STATIONARY DISTRIBUTION ESTIMATION IN HIDDEN MARKOV MODELS

C. C. Y. DOREA, G. L. GILARDONI and C. R. GONÇALVES

Instituto de Ciências Exatas Universidade de Brasília 70910-900 Brasília - DF, Brazil

Abstract

Let $\{X_n, Y_n\}$ describe a HMM with values on a denumerable space, being $\{Y_n\}$ the observable process. In this note, we present a class of kernel estimates for the stable distribution of $\{Y_n\}$. It is shown that the estimates are strongly consistent with exponential rate of convergence. Also, we exhibit situations where the stationary distribution of the non-observable process $\{X_n\}$ can be determined through the stable distribution of $\{Y_n\}$.

1. Introduction

Hidden Markov Models (HMM) are based on a non-observable Markov chain $\{X_n\}$ which describes the evolution of the state of a system. Associated with this chain we observe a sequence of conditionally independent random variables $\{Y_n\}$, with the distribution of each Y_n depending on the corresponding state X_n . HMM form a class of stochastic processes models that play an important role in a wide variety of $\overline{2000 \text{ Mathematics Subject Classification: Primary 62M09, 62G07.}$

Key words and phrases: hidden Markov model, kernel estimate, stationary distribution.

Partially supported by CAPES/PROCAD-Brazil.

Partially supported by CNPq, FINEP/PRONEX-Brazil.

Received August 11, 2003

© 2005 Pushpa Publishing House

applications (see, for example, Rabiner [5]). A classical example occurs in signal processing: a sequence of characters $\{X_n\}$ from a finite alphabet is transmitted, and a sequence $\{Y_n\}$ of corrupted signal, either by noise or by transmission distortion, is received.

A central problem in these models is that of finding properties of the chain $\{X_n\}$ based on a finite number of observations from the process $\{Y_n\}$. We will be concerned here with the problem of estimating the stationary distribution of the chain.

Let $\{X_n\}_{n\geq 0}$ be a Markov chain with state space S and transition matrix P. The observable process $\{Y_n\}_{n\geq 0}$ with values on S satisfies

$$P(Y_n = j_n | Y_0 = j_0, ..., Y_{n-1} = j_{n-1}, X_0 = i_0, ..., X_n = i_n)$$

$$= P(Y_n = j_n | X_n = i_n) = Q_{i_n j_n}$$
(1)

and

$$P(Y_0 = j_0, ..., Y_n = j_n | X_0 = i_0, ..., X_n = i_n) = Q_{i_0 j_0} \cdots Q_{i_n j_n}.$$
 (2)

Assume that $\{X_n\}$ is ergodic and that it converges at a geometric rate, that is, there is a probability π on S and constants $\gamma>0$ and $0\leq \rho<1$ such that

$$|P_{ij}^n - \pi(j)| \le \gamma \rho^n, \quad \forall i \in S.$$
 (3)

Clearly, the equilibrium distribution π coincides with the unique stationary distribution of the chain. Also, if S is finite the assumption of ergodicity suffices to guarantee (3). Now let

$$\nu(j) = \sum_{i \in S} \pi(i) Q_{ij}. \tag{4}$$

Then, in some sense, ν represents the distribution of Y_n when the process reaches some "stable" status. Though the knowledge of $\nu(\cdot)$ does not determine the stationary distribution π , in the Section 3 we exhibit situations under which this can be accomplished.

To estimate ν define for $i \in S$,

$$v_n(i) = \frac{1}{n} \sum_{k=1}^n W(h, i, Y_k), \tag{5}$$

where the window $h=h_n>0$ and the weight kernel functions $W(h,i,\cdot)$ are suitably chosen. We can interpret (5) as weighted linear combination of relative frequencies

$$v_n(i) = \sum_{j \in S} W(h, i, j) \left[\frac{1}{n} \sum_{k=1}^n 1_{\{j\}} (Y_k) \right].$$

Also, as pointed out in Campos and Dorea [1], it can be viewed as a discrete version of the kernel estimate $\frac{1}{nh}\sum W(h,\,x,\,Y_k)$ used when $\mathbf{v}(x)$ is a density function. Just regard h as the Lebesgue measure of $\left(x-\frac{h}{2},\,x+\frac{h}{2}\right)$ and, in the discrete case, use counting measure around $\{i\}$. Our main results, Theorem 1 and Corollary 1, provide sufficient conditions for the strong consistency of $\mathbf{v}_n(\cdot)$ as well as its rate of convergence. These results constitute a discrete version of Theorem 2 from Dorea and Zhao [4].

2. Preliminaries and Statement of the Results

Since $v_n(\cdot)$ estimates a probability, it is natural to require $\sum_{i \in S} v_n(i) = 1$, that is, the kernel $W \geq 0$ satisfies

$$\sum_{i \in S} W(h, i, j) = 1, \quad \forall j \in S \text{ and } h > 0.$$
 (6)

Also, Lemma 1 below shows that

$$\lim_{n \to \infty} \left| v_n(i) - v(i) \sum_{j \in S} W(h, i, j) \right| = 0. \tag{7}$$

Thus, for asymptotic unbiasedness it is required that $W(h, i, \cdot)$ is a

probability on S. For technical reasons, we further require that

$$0 < h = h_n \underset{n \to \infty}{\to} 0 \quad \text{and} \quad \lim_{n \to \infty} W(h, i, j) = 1_{\{i\}}(j). \tag{8}$$

The simplest example of a kernel W is provided by the relative frequencies estimate

$$v_n^0(i) = \frac{1}{n} \sum_{k=1}^n 1_{\{i\}}(Y_k). \tag{9}$$

Wang and Van Ryzin [7] consider several other kernels to estimate a discrete distribution on the integers under the independent and identically distributed setting, e.g., the uniform kernel function

$$W(h, i, j) = \begin{cases} h/2k & \text{if } |j-i| = 1, ..., k, \\ 1-h & \text{if } j=i, \\ 0 & \text{if } |j-i| > k, \end{cases}$$

and the geometric kernel function

$$W(h, i, j) = \begin{cases} (1-h)h^{|j-i|}/2 & \text{if } |j-i| \ge 1, \\ 1-h & \text{if } j=i. \end{cases}$$

Lemma 1. For any probability μ on S, we have

$$\lim_{n \to \infty} \sum_{i \in S} \left| \sum_{j \in S} W(h, i, j) \mu(j) - \mu(i) \right| = 0, \tag{10}$$

and $v_n(\cdot)$ is asymptotically unbiased, i.e., $\lim_{n\to\infty} E(v_n(i)) = v(i)$.

Lemma 2. Let $v_n^0(\cdot)$ be defined by (9) and assume that, given $\varepsilon > 0$, there exist constants $b_1 = b_1(\varepsilon)$ and $b_2 = b_2(\varepsilon) > 0$ such that

$$P(|v_n^0(i) - v(i)| \ge \varepsilon) \le b_1 e^{-b_2 n}, \quad \forall i \in S.$$
 (11)

Then, there exist constants $c_1 = c_1(\epsilon)$ and $c_2 = c_2(\epsilon) > 0$ such that

$$P\left(\sum_{i\in S} |\nu_n(i) - \nu(i)| \ge \varepsilon\right) \le c_1 e^{-c_2 n}. \tag{12}$$

Lemma 3 (Devroye [2]). Let $\mathcal{G}_0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_n$ be a sequence of nested σ -algebras. Let U be a \mathcal{G}_n -measurable and integrable random variable, and define the Doob martingale $U_k = E(U | \mathcal{G}_k)$. Assume that there exist \mathcal{G}_{k-1} -measurable random variable V_k and constants a_k such that $V_k \leq U_k \leq V_k + a_k$. Then, given $\varepsilon > 0$,

$$P(\mid U - EU \mid \geq \varepsilon) \leq 4 \exp \left\{-2\varepsilon^2 \middle/ \sum_{k=1}^n \alpha_k^2\right\}.$$

Theorem 1. Given $\varepsilon > 0$ there exist constants $c_1 = c_1(\varepsilon)$ and $c_2 = c_2(\varepsilon) > 0$ such that

$$P\left(\sum_{i\in S} |v_n(i) - v(i)| \ge \varepsilon\right) \le c_1 e^{-c_2 n}. \tag{13}$$

Note that (13) holds regardless of the initial distribution. Hence we are not assuming here strict stationarity of the chain. Since $\sum_{n\geq 1} c_1 e^{-c_2 n}$

 $<\infty$, an application of the Borel-Cantelli lemma gives the corollary below.

Corollary 1. For any initial distribution the estimator $v_n(\cdot)$ is strongly consistent,

$$P(\lim_{n\to\infty} \mathsf{v}_n(i) = \mathsf{v}(i)) = 1.$$

Moreover,

$$P\left(\lim_{n\to\infty}\sum_{i\in S}|\nu_n(i)-\nu(i)|=0\right)=1. \tag{14}$$

From Doob [3, Chapter 5], for finite S the necessary and sufficient condition for the ergodicity of the chain, hence for its geometric ergodicity (S), is given by the simple condition: there exist $j_0 \in S$, $\delta > 0$ and $n_0 \ge 1$ such that

$$\min_{i \in S} P_{ij_0}^{n_0} \ge \delta. \tag{15}$$

Corollary 2. Let $\{X_n\}$ be any Markov chain with finite state space S that satisfies (15). Then, we have (14).

Corollary 3. Assume that the state space S is finite, the matrix $Q = (Q_{ij})$ is non-singular and the stable distribution π satisfies that $\pi(i) > 0$ for every $i \in S$. Then

$$P(\lim_{n\to\infty}\pi_n(i)=\pi(i))=1,$$

where $\pi_n = v_n Q^{-1}$.

3. Estimation of π

Quite often the main objective in this problem would be to use the estimate $v_n(\cdot)$ of $v(\cdot)$ in order to produce an estimate $\pi_n(\cdot)$ for $\pi(\cdot)$. In this section we will discuss some aspects of this problem. Assume for the rest of the section that $S=\{0,1,...,N\}$ is finite and let Q be the matrix with entries $Q_{ij}=P(Y_n=j\,|\,X_n=i)$, so that (4) can be written as $v=\pi Q$, where v=(v(1),...,v(N)) and similarly for π . Further, we will assume that all entries in π are strictly positive and of course they must sum to 1. Since the matrix Q is stochastic $\left(\sum_j Q_{ij}=1\right)$, it follows from $v=\pi Q$ that $\sum_i v(j)=\sum_i \pi(i)=1$ and $v(j)\geq 0$ for every j.

Of course, if $v=\pi Q$ and $\det(Q)\neq 0$, then there is a unique $\pi=vQ^{-1}$ that satisfies (4). Also in this case, since each column of Q must have at least one positive entry, strict positivity of π also implies strict positivity of ν . However, in our problem we want to define $\pi_n=\nu_nQ^{-1}$, and although from the argument above it follows that $\sum_i \pi_n(i) = \sum_j \nu_n(j) = 1$, we have no guarantee that the entries of π_n would be non-negative. In short, this problem is caused by the fact that if $\mathcal P$ is the set of all probabilities on S with strictly positive entries, then it is possible that the set $\mathcal Q=\{\nu=\pi Q:\pi\in\mathcal P\}$ is a proper subset of $\mathcal P$, and even when ν belongs to $\mathcal P$, it may be that ν_n as defined in (5) does not.

Although the situation described above may happen for finite n, Corollaries 2 and 3 assure that as $n \to \infty$, with probability 1 we will have that $\pi_n = \mathsf{v}_n Q^{-1}$ will be a probability distribution on S with strictly positive entries. To see this, observe that the mapping $\mathsf{v} \mapsto \pi = \mathsf{v} Q^{-1}$ is continuous, so that if for v as in (4), we have that $\pi = \mathsf{v} Q^{-1}$ have positive entries, the same must happen for all v^* in a neighborhood of v . Hence Corollary 3 follows now from (14).

Below we discuss a few examples using kernels that concentrate weight on a neighborhood of the target point i to illustrate these ideas.

Example 1 (Uniform link). Assume that when the signal i is transmitted it is correctly interpreted with probability $Q_{ii}=\alpha>1/2$, while it will read as one of the remaining characters with equal probability $Q_{ij}=\beta=\frac{1-\alpha}{N-1}$, $j\neq i$. Hence $v(i)=\alpha\pi(i)+\beta\sum_{j\neq i}\pi(j)=\alpha\pi(i)$

+ $\beta(1-\pi(i))$. Hence $\pi(i)=\frac{(N-1)\nu(i)-(1-\alpha)}{(N-1)\alpha-(1-\alpha)}$. Note that for π to have positive entries we must have that $\nu(i)>(1-\alpha)/(N-1)$.

Example 2. Let $Q_{ii} = \alpha > \frac{1}{2}$ and $Q_{ij} = \beta = \frac{1-\alpha}{2}$ for j = i-1 or $i+1 \pmod{N}$. Here we have $v(i) = \alpha \pi(i) + \beta [\pi(i-1) + \pi(i+1)]$. Since Q is non-singular we have the solution $\pi = Q^{-1}v$. For instance, for N = 4,

$$\pi(1) = \pi(3)$$

$$=\frac{1}{2(2\alpha-1)}\Biggl(\frac{(\alpha^2+2\alpha-1)}{\alpha}\,\nu(0)+(\alpha-1)\nu(1)+\frac{(\alpha-1)^2}{\alpha}\,\nu(2)+(\alpha-1)\nu(3)\Biggr)$$

and

$$\pi(2) = \pi(4) = \frac{1}{2(2\alpha - 1)} ((\alpha - 1)(\nu(0) + \nu(3)) + (\alpha - 1)^2 \nu(1) + (\alpha^2 - 1 + 2\alpha)\nu(3)).$$

Example 3. Let $Q_{ii} = 1/2$ and $Q_{ij} = 1/4$ for j = i - 1 or $i + 1 \pmod{N}$. Then we have $v(i) = \frac{1}{2} \pi(i) + \frac{1}{4} [\pi(i-1) + \pi(i+1)]$. If $N \ge 4$ is even, then det(Q) = 0 and we can usually find many solutions. For instance, for N=4 the system will have a solution only when v(1)-v(2)+v(3)-v(4)=0, when we obtain for a given $\pi(4)$ that $\pi(1)=v(2)-2v(3)+3v(4)-\pi(4)$, $\pi(2)=2v(2)-2v(4)+\pi(4)$ and $\pi(3)=-v(2)+2v(3)+v(4)-\pi(4)$. Observe here that the condition $\det(Q)\neq 0$ is not necessary in order to have uniqueness of π for a given v. Indeed, when N=4 and for $v(1)=v(2)=\frac{3}{8}$ and $v(3)=v(4)=\frac{1}{8}$, we have the unique solution $\pi(1)=\pi(2)=\frac{1}{2}$ and $\pi(3)=\pi(4)=0$ for π .

4. Proof of the Results

Proof of Lemma 1. (i) Since $W(h, i, \cdot) \le 1$, we have by (8) and using dominated convergence that

$$\lim_{n\to\infty}\sum_{j\in S}W(h,\ i,\ j)\mu(j)=\mu(i).$$

Given $\varepsilon > 0$ let S_{ε} be a finite subset of S such that $\sum_{i \in S_{\varepsilon}} \mu(i) \ge 1 - \varepsilon/4$. Let

 N_{ε} be such that for $n \geq N_{\varepsilon}$,

$$A = \sum_{i \in S_c} \left| \sum_{j \in S} W(h, i, j) \mu(j) - \mu(i) \right| \le \varepsilon/4.$$

Then,

$$B = \sum_{i \in S_{\mathcal{E}}} \sum_{j \in S} W(h, i, j) \mu(j) \ge \sum_{i \in S_{\mathcal{E}}} \mu(i) - \varepsilon/4 \ge 1 - \varepsilon/2$$

and

$$\sum_{i \in S} \left| \sum_{j \in S} W(h, i, j) \mu(j) - \mu(i) \right| \leq A + B + \sum_{i \in S_c} \mu(i) \leq \varepsilon.$$

(ii) Assume that the chain is strictly stationary, that is, the initial distribution is π . Then X_k has distribution π and by (1) and (4),

$$P(Y_k = j) = \sum_r P(X_k = r)Q_{rj} = \sum_r \pi(r)Q_{rj} = \nu(j).$$

From (5) we have

$$E(v_n(i)) = E(W(h, i, Y_k)) = \sum_j W(h, i, j)v(j).$$

And from (10) we have the asymptotic unbiasedness.

Now, assume that the initial distribution is π_0 . Since (3) holds, it follows from Roussas and Ioannides [6, Proposition 3.1] that there exists a constant $\gamma'>0$ such that

$$\sum_{j \in S} |P_{ij}^k - \pi(j)| \le \gamma' \rho^k. \tag{16}$$

It follows that

$$\left| E(W(h, i, Y_k)) - \sum_j W(h, i, j) \nu(j) \right| \leq \sum_j W(h, i, j) \sum_r \pi_0(r) \sum_s |P_{rs}^k - \pi(s)| Q_{sj}$$

$$\leq \sum_j W(h, i, j) Q_{sj} \gamma' \rho^k \leq \gamma' \rho^k.$$

Then

$$\left| E(v_n(i)) - \sum_j W(h, i, j) v(j) \right| \le \frac{1}{n} \sum_{k=1}^n \gamma' \rho^k \underset{n \to \infty}{\to} 0$$

and the desired result follows from (10).

Proof of Lemma 2. (i) Given $\varepsilon > 0$ let S_{ε} be finite and such that

$$\sum_{i \in S_{\varepsilon}} \nu(i) \ge 1 - \varepsilon/8. \tag{17}$$

From (10) there exists N_{ε} satisfying for $n \geq N_{\varepsilon}$,

$$\sum_{i \in S} |\lambda_n(i) - v(i)| \le \frac{\varepsilon}{8}, \tag{18}$$

where $\lambda_n(i) = \sum_{j \in S} W(h,\,i,\,j) \nu(j).$ From (11) there exist b_1' and $b_2' > 0$ such that

$$P\left(\sum_{i \in S_{\varepsilon}} | v_n^0(i) - v(i) | \ge \frac{\varepsilon}{8} \right) \le b_1' e^{-b_2' n}. \tag{19}$$

(ii) We can write

$$v_n(i) = \frac{1}{n} \sum_{j \in S} W(h, i, j) \sum_{k=1}^{n} 1_{\{j\}}(Y_k) = \sum_{j \in S} W(h, i, j) v_n^0(j).$$

Define $v_n^*(i) = \sum_{j \in S_{\mathbb{E}}} W(h, i, j) v_n^0(j)$. By (6), we have

$$\sum_{i \in S} |\mathsf{v}_n(i) - \mathsf{v}_n^*(i)| = \sum_{i \in S} \sum_{j \in S_\varepsilon^c} W(h, i, j) \mathsf{v}_n^0(j) = \sum_{j \in S_\varepsilon^c} \mathsf{v}_n^0(j).$$

From (19), we have

$$P\left(\sum_{i \in S_{\varepsilon}} \mathsf{v}_n^0(i) \le \sum_{i \in S_{\varepsilon}} \mathsf{v}(i) - \varepsilon/8\right) \le b_1' e^{-b_2' n}$$

and from (17),

$$P\left(\sum_{i \in S_{\varepsilon}} \mathsf{v}_n^0(i) \le 1 - \varepsilon/4\right) \le b_1' e^{-b_2' n}.$$

Hence,

$$P\left(\sum_{i\in S} |\mathsf{v}_n(i) - \mathsf{v}_n^*(i)| \ge \frac{\varepsilon}{3}\right) \le P\left(\sum_{i\in S_\varepsilon^c} \mathsf{v}_n^0(i) \ge \frac{\varepsilon}{4}\right) \le b_1' e^{-b_2' n}. \tag{20}$$

(iii) From (18), we have

$$\sum_{i \in S} |\mathbf{v}_n^*(i) - \lambda_n(i)| \le \sum_{i \in S} \left| \sum_{j \in S_{\varepsilon}} W(h, i, j) [\mathbf{v}_n^0(j) - \mathbf{v}(j)] \right| + \sum_{i \in S} \sum_{j \in S_{\varepsilon}^c} W(h, i, j) \mathbf{v}(j)$$

$$\le \sum_{j \in S_{\varepsilon}} |\mathbf{v}_n^0(j) - \mathbf{v}(j)| + \sum_{j \in S_{\varepsilon}^c} \mathbf{v}(j).$$

Then by (17) and (19),

$$P\left(\sum_{i\in S} |\mathbf{v}_n^*(i) - \lambda_n(i)| \ge \frac{\varepsilon}{3}\right) \le P\left(\sum_{j\in S_{\varepsilon}} |\mathbf{v}_n^0(j) - \mathbf{v}(j)| \ge \frac{\varepsilon}{6}\right) + P\left(\sum_{j\in S_{\varepsilon}^c} \mathbf{v}(j) \ge \frac{\varepsilon}{6}\right)$$

$$\le b_1' e^{-b_2' n}. \tag{21}$$

By (18) we have for $n \ge N_{\varepsilon}$,

$$P\left(\sum_{i\in S} |\lambda_n(i) - \nu(i)| \ge \frac{\varepsilon}{3}\right) = 0.$$
 (22)

Finally, from (20), (21) and (22) we have (12) with $c_1=2b_1^\prime$ and $c_2=b_2^\prime$.

Proof of Theorem 1. (i) By Lemma 2 it is enough to show that (11) holds. Hence, we must prove that given $\varepsilon > 0$ there exist $b_1 = b_1(\varepsilon)$ and $b_2 = b_2(\varepsilon) > 0$ such that

$$P\left(\left|v_n^0(i) - \frac{1}{n}\sum_{j=1}^n Q_{X_ji}\right| \ge \varepsilon\right) \le b_1 e^{-b_2 n} \tag{23}$$

and

$$P\left(\left|v(i) - \frac{1}{n}\sum_{j=1}^{n}Q_{X_{j}i}\right| \ge \varepsilon\right) \le b_{1}e^{-b_{2}n}.$$
(24)

Proceeding as in the proof of Lemma 1 it suffices to show (23) and (24) when the initial distribution is the stationary distribution π . It will be carried out using Lemma 3. Define $\mathcal{F}_n = \sigma(X_0, X_1, ..., X_n)$.

(ii) Let
$$U = \sum_{j=1}^{n} [1_{(Y_{j=i})} - Q_{X_{j}i}]$$
. Then

$$U = \sum_{j=1}^{n} \left[1_{(Y_{j=i})} - E(1_{(Y_{j=i})} | \mathcal{F}_j) \right].$$
 (25)

Clearly, U is \mathcal{F}_n -measurable and EU=0. Note that for $j\leq k$ we have $E(1_{(Y_{j=i})}|\mathcal{F}_k)=1_{(Y_{j=i})}$ and $E(Q_{X_ji}|\mathcal{F}_k)=Q_{X_ji}$, while for j>k,

194 C. C. Y. DOREA, G. L. GILARDONI and C. R. GONÇALVES

$$E(1_{(Y_{j=i})} - Q_{X_{j}i} \mid \mathcal{F}_k) = \sum_{\ell} P_{X_k \ell}^{k-j} Q_{\ell i} - \sum_{\ell} P_{X_k \ell}^{k-j} Q_{\ell i} = 0.$$
 (26)

It follows that

$$U_k = E(U | \mathcal{F}_k) = \sum_{j=i}^k [1_{(Y_{j=i})} - Q_{X_{j}i}].$$

Hence for $V_k=U_{k-1}-1$ and $a_k=2$ we have the hypotheses of Lemma 3 satisfied. Using (25) we have (23) with $b_1=4$ and $b_2=\epsilon^2/2$.

(iii) A key point in the proof of (23) is the identity (26). But for (24) we cannot guarantee $E\{(Q_{X_ji}-v(i))|\mathcal{F}_k\}=0$ for j>k. This difficulty can be handled by defining

$$\varphi(X_j) = Q_{X_j i} - \nu(i) + \hat{\varphi}(X_j), \quad \hat{\varphi}(X_j) = \sum_{r>1} [E(Q_{X_{j+r} i} \mid \mathcal{F}_j) - \nu(i)]. \tag{27}$$

We have φ well-defined since by (4) and (16) we have

$$|\hat{\varphi}(X_j)| = \left| \sum_{r>1} \sum_{\ell} (P_{X_j\ell}^r - \pi(\ell)) Q_{\ell i} \right| \le \sum_{r>1} \gamma' \rho^r < \infty.$$
 (28)

From (27) we can write

$$\sum_{j=1}^{n} [Q_{X_{j}i} - \nu(i)] = \varphi(X_{1}) - \hat{\varphi}(X_{n}) + \sum_{j=2}^{n} [\varphi(X_{j}) - \hat{\varphi}(X_{j-1})].$$

By (28) we have $| \varphi(X_1) - \hat{\varphi}(X_n) |$ bounded and for n large

$$P(|\varphi(X_1) - \hat{\varphi}(X_n)| \ge n\varepsilon) = 0. \tag{29}$$

Now define $U = \sum_{j=2}^{n} [\varphi(X_j) - \hat{\varphi}(X_{j-1})]$ so that we will have (24) if

$$P\left(\mid U\mid \geq \frac{n\varepsilon}{2}\right) \leq b_1 e^{-b_2 n}.\tag{30}$$

This would follow if the hypotheses of Lemma 3 are satisfied. First, note that

$$\begin{split} E(\varphi(X_j)|\,\mathcal{F}_{j-1}) &= E(Q_{X_ji} - \nu(i)|\,\mathcal{F}_{j-1}) + \sum_{r \geq 1} \big[E(Q_{X_{j+r}i} \,|\, \mathcal{F}_{j-1}) - \nu(i) \big] \\ &= \sum_{s \geq 1} \big[E(Q_{X_{j-1}+si} \,|\, \mathcal{F}_{j-1}) - \nu(i) \big] = \hat{\varphi}(X_{j-1}). \end{split}$$

Hence EU = 0. Also, for j > k,

$$E\{(\varphi(X_i) - \hat{\varphi}(X_{i-1})) | \mathcal{F}_k\} = E\{E(\varphi(X_i) - \hat{\varphi}(X_{i-1}) | \mathcal{F}_{i-1}\} = 0.$$

Then
$$U_k = E(U \mid \mathcal{E}_k) = \sum_{j=2}^k [\varphi(X_j) - \hat{\varphi}(X_{j-1})]$$
. Just take $V_k = U_{k-1} - M$ and $a_k = 2M$ with M satisfying $|\varphi(\cdot) - \hat{\varphi}(\cdot)| \leq M$. And we have (29) with $b_1 = 4$ and $b_2 = \varepsilon^2/8M^2$.

References

- V. S. M. Campos and C. C. Y. Dorea, Kernel density estimation: the general case, Statist. Probab. Lett. 55 (2001), 173-180.
- [2] L. Devroye, Exponential inequalities in nonparametric estimation, Nonparametric Functional Estimation and Related Topics, G. G. Roussas ed., pp. 31-44, Kluwer Academic Publishers, 1991.
- [3] J. L. Doob, Stochastic Processes, John Wiley & Sons, New York, 1953.
- [4] C. C. Y. Dorea and L. C. Zhao, Nonparametric density estimation in hidden Markov models, Stat. Infer. Stoch. Process. 178 (2001), 1-10.
- [5] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989), 257-284.
- [6] G. G. Roussas and D. Ioannides, Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl. 5(1) (1987), 61-120.
- [7] M. C. Wang and Van Ryzin, A class of estimators for discrete distributions, Biometrika 68 (1981), 301-309.