By (28) we have $\left|\varphi\left(X_{1}\right)-\hat{\varphi}\left(X_{n}\right)\right|$ bounded and for n large

$$
\begin{equation*}
P\left(\left|\varphi\left(X_{1}\right)-\hat{\varphi}\left(X_{n}\right)\right| \geq n \varepsilon\right)=0 \tag{29}
\end{equation*}
$$

Now define $U=\sum_{j=2}^{n}\left[\varphi\left(X_{j}\right)-\hat{\varphi}\left(X_{j-1}\right)\right]$ so that we will have (24) if

$$
\begin{equation*}
P\left(|U| \geq \frac{n \varepsilon}{2}\right) \leq b_{1} e^{-b_{2} n} \tag{30}
\end{equation*}
$$

This would follow if the hypotheses of Lemma 3 are satisfied. First, note that

$$
\begin{aligned}
E\left(\varphi\left(X_{j}\right) \mid \mathcal{F}_{j-1}\right) & =E\left(Q_{X_{j} i}-v(i) \mid \mathcal{F}_{j-1}\right)+\sum_{r \geq 1}\left[E\left(Q_{X_{j+r} i} \mid \mathcal{F}_{j-1}\right)-v(i)\right] \\
& =\sum_{s \geq 1}\left[E\left(Q_{X_{j-1+s} i} \mid \mathcal{F}_{j-1}\right)-v(i)\right]=\hat{\varphi}\left(X_{j-1}\right)
\end{aligned}
$$

Hence $E U=0$. Also, for $j>k$,

$$
E\left\{\left(\varphi\left(X_{j}\right)-\hat{\varphi}\left(X_{j-1}\right)\right) \mid \mathcal{F}_{k}\right\}=E\left\{E\left(\varphi\left(X_{j}\right)-\hat{\varphi}\left(X_{j-1}\right) \mid \mathcal{F}_{j-1}\right\}=0\right.
$$

Then $U_{k}=E\left(U \mid \mathcal{E}_{k}\right)=\sum_{j=2}^{k}\left[\varphi\left(X_{j}\right)-\hat{\varphi}\left(X_{j-1}\right)\right]$. Just take $V_{k}=U_{k-1}-M$ and $a_{k}=2 M$ with M satisfying $|\varphi(\cdot)-\hat{\varphi}(\cdot)| \leq M$. And we have (29) with $b_{1}=4$ and $b_{2}=\varepsilon^{2} / 8 M^{2}$.

References

[1] V. S. M. Campos and C. C. Y. Dorea, Kernel density estimation: the general case, Statist. Probab. Lett. 55 (2001), 173-180.
[2] L. Devroye, Exponential inequalities in nonparametric estimation, Nonparametric Functional Estimation and Related Topics, G. G. Roussas ed., pp. 31-44, Kluwer Academic Publishers, 1991.
[3] J. L. Doob, Stochastic Processes, John Wiley \& Sons, New York, 1953.
[4] C. C. Y. Dorea and L. C. Zhao, Nonparametric density estimation in hidden Markov models, Stat. Infer. Stoch. Process. 178 (2001), 1-10.
[5] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989), 257-284.
[6] G. G. Roussas and D. Ioannides, Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl. 5(1) (1987), 61-120.
[7] M. C. Wang and Van Ryzin, A class of estimators for discrete distributions, Biometrika 68 (1981), 301-309.

