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Abstract

Let {X,,Y,} describe a HMM with values on a denumerable space,
being {Y,,} the observable process. In this note, we present a class of

kernel estimates for the stable distribution of {Y,,}. It is shown that the

estimates are strongly consistent with exponential rate of convergence.
Also, we exhibit situations where the stationary distribution of the non-

observable process {X,} can be determined through the stable

distribution of {¥},}.

1. Introduction

Hidden Markov Models (HMM) are based on a non-observable

Markov chain {X,, } which describes the evolution of the state of a system.

Associated with this chain we observe a sequence of conditionally

independent random variables {Y,}, with the distribution of each Y,
depending on the corresponding state X,,. HMM form a class of stochastic

processes models that play an important role in a wide variety of
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applications (see, for example, Rabiner [5]). A classical example occurs in
signal processing: a sequence of characters {X,,} from a finite alphabet is
transmitted, and a sequence {Y,,} of corrupted signal, either by noise or

by transmission distortion, is received.

A central problem in these models is that of finding properties of the

chain {X,} based on a finite number of observations from the process
{Y,,}. We will be concerned here with the problem of estimating the
stationary distribution of the chain.

Let {X,},., be a Markov chain with state space S and transition

matrix P. The observable process {Y,} ., with values on S satisfies
P(Y, = ju | Yy = Jos s Yno1 = Jn-1, Xo = lgs s Xpp = i)
=P, =j,1X, =i,)=@Q; j, 1)
and
P(Yy = Jos - Yy = Ju | Xo = dgs ey Xy =in) = @ipj, @i, - ©)

Assume that {X,} is ergodic and that it converges at a geometric
rate, that is, there is a probability = on S and constants y > 0 and

0 < p <1 such that
|Pn -n(j)| <vp", ViesS. 3)

Clearly, the equilibrium distribution n coincides with the unique
stationary distribution of the chain. Also, if S is finite the assumption of

ergodicity suffices to guarantee (3). Now let
v(j) = ) #(i)@Qy- @
ieS
Then, in some sense, v represents the distribution of Y,, when the process
reaches some “stable” status. Though the knowledge of v(-) does not

determine the stationary distribution =, in the Section 3 we exhibit

situations under which this can be accomplished.
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To estimate v define for i € S,

Vali) = - Y Wk, i, V), ®)
k=1

where the window & = h, > 0 and the weight kernel functions W(h, i, -)

are suitably chosen. We can interpret (5) as weighted linear combination

of relative frequencies

vali) = D Wik, i, j)

jeS

%Zl{j}(Yk)}-
k=1

Also, as pointed out in Campos and Dorea [1], it can be viewed as a
discrete version of the kernel estimate nl—hZW(h, x, Y;) used when

v(x) is a density function. Just regard h as the Lebesgue measure of

h h . . )
(x — 5 X + B} and, in the discrete case, use counting measure around

{i}. Our main results, Theorem 1 and Corollary 1, provide sufficient
conditions for the strong consistency of v,() as well as its rate of

convergence. These results constitute a discrete version of Theorem 2
from Dorea and Zhao [4].

2. Preliminaries and Statement of the Results
Since v,,(-) estimates a probability, it is natural to require Zvn(i) =1,
1eS
that is, the kernel W > 0 satisfies

ZW(h, i,j)=1, VjeS and h > 0. ©)
ieS

Also, Lemma 1 below shows that
lim | v, (i) - v(i)z W(h, i, j)| = 0. @)
n—>w =

Thus, for asymptotic unbiasedness it is required that W(h, i, ) is a
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probability on S. For technical reasons, we further require that

O<h=h, - 0 and lim W(h,i, j) = l{i}(j). 8
n— n—o
The simplest example of a kernel W is provided by the relative

frequencies estimate

0/ 1 = )
V(i) = ;;mm) ©)

Wang and Van Ryzin [7] consider several other kernels to estimate a
discrete distribution on the integers under the independent and

identically distributed setting, e.g., the uniform kernel function
hi2k if |j-i|=1,.., k&,
W, i, j)=<1-h if j=1,
0 if |j-i|>k,

and the geometric kernel function

W i, )= |@=mA 2 i =i =,
1=h if j = i.

Lemma 1. For any probability u on S, we have

=0, (10)

lim
n—>o0 4
ieS

D Wik i, uli) - ni)

jeS

and v, (-) is asymptotically unbiased, i.e., lim E(v, (i) = v(i).
n—o

Lemma 2. Let v2(~) be defined by (9) and assume that, given € > 0,
there exist constants by = by(g) and by = by(c) > 0 such that
P(VOG) - v(i)| = &) < bre™®", VieS. (11)

Then, there exist constants ¢; = ¢;(¢) and cg = co(€) > 0 such that

P Z| v, (@) - v(@)| = SJ < cre 2", (12)

ieS
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Lemma 3 (Devroye [2]). Let Gy < G; < --- < G,, be a sequence of
nested c-algebras. Let U be a G, -measurable and integrable random
variable, and define the Doob martingale U, = E(U|Gy). Assume that
there exist Gj,_1-measurable random variable V, and constants aj such

that V;, < U;, <V, + ay. Then, given ¢ > 0,

n
P(U-EU|z2¢)< 4exp{—282/2a;%}
k=1

Theorem 1. Given ¢ > 0 there exist constants c¢; = ¢;(e) and cg =

co(e) > 0 such that

P(Z| v, (@) - v(@)| = s] < ce 2", (13)

ieS
Note that (13) holds regardless of the initial distribution. Hence we

are not assuming here strict stationarity of the chain. Since Z cre 2"

nx1
< o, an application of the Borel-Cantelli lemma gives the corollary
below.
Corollary 1. For any initial distribution the estimator v,(-) is

strongly consistent,
P(lim v, (i) = v(i)) = 1.
n—ow

Moreover,

P( lim | v, () - v(i)| = OJ = 1. (14)
noe ieS

From Doob [3, Chapter 5], for finite S the necessary and sufficient
condition for the ergodicity of the chain, hence for its geometric ergodicity
(S), is given by the simple condition: there exist j, € S, 5 > 0 and

ng =1 such that

min P/0 > §. (15)
ieS Yo
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Corollary 2. Let {X,,} be any Markov chain with finite state space S
that satisfies (15). Then, we have (14).

Corollary 3. Assume that the state space S is finite, the matrix @ =
(Q;j) is non-singular and the stable distribution n satisfies that n(i) > 0
for every i € S. Then

P(lim =, (i) = n(i)) = 1,
n=w

where 1, = v,Q".
3. Estimation of &

Quite often the main objective in this problem would be to use the

estimate v, () of v(-) in order to produce an estimate w,(-) for =n(-). In

this section we will discuss some aspects of this problem. Assume for the
rest of the section that S = {0, 1, ..., N} is finite and let @ be the matrix

with entries @;; = P(Y,, = j|X,, = i), so that (4) can be written as
v = 1@, where v = (v(1), ..., v(N)) and similarly for n. Further, we will

assume that all entries in 7 are strictly positive and of course they must

sum to 1. Since the matrix @ is stochastic [Z} Q; = 1}, it follows from
v = n@ that Z; v(j) = Zin(i) =1 and v(j) > 0 for every j.

Of course, if v = nQ and det(Q) # 0, then there is a unique © = vQ

that satisfies (4). Also in this case, since each column of @ must have at

least one positive entry, strict positivity of © also implies strict positivity

of v. However, in our problem we want to define =, = v,Q !, and

although from the argument above it follows that Zi n, ()= zjv () =1,

we have no guarantee that the entries of m, would be non-negative. In

short, this problem is caused by the fact that if P is the set of all
probabilities on S with strictly positive entries, then it is possible that

the set Q@ = {v=nQ : = € P} is a proper subset of P, and even when v

belongs to P, it may be that v,, as defined in (5) does not.
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Although the situation described above may happen for finite n,

Corollaries 2 and 3 assure that as n — o, with probability 1 we will have
that =, = vanl will be a probability distribution on S with strictly
positive entries. To see this, observe that the mapping v > nt = VQ_l 1s
continuous, so that if for v as in (4), we have that = = VQ_l have positive

entries, the same must happen for all v* in a neighborhood of v. Hence

Corollary 3 follows now from (14).

Below we discuss a few examples using kernels that concentrate
weight on a neighborhood of the target point i to illustrate these ideas.

Example 1 (Uniform link). Assume that when the signal i is
transmitted it is correctly interpreted with probability @;; = o > 1/2,

while it will read as one of the remaining characters with equal

probability Q; = = % j # i. Hence v(i) = an(i) + Y. x(j) = an(i)
J#l
(N -Dv(i) - (1 ~a) . Note that for n to have

+ Bl = n(@)). Hence n(i) = Soe—0 35

positive entries we must have that v(i) > (1 — a)/(N - 1).
1 1-a ..
Example 2. Let @; = a > 3 and @; =B = — for j=i-1 or
i + 1(mod N). Here we have v(i) = an(i) + B[n(i — 1) + n(i + 1)]. Since @ is

non-singular we have the solution ©n = Q_lv. For instance, for N = 4,

n(1) = n(3)

2 2
B 2(2a1— 1) [(a +§a “D o)+ (@ - 1w + % v(2) + (o - 1)v(3)J

and

;_1) (0 =1) (V(0) + v(3)) + (0 = 1)>v(1) + (a2 — 1 + 2a)v(3)).

n(2) = n(4) = 520

Example 3. Let @;; =1/2 and @;; =1/4 for j=i-1 or i +1(mod N).

Then we have v(i) = %n(i) + i [n(i —1)+ n(@ +1)]. If N > 4 is even, then
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det(®) = 0 and we can usually find many solutions. For instance, for
N = 4 the system will have a solution only when v(1)- v(2)+ v(3) -
v(4) = 0, when we obtain for a given n(4) that n(1) = v(2) — 2v(3) + 3v(4)
-m(4), m2)=2v(2)-2v(4)+ n(4) and w(3) = —v(2)+ 2v(3) + v(4) — n(4).
Observe here that the condition det(@) # 0 is not necessary in order to

have uniqueness of & for a given v. Indeed, when N = 4 and for v(1) =

v(2) = % and v(3) = v(4) = %, we have the unique solution (1) = n(2)

= % and n(3) = n(4) = 0 for x.

4. Proof of the Results

Proof of Lemma 1. (i) Since W(h, i, -) < 1, we have by (8) and using

dominated convergence that

lim Zjes Wk, i, )u(j) = ).

n—ow

Given ¢ > 0 let S, be a finite subset of S such that Z (i) >1-¢/4. Let

ieS;

N, be such that for n > N,

A= D Wi u) - ) | < /4.

eS| jeS
Then,
B= > Wi Du()z Y wi)-s/421-¢/2

ieS; jeS ieS,

and

2

ieS

D W, i, (i) - uG)

jeS

<A+B+ Zu(i)gg.
ieS;

(11) Assume that the chain is strictly stationary, that is, the initial
distribution is . Then X has distribution © and by (1) and (4),
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P(Yy = j) = D P(Xp = )@y = ) wr)Qy = v(j).

r

From (5) we have

E(v,, () = EW(h, i, Y})) = D" Wk, i, V().
J

And from (10) we have the asymptotic unbiasedness.

Now, assume that the initial distribution is mny. Since (3) holds, it

follows from Roussas and Ioannides [6, Proposition 3.1] that there exists

a constant y' > 0 such that

ZIPif - n(j)| < vpk. (16)

jeS

It follows that

EW(h, i, Y)) - > W(h, i, j)v(j)
7

<Y Wi, )Y mo(r)Y | P - n(s)|Qy
J r s

< ZW(h, i, )Qyve" < vp*.
j

Then

k

—> 0
n—oo

n

1 )

< 2.7
k=1

E(va @)= Y Wk, i, j)v(j)
J

and the desired result follows from (10).

Proof of Lemma 2. (i) Given ¢ > 0 let S, be finite and such that

Z v(i) = 1 - ¢/8. 17

ieSg

From (10) there exists N, satisfying for n > N,

PUEHGENGIESS (18)

1eS
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where A, (i) = ZW(h, i, j)v(j). From (11) there exist b; and b5 > 0 such
jeS
that
. - , b
P[Z| vO(i) - v(i)| 2 %J < bje 2", (19)

ieS;

(i1) We can write

vy (i) = % D Wi, j)zn] (V) = D Wik, i )V ().

jeS k=1 jeS

Define v, (i) = ZW(h, i, ))v2(j). By (6), we have
JjeSe

D va@) = Vi@ = D D Wik, i, j)veG) = Y ViG).
1eS 1eS jesgc jeSSC

From (19), we have

p[ Z v(i) < Z v(i) - g/sJ < bje %"

ieS; ieS,
and from (17),
P[ng(i) <1- 8/4J < ple %,
1eSg

Hence,

P(Zm(i) —vi0)| 2 %J <P ng(i) > % < bje 4", (20)

ieS ieS¢

(111) From (18), we have

PUAOEENOEDY

ieS ieS

D Wik, i, )IVaG) - v(j)]

jeSe

< Y V) =vO)+ D VG-

JeSg jesg

£y Y Wik i, j)v()

1eS jeS¢
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Then by (17) and (19),

P(Zw;(i) (D) 2 gJ < P[ngm— v(j) 2 %} +P| > W)= §

ieS jeS jeS¢
< bje 02", (21)
By (18) we have for n > N,
. . g
P{ZSH 2o (i) = V() | 2 5] = 0. 22)
le

Finally, from (20), (21) and (22) we have (12) with ¢; = 2b; and ¢y = b5.

Proof of Theorem 1. (i) By Lemma 2 it is enough to show that (11)

holds. Hence, we must prove that given ¢ > 0 there exist b = b;(¢) and

by = by(e) > 0 such that

P{ vO(i) —%ZQin > s] < bye 02" (23)
=1
and
P( v(i) —%ZQXJ.L- > SJ < be b, (24)
j=1

Proceeding as in the proof of Lemma 1 it suffices to show (23) and
(24) when the initial distribution is the stationary distribution =. It will

be carried out using Lemma 3. Define F, = o(Xy, X3, ..., X,,)-

(ii) Let U = 2[1(Yj:i) ~ Qx;i]. Then
j=1

n

U= Z [1(Yj=i) - E(I(szi) | fj )] (25)

Jj=1
Clearly, U is F,, -measurable and EU = 0. Note that for j < £ we have
E(I(Yj:i)|fk) = 1(Yj:i) and E(Qin |‘7:k) = Qin, while for ] > k,
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EQy, ;) - Qx;i| Fr) = D Py 1Qu = D Py {Qu = 0. (26)
l l
It follows that
k
Uy = EU|F) = D [y, - Qx;il
Jj=i

Hence for V;, = U,_; —1 and a; = 2 we have the hypotheses of Lemma

3 satisfied. Using (25) we have (23) with b, = 4 and by = £2/2.

(111) A key point in the proof of (23) is the identity (26). But for (24) we
cannot guarantee E{(Qin -v(@))| Fr} =0 for j > k. This difficulty can

be handled by defining

o(X;) = Qx;i — Vi) + #X;), #(X;) =D [E@x, i1F)-vD]l @7

r>1

We have ¢ well-defined since by (4) and (16) we have

S =] D0 D (P, — ()@ | < D vp” <o 28)

r>1 / r>1

From (27) we can write
D @x,i — V)] = 0(X1) = $(X,) + ) [0(X;) = H(X; )]
j=1 j=2

By (28) we have | ¢(X7) - ¢(X,,)| bounded and for n large

P(| o(X7) = §(X;,) | = ne) = 0. (29)

n
Now define U = Y [¢(X;) - $(X;_;)] so that we will have (24) if
j=2

P(| Ul=> %) < bre ", (30)

This would follow if the hypotheses of Lemma 3 are satisfied. First, note
that
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E(o(X;)| Fj1) = EQx; — V()| Fj1) + Y [EQx,,i 1 Fj1) = V()]

J
r>1

= Z [E@x; il Fj1)—v@)] = (X ).

s>1

Hence EU = 0. Also, for j > k&,

E{(o(X;) = (X ;1)) Fr} = E{E(o(X;) = §(X ;1) Fj1} = 0.

k
Then Uy = EWU|Ey) = Y [o(X;) - ¢(X;_1)]. Just take V), = Up_q - M

Jj=2

and a; = 2M with M satisfying | ¢(-) — ¢(-) | < M. And we have (29) with

=4 and b, = £2/8M?.
2
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