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Abstract

In this paper, we consider small perturbation of analytic reversible
mappings with degeneracy and prove the existence of invariant curve by
KAM iteration. Moreover, the frequency of invariant curve persists
without any drift.

1. Introduction and Main Results

In this paper, we are concerned with the existence of invariant curve of
reversible mapping A:

{xl =x+o+By)+ f(x y), (L.1)

y1 =y +9(xy),

where f and g are real analytic functions of periodic 2x for x, the variable y ranges
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in a neighborhood of the origin of the real line R and o is a positive constant.
We suppose that the mapping A is reversible with respect to the involution
R:(X y)— (=% y), thatis, ARA=R.

When dB(y)/dy # 0, o satisfies the Diophantine condition (1.3), and f and g

are sufficiently small, the existence of invariant curve with o as its frequency has
been proved in [3, 4, 5, 7, 14]. The natural question is when the condition dp(y)/dy

# 0 is not satisfied, i.e., there is some r* such that dp(r*)/dy = 0, whether there
exists invariant curve for mapping (1.1), whether its frequency can persist without
any drift. For the above question, we can only prove the existence of invariant curve
by using the similar methods as in [9]. However, there is no information on the
persistence of the frequency of invariant curve.

In this paper, we investigate the persistence of the frequency of invariant curve,

when B(y) = y2”+1. More precisely, we consider the following reversible mapping:

{xl =x+o+ym f(x, y), 1.2)

y1=Yy+09(x ),

where (x, y) e St x Iy 1, = [=T0, o] © R, s a positive constant.

o

We prove that the mapping (1.2) still has an invariant curve with ® as its
frequency, when o satisfies the Diophantine condition (1.3), and f and g are
sufficiently small.

Define
D(s, i) ={(x, y)e C/2rnZ x C|Imx | < s, | y| < o }.
We expand
f(x y) =D fily)e™,
keZ
then define

Z fi(y)e™ .

I f(x y) "D(s, ) = D?
keZ

up
)

S, Iy

The following theorem is the main result of this paper.
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Theorem 1.1. We consider the mapping (1.2) of an annulus, which is reversible
with respect to the involution R:(x, y) = (=%, y), i.e., ARA = R. Suppose the

frequency w satisfies the Diophantine condition:

';_";4‘2 ¢ (k1) eZxZ\o, 0}, (1.3)

[k

where T > 2, a is a positive constant. Suppose f(x, y) and g(x, y) are real analytic

on D(s, ry). Then there is an ¢ > 0 such that if

1
| f ”D(s,ro) + E" g "D(s, ) = &

the mapping (1.2) has an invariant curve y and the restriction of (1.2) onto v is of the
form x = X + o.

2. Proofs of the Main Results

At first, we introduce a parameter and change the mapping (1.2) to a
parameterized mapping and this idea is used in [2, 6, 12] for Hamiltonian systems.
Let y = p+z, where|p|<p, |z|<T <0 <r/2. Then the above mapping (1.2)

becomes
X =X+o+(z+ PPy f(x, z + p), 2.4)
z=z+9(x, 2+ p), '
with
(Z 4 p)2n+1 _ p2n+1 4 h(Z; p)
and

h(z; p)=(2n +1)p®"z + (2n + Ynp® 122 + . + (2n + 1) pz2" + 22",

Let f(x, z; p)=h(z; p)+ f(x, z+ p) and g(x, z; p) = g(x, z+ p). Then we

write the above mapping (2.4) as follows:

{xl =x+o+p"tif(x, z p)

7 =2+9(x z; p),

where (x, z) e St x I, with I, =[-r, r]; pisaparameter, p e l, =[~o ol
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Define
[, = {p € C|dist{p, I,} < o} with c<p.

2 1
—g2nt2 = g2n+2 -
We choose r = g2"+2, p = ¢2n+2 and have || h "D(S,r)xl‘[c < ce, where cis a

constant depending on n. It follows that

If Do, rywr, < Ce-

Note that here and below we always use ¢ to denote different constants in estimates.

For simplicity, we write |- [l . for |- {55 -
’ 1 [e3

Now, we consider the following equivalent parameterized mapping:

{x1=x+o)+H(p)+f(x, Z; p) 25)

1 =2+9(x z; p),

where H(p) = p2”+1. Moreover, f and g are small perturbations satisfying

1
" f "5,r +?" 9 "s,r < Ce.

Theorem 2.1. Let the parameterized reversible mapping (2.5) be real analytic
on D(s, r)xIl;. Let o satisfy the Diophantine condition (1.3). Then there exists a

sufficient small & > 0, such that if (| f ||, , +| g, ,/r) < ce, there exists p, € I,

such that the mapping (2.5) at p = p. has an invariant curve with ® as its
frequency.

In order to prove Theorem 2.1 effectively, we introduce an external parameter A
and consider the following mapping:

{xl =x+o+H(p)-1+ f(x z; p),

21 =2+9(x z; p), (2.6)

where A e Iy =[-1,1] is an outer parameter. The idea of introducing outer
parameter was used in [9, 12, 14] for Hamiltonian systems and area preserving
mapping. When L = 0, the mapping (2.6) corresponds to the mapping (2.5).

Below we first consider the mapping (2.6) with parameters (p, ). We will

prove that there exists a smooth curve T':i =2(p), pel, such that for
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(p, A) e I, the mapping (2.6) can be transformed to a norm form with z =0 an
equilibrium. Moreover, we can find p, e I, such that M(p«) = 0 and then have the

original mapping (2.5) with p = p..
Let A =1, x 1;. Then define

M = {(p, 1) € C?|dist((p, 1), A) < &}

Let K >0 and & = %. Denote by Og, the complex 5 neighborhood of
K

o. Then forall o e (’)g, it follows that

, 0<|k|<K.

k—‘”—l‘z %
271 2||(|T

Theorem 2.2. Consider the parameterized reversible mapping (2.6). Suppose
that the frequency o satisfies the Diophantine condition (1.3), and f(x, z; p) and

g(x, z; p) are real analytic on D(s, r) x M. Then there exists a sufficiently small
g >0 such that if (| f [, +] g s ,/r) < ce, then we have an analytic curve I'*
defined by the equation

p?" %+ h(p, 1) =0,

where
1
[he(p, M) <28, hap(p, )| +[har(p V)] < 5, @27)

such that for (p, &) € I'*, there exists a transformation V,:
{x =&+ (& p 1)
z=n+0.(&m; p, 1)

which is affine in 1, the mapping (2.6) is transformed to

{E.al = §+ O+ f*(&v n: P, 7\‘):
=N+ g.(& m; p, 1),

with f, = O(n), 9. = O(n?) atn = 0, i.e., the mapping (2.6) has an invariant curve

v such that the induced mapping on this curve is the translation & = & + .
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Remark. The derivatives in the estimates of (2.7) should be understood in the
sense of Whitney [10]. In fact, we can extend h,(p, 1) to a neighborhood of T'* as

a consequence in [1].

Now we use Theorem 2.2 to prove Theorem 2.1, and postpone the proof of
Theorem 2.2 later. By the implicit theorem and the equation

p?™L %+ h(p, 1) =0,
we first have an analytic curve

Loih=A(p) = pP™ +h(p), pel,

1
Moreover, if ¢ is sufficiently small, then we have | h,(p)| < 2¢. Dueto o = £21+2, it

2n+1

follows that A(+p) = (+0) + ﬁ*(ig) must have different signs. Thus there exists

p« € 1, such that A(p.) = 0. When A(p,) =0, the mapping (2.6) corresponds to
the mapping (2.5). Therefore, by Theorem 2.2, at p,, the mapping (2.5) has an

invariant curve with o as its frequency.

Now it remains to prove Theorem 2.2. Our method is the stand KAM iteration.
The difficulty is how to deal with parameters in KAM iteration.

KAM step. The KAM step can be summarized in the following lemma.

Lemma 2.1. Consider the following real analytic mapping A:

(2.8)

{Xl =x+o+H(p, A)+ f(x z; p, L),

zn=z+9(x 2 p, A)

on D(s, r)x M, where H(p, &)= p?™ - + h(p, 1). Suppose the mapping is
reversible with respect to the involution R : (x, z) » (-x, z), i.e., ARA=R. Let

0<E<1and0<p<s/5 Suppose

1 2
Il +lls, <e=ap™E.

Suppose the function h(p, ) satisfies that

o, )]+ [ (B, )| < 5. (B, 2) e M, (29)
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and then the equation
H(p,2) = p>" ™t —A +h(p, 1) =0
defines implicitly an analytic mapping:
L:pell; > A(p)

such that T = {(p, A(p))| p € Ty} = M. Moreover, for K > 0 satisfying K"e™P

1903

=B o= e

we have

N, 8)={(p,A)ells xC, (p, M) eT||A =1 <8} = M.

Then there exist M, < M and D(s,, r,) < D(s, r) such that for any (p, A) e M.

there exists a mapping U:

{x =&+ug p2),
z=n+VvEn p,R),

which is affine in n, such that the mapping (2.8) is transformed to A, :

{‘21 =E+o+H.(p,A)+ f (& n p, 1), (2.10)

m =n+0.&m p,A)

where  H,(p, 2)=p®™™ =X +h.(p,A) with h,(p, 2)=h(p, 1)+h(p, L)
Moreover, the new perturbation satisfies

1
It l+—lg <& = (xp1+2E+
ry

on D(s,, r,)x M_, where

3
p+:%p, nz«/E, s, =s-5p, r. =nr, E+:021+2E2,

and

M, ={(p, M)eCxClpell . (p, k)er,|k’—k|£%8}.
ol
2
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The term ﬁ(p, L) which may generate the drift of frequency after one KAM step

satisfies that

IA(p, A)| <& =ap™E, V(p,A)eM

and
| hp(p, )|+ M (p, 2)] < % v(p, ) e M,.
Thus if
20p™2E < %6, (2.11)

then the equation
H.(p, 2) = p*™ —2 +h,(p, ) =0
determines implicitly an analytic curve in M given by

hyipells, > A(p)

with o, = 0—16, and A, satisfies

2

T+2 1

[ %4(p) - M(p)| < 26 = 2ap™ E < 7.5, (2.12)
and

I ={(p 2 (p) pellg = M,. (2.13)

Let &, = 4”—2:1, where K, satisfies K+e‘K+p+ =E,. If

+
1

8, < ZS’ (2.14)

then we have N(T'*, 5.) < M,.

Proof of Lemma 2.1. The above lemma is actually one KAM step. We divide
the KAM step into several parts.



ON INVARIANT CURVES OF ANALYTIC REVERSIBLE MAPPINGS ... 323
A. Truncation. Let Q¢ = f(x,0; p,1) and Qg =9g(x,0; p, 1)+g,(x, 0; p,A)z.
It follows that

1Q <& [Qql=2re

on D(s, r)x M, and

[ f-Qfl<cne, [g-Qqg|< cn’re (2.15)
on D(s, 2nr) x M.

Let

Qf = Zka(P, n)elx

keZ
and
Rt = Z Qac(p, 1)e™.
[k |<K
By the definition of norm, we have
|Qs =Ry [ <cK"e™Pe, [[Qq - Ry || < cKe  Pre (2.16)
on D(s—p, r)x M.

B. Construction of u, v. From the theory of transformations, we know that after
a canonical change of variables, the transformed mapping of a symplectic mapping
is also symplectic. Analogously, for a reversible mapping, if the change of variables
commutes with the involution R, then the transformed mapping is also reversible
with respect to the same involution R. If the change of variable U : (€, n) — (X, 2)

is of the form
{X =E&+ug ),
z=n+V(E ),
then from the equality RU = UR, it follows that

{U(—é, n) = -u(& n),

(2.17)
V(=& m) = V(g m).
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In this case, the transformed mapping U AU of Aiis also reversible with respect to
the involution R : (€, n) = (=&, n).
In the following, we will determine the unknown functions u and v to satisfy the

condition (2.17) in order to guarantee that the transformed mapping U~LAU is also
reversible.

Let o(p, A) =+ H(p, L). As one does in Hamiltonian systems, one may

solve u and v from the following equations:

{U(é +a(p, 1) - u(€) = R¢ (&) - [Re (8)],

V(& + o(p, &), )~ V(& M) = Ry(& m) —[Ry (& )] (2.18)

Indeed one can solve these functions from the above equations. But the problem is
that such functions u and v do not, in general, satisfy the condition (2.17), i.e., the

transformed mapping U AU isno longer a reversible mapping with respect to R.
Therefore, we cannot use the above equations to determine the functions u and v.

Instead of solving the above equations (2.18), we may find these functions u and
v from the following modified equations:

{u(& +o(p, 1) - u(®) = F(2), (2.19)
v + o(p, 1), m) - V(& ) = G(& ),

with

f(&)= 2 (Re ()~ [Ry (&) + Ry (~& - o(p, 1)) - [Ry (& — alp, 1),
9(5, 1) = 5 (Rg(& 1)~ Rg(~& — o(p, 1), ),

where [-] denotes the mean value of a function over the angular variable &,

It is easy to verify that f(—&—o(p, %)) = f(€) and §(-&—(p, 1), n) =
—-g(& ). So, by Lemma 3.1, the functions u and v meet the condition (2.17). In

this case, the transformed mapping U~LAU is also reversible with respect to the
involution R: (§, n) = (=&, ).

Because the right hand sides of equations (2.19) have the mean value zero, we
can solve u and v from equations (2.19). But the difference equations introduce the
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small divisors. By the definition of N(I", 3), it follows that
o:(p, &) € N(T, 8) > o(p, 1) € O3.

Thus, we have

>—% | vo<|k|<K

2k

ko(p, A) |
27

forany (p, 2) e N(T, §).

Let f~k and gy be Fourier coefficients of f and g. Then, we have

i 0k
- -9k <
Y= Jkatp) _;0 kT Jke(p.) 0<[k|<K,

and u, =0, v =0 for k =0 or | k| > K. Moreover, u and v are affine in n.
C. Estimates of u and v. By the definition of norm, we have
| Tlsce ] <cre
on D(s —p, r)x N(T, §).
By Lemma 3.1, it follows that

ce Cre

Jull<

Ivi=

o (2.20)

ale !
on D(s — 2p, r)x N(T, 8).

Using Cauchy’s estimate on the derivatives of u and v in the domain
D(s — 3p, r/4) x N(T, 8), we obtain

ce

lJug || < et (2.21)
Cre Ce
e [ < prer v I < Py (2:22)

In the sane way as in [5], we can verify that UAU is well defined in
D(s —5p, nr) x N(T, 8) with 0 < n <1/8.
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D. Estimates of f, and g.. Since h(p, %) = [Rf ()], the estimate for h holds.
Let M, be defined as in Lemma 2.1. Then we have dist(M,, oM ) > %6. By
Cauchy’s estimates, it follows the estimates for ﬁp and ﬁx.

Moreover, by (2.11) and the implicit function theorem, if

[ha(p )5 W(pA)e M.,
then the equation
H,(p, 1) = p™ =2+ h,(p, 1) =0
determines an analytic mapping
Apipells, = do(p).

It is easy to see that the conclusions (2.12) and (2.13) hold. By (2.14), we have
N(I™", 8,) c M,.

We try to transform the mapping (2.8) into a new mapping (2.10) by U. Due to
U~IAU = A,, we have
fo(& ) = u(®)—uE) = h(p, 1)+ F(E+u, n+V).
By the first difference equation of (2.19), we have
fo =u(E+o(p, )~ uE)+ fE+u,n+v)- f(E)-h(p, 1)
From the reversibility of A, it follows that

{f(—x—w(p, M-f,z+g)-f(x,2)=0,
g(-x-o(p, A)-f, z+g)+g(x, z)=0.

Hence, we have

f(& n) - f(&)-h(p, 1)

= S(E M= Ri(©)+ F(& )= Ry (¢ - o(p, 1))
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1
=5 (FE& M) =Rt (&) + f(=& — a(p, %), 1) = Rt (=& — o(p, 1))

—f(=&-o(p, 1), M)+ f(=&-o(p, 1)~ f, n+9)),
which yields that

- . 2
| (& )= f(&)—h(p, )] < cne + cK"e™Pe +2%_

By (2.15)-(2.16) and (2.20)-(2.22), the following estimate of f, holds:

IEa < lug ll-hCps 2) + f -+ fe - lTufl+ 11 £ 01 v ]

2
- 2¢
+cne + cK e KPg 4 e

2
%II o]+ % +cne + cK e P, (2.23)

Similarly, for g, we get
gy = V(€ +a(p, 1), m) = V(& mp)+ g€ +u,n+Vv)-g(& n)
and

1 ce
— < fol+
i EH B L e

ce [a.l ce? cK Ne™Kpg
Ty + > +Cne +T. (2.24)
Now if one chooses ¢ sufficiently small such that
ce < 1

anp‘r+2 2

then combing with (2.23) and (2.24), we have

(2.25)

ce? ene + cK NeKeg
T+2 M ’

1
I fl+ N <
+ (04

By the definition of p, and E_, we have

3

2
ce -5
- < Cap1+221+2E2 _ (Xp1+2E+

ain+

1
Il +=lg. <
+

on D(s,, r,)x M,. Thus this ends the proof of Lemma 2.1.
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KAM iteration. If the conditions (2.11), (2.14) and (2.25) hold for every
mapping Aj, then the iteration lemma is valid for all j > 0. In the following, we

328

choose some suitable parameters to ensure that the above iteration can go on

infinitely.
At the initial step, set sp =S, Iy =T, pg = 5/20, &¢ = ap§ ?Eq, Mg =
Let K, satisfy KJe KoPo = .
Assume pj, sj, rj and E; are all well defined for jth step. Then, we define
1 3
1 , s
Pj+1=Pj/2 Sju1=5j -5 Mj=Ef rja=mnjr Ejq=c2E}, ej,

nj+1 and Kj, 4 are defined similarly.
Let Mg =M and Dy = D(sg, Iy). By the iteration lemma, we have a sequence
of closed sets {Mj} with M j,; = M, and a sequence of mappings U ;:

{X=§+uj(§: P, ),
z=m+Vj& i pR)

such that for any (p, A) e M, U; : Dj — Dj_4, where D; = D(sj, rj). Moreover,

Uj satisfies
ce;
Jujl+ vl < —2
Otp?—l

and
CE ; CeE;
j i
Uie |+ Viell < —=, ||vigll < —=
lujell+lviel api? [Vl !
on DjxMj. So the transformation V; =UgoUqo---oU; is well defined in

Dj x M and is seen to take Aq into
= Tl .
Aj =V AV;.

More precisely, if we write Ay as
{xl =X+ o+ Hg(p, M)+ (X, z; p),
=

z+9(x z; p)
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with Ho(p, 1) = p?™* -, and express Vj in the form

{x:§+ pj(& p, 1),
z=n+d;Emn p, 1),

then Ag is transformed into A;:

{521 =&+o+Hj(p, 1)+ (& p, 1),
m =n+g;jEn p 1),

2n+1 i-1p o
where H;(p, 2) = p*™** —1+hj(p, %), hj =" 'h. Let §; = A and
]
Cj=0j1 —%Sj,l with oy = o. From the iteration lemma, we know that the
equation

Hi(p, &)= p™ —a+hj(p,1)=0
on M defines implicitly an analytic mapping 2 = xj(p), pe Hoj , whose graph
in M forms an analytic curve rl
Define

’ j ’ 1
Mjs ={(p. )€ CxClp ety . (pa) T, X~ 0] < 351,

+17
Obviously, it follows that M j,; < M and dist(M .1, oM j) > %Sj. Let

Hj(P' A)=Hja(p, A)-Hj(p, 1)
Then, we have

1hi(p, )| <ej, V(p,A)eM;
and

o ~ 2¢;
[hip(p, M) [ +[hj(p, )] SS—J_J, V(p, 1) e M.
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Furthermore, we have
[Lja(p)=2j(p)| <25, Y(p,A)eMjy,

and

1 2
I fj||+ﬁ|| gjll sej =apjE;

on Dijj.

In the following, we will check the assumptions in the iteration lemma to ensure
KAM step is valid for all j > 0.

2¢;
Let Fj = S_J Then it follows that
j

T+2 n+t+1l,7Xj+1
I:j+1 < Xj+1 Ej+l _ Zn_l Xji1 € !

Fi — xj*2 Ej

r_1+r+le—Xj

Xj

3
where xj = Kjp;. By the iteration Ej ; = c2*"2E2, if E, is sufficiently small,

E; are all sufficiently small and so K p; are sufficiently large. Since the function

x"* e decreases as x >n-+t+1 we can choose a small E, such that

F.
it 1 <Lovis
F oS4 and F; < 7 Vj > 0. Moreover,
6_ T+1 X T+1
j+1 1 i 1
j j+1
ce ot
It is obvious that ﬁ < cEO2 < 5 Thus the assumptions (2.11), (2.14) and
anjpj
(2.25) hold.

Convergence of the iteration. Now we prove convergence of the KAM
iteration. Let Vj =UgoUjo--oU;j:DjxMj — Dy x Mg. Writing V; in the

form:
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{x =&+ pj(& p, A),
Z= n+qj(§7 n P, )\‘):

we have to show that p;, q; and their first derivatives converge uniformly to
some functions p, and g.. In fact, let D, = D(s/2, 0), M, :ﬂjzoMi and

V. =limj_,, V;. Inthe same way as in [5, 13] , we have on D, x My,

I P« [ + [ 9« I < cpoEqg
and

| DV, — 1] < cE.

Since V; is affine in n, we have the convergence of V; to V. on D(s/2, r/2).

12
Ut

Now we prove the convergence of h;. By iteration, we have h; =
Combining with the estimates for ﬁj, we have forall (p, 2) e M,
j-1
[hj(p, 1| < ) & < 2
i=0
Similarly, it follows that for all (p, ) € M j,
j-1 8 X8+r+lefxo

[hjp(p )]+ (P 1) < DRy < 2Fg < — 0
i=0 Po

So if Eg is sufficiently small, then we have
1

and the assumption (2.9) holds.

Let h, =limj_,, hj. Then, forall (p, ) € M., we have

| h*(p, k)| < 2¢ (2.27)
and
8 X8+r+1

e 0 1

PO
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1 0 . 2 .
Let o, = c—§Zj=06j. By (2.26), it follows that o, > o~ 5:8. If Eg is

sufficiently small such that 8y < o, then we have o, Z%G. Thus Tl;, <

ﬂjzo HG] '
Similarly, we can prove the convergence of A ; on T, . In fact, we can choose

Ey sufficiently small such that Fi s% forall j>0. Then, for i > j, it follows
that

-1 6
[2i(p)=2j(p)| < ZHS, < 2F;8; < 7’
I=j

Since T'J = {(p, Li(p)lpe HGJ_} c Mj and %; are all analytic on II; , so is

Oy !

the limit 1. Let A;(p) = A(p), p € I1,,. Then

()5 (P)] = -

This implies that I'* = {(p, M(p))| p € [15,} = Mj andso I'" = M, = jzoMi'

Obviously, for (p, &) € T'*, we have
p?™ _ %+ h(p, 1) =0
with h,(p, 1) satisfying (2.27).
In the same way as in [6], we can prove that f, and g, are C™-smooth with

respectto (p, A) on M,. Thus the proof of Theorem 2.2 is complete.

3. Appendix

In this section, we formulate a lemma which has been used in the previous
section. For detailed proofs, we refer to [3]. In the construction of the transformation
in Lemma 2.1, we will meet the following difference equation:

I(x + ®) — 1(x) = g(x). (3.28)
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Lemma 3.1. Suppose that I(x) and g(x) are real analytic on D(s), o satisfies
the Diophantine condition (1.3). Then, for any 0 < s’ < s, the difference equation
(3.28) has the unique solution 1(x) e D(s") satisfying
c
NIy < ———719() ;-
o

S — S/)’H—l

Moreover, if g(—x — ) = g(x), then 1(x) is odd in x; if g(-Xx — @) = —g(x), 1(x)

is even in x.
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