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Abstract

We estimate the mixing proportion in a discrete mixture of two lifetime

pdf ’s, where one component is the length-biased version of the parent

distribution using the EM algorithm. We compare our results with the

estimates obtained by solving the MLE equations numerically.

1. Introduction

The concept of using weighted distributions in lifetime studies
originates from the need of estimation using sampling distributions that
are different from the parent populations. In many situations,
experimenters do not work with a truly random sample from the
population that they are interested in, either by design, or because
experimental conditions make random selection from the target
population impossible. Even if a random sample can be obtained, the
experimenter may choose not to use it, since a carefully chosen biased
sample may turn out to be more informative (e.g., Bayarri and DeGroot
[2]).The usual statistical analysis assumes that a random sample from
the original distribution is obtained; however, since the observations do
not have equal chances of entering the sample, the resulting sampling
distribution does not follow the assumed original distribution. Feller’s [4]
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Waiting time for the bus paradox is perhaps the most delightful example

of how a biased sample arises. If we consider interarrival times of buses
at a bus stop as sampling units, then the arrival of an individual at the
bus stop is equivalent to choosing an interarrival interval. Clearly the
probability of a certain interval being chosen is proportional to its length.

That is, if X be the interarrival time random variable with pdf ( ),xf  and

Y is the length of the interarrival time point that contains the arbitrary

point, t, of one’s arrival, with cdf ( ),yG  then from Feller’s result we have

( ) ( )∫−µ=
y

dxxxfyG
0

1 , (1.1)

when ( ) .∞<=µ XE  Intuitively, an interval of length y has y times the

original likelihood of covering the arbitrary point t, hence we modify the

original density ( )xf  to

( ) ( ),yyfcyg ⋅=

where c is the normalizing constant. Such statistical models that

incorporate the restrictions under which the observations were obtained

are called weighted models, and the random samples obtained under

sampling restrictions are called selection samples. In this article we focus

on a special case of weighted distributions that arise when observations
are selected with a probability proportional to their “length”, namely
the length-biased distributions. The length-biased distributions occur
naturally for some sampling plans in reliability, biometry, wildlife
studies, and survival analysis, among others. More specifically, a

distribution function FG  defined on +R  is called length-biased

distribution corresponding to a df F (also defined on ),+R  if

( ) ( ) ,,
0

1 +− ∈∀








⋅µ= ∫ RyxdFxyG
y

FF (1.2)

where ( )∫
∞

⋅=µ
0

.xdFxF  Note that the Radon-Nikodym derivative of

FG  with respect to F is given by

( )
( ) .

F

x
xdF
xdG

µ
= (1.3)
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Hence, the length-biased pdf can be written as

( ) ( ) ,
F

xfxxg
µ
⋅= (1.4)

where Fµ  is assumed to be finite and nonzero. Most recently Akman [1]

examined lifetime estimation in the presence of a length-biased sampling

plan. Here we consider a random variable, ,pX  whose probability density

function is a discrete mixture of the assumed (original) pdf and its
length-biased version, that is,

( ) ( ) ( ) ( ) .10,1 ≤≤⋅+⋅−= pxgpxfpxfp (1.5)

Using (1.4), we observe that

( ) ( ) ( ) .1 





 +−=

XE
xppxfxfp (1.6)

We call a pdf defined in (1.6) an original length-biased (OL) mixture

pdf. Estimation of the parameter p, which we call contamination

parameter, is important due to the fact that its value provides an

indication of the presence of length-biasedness in the sampling plan.

This article deals with estimation of the mixing proportion p and is

organized as follows: In Section 2, we consider estimation of p using the

EM algorithm. Section 3 contains an application where we estimate the
mixing proportion in a mixture of inverse Gaussian pdf and its length-
biased counterpart.

2. Estimation via EM algorithm

In this section, we consider the development of the EM algorithm to

estimate p, where the mixing pdf ’s are the original and length-biased

versions of an assumed model.

Let Y be a random vector corresponding to the observed data y with

pdf ( ),; Θyg  where ( )′θθ=Θ d...,,1  is a vector of unknown parameters

with parameter space Ω. In the context of the EM algorithm, the observed
data vector y is viewed as incomplete and is considered as an observable
function of the complete data. The notion of incomplete data includes the
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conventional sense of missing data, but it also applies to cases where the
complete data represent what would be available from some hypothetical
experiment. Within this framework we let x denote the complete-data
vector, and we let z denote the vector containing the additional data,
commonly referred to as the unobservable or missing data. If we let

( )Θ;xgc  be the pdf of the random vector X, then the complete data log

likelihood function is given by

( ) ( ).;loglog Θ=Θ xgL cc (2.1)

The EM algorithm approaches the problem of solving the incomplete
data likelihood equation ( ) 0=Θ∂Θ∂L  indirectly by proceeding iteratively

in terms of the complete data log likelihood function, ( ).log ΘLc  Since it is

unobservable, we replace ( )ΘLclog  by its conditional expectation given y,

using the current fit for Θ. More specifically, let ( )0Θ  be some initial value

for Θ. Then in the first iteration, the E-step requires the calculation of

( ( ) ) ( ) ( ){ }.log; 0
0 yEQ c |Θ=ΘΘ

Θ
(2.2)

On the other hand, the M-step requires the maximization of

( ( ) )0; ΘΘQ  with respect to Θ over Ω. In other words, we choose ( )1Θ  such

that

( ( ) ( ) ) ( ( ) )001 ;; ΘΘ≥ΘΘ QQ (2.3)

for all .Ω∈Θ  The E- and M-steps are carried out iteratively until the

difference

( ( ) ) ( ( ) )kk LL Θ−Θ +1 (2.4)

changes by an arbitrarily small amount in the case of convergence of the

sequence of likelihood values { ( ( ) )}.kL Θ  Good overviews of the EM

algorithm are provided by Little and Rubin [5] and Tanner [9]. Redner
and Walker [7] studied the properties of the algorithm in terms of
maximum likelihood estimation in mixture densities, while McLachlan
and Krishnan [6] provide a book-length treatment of EM where
particularly an estimation of mixing proportions for a general mixture of
densities is discussed.
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In our case, we consider the EM algorithm in likelihood estimation
for mixture models, where

( ) ( )∑
=

φ θ⋅π=
m

i
ii ff

1

,;XX

with ∑ =π .1i  The likelihood equation ( ) 0=φ∂φ∂L  can be so manipulated

that the likelihood estimate φ̂  satisfies

( )∑
=

==π
n

j
iji mina

1

...,,1,ˆ

and

( )∑∑
= =

=θ∂θ∂
m

i

n

j
jiij xfa

1 1

.0ˆˆ;log

In case of finite mixture models, we let the vector of indicator

variables ( )′= mjjj zzz ...,,1  be defined by





∉
∈

=
,0
,1

ij

ij
ij Gx

Gx
z

where ( ).,1~...,,1 πm
iid

n Mzz

Under the necessary assumptions, jx  given jz  has log density

( ) ( )∑
=

=θ
m

i
jiij njxfz

1

....,,1,;log

Hence, the log-likelihood for the complete data X and Z is given by

( ) { ( )}∑∑ θ+π=φ
i j

jiiij xfzL .;loglog

Then the EM algorithm is applied to the mixture model by treating Z

as missing data.

In particular, we have

( ) ( ) ( )∑ ∑π=θ|π=
i i

iiiii xfxfxf .
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The log-likelihood is given by

( )∑=
j

jxfL log

( ( ( )) ( ))∑∑ −π=
i j

ijjiiij axfa ,loglog

where 
( )
( ) .

j

jii
ij xf

xf
a

π
=  Using Lagrange multipliers, we obtain

( )
( )j

jii
ij xf

xf
a

π
=∗

∑
=

∗ =π
n

j
iji a

n
1

1

( )∑∈
∗ =φ

j
jijxi xfa .logmaxarg

D

In particular, for the OL mixtures of the form

( ) ( )∑
=

⋅=ψ
2

1

,;
i

ii xfpf X (2.5)

the loglikelihood is

( )∑
=

ψ|=
n

j
jxf

1

.logL (2.6)

Substituting (2.5) in (2.6), we obtain

( )∑ ∑
= =














⋅=

n

j i
ii xfp

1

2

1

.logL (2.7)

For each j, we maximize

{ ( ( )) ( )}∑
=

−
2

1

loglog
i

ijjiiij axfpa
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subject to ∑
=

=
2

1
.1

i
ija  That is, using Lagrange multipliers, we maximize

{ ( ( )) ( )}∑ ∑
= =














−λ+−

2

1

2

1

;1loglog
i i

ijijjiiij aaxfpa

the result is

( )

( )

.
2

1
∑
=

⋅

⋅
=

i
jii

jii
ij

xfp

xfp
a

Similarly, maximizing with respect to ip  gives

.1
n

a

p

n

j
ij

i

∑
==

Hence, we have maximized

( ( ) ( ))∑ θθΘ +=
j

jjjj xfaxfaf loglog 21

( ( ) ( ) ( )∑ 







+= θθ

j
j

j
jjj xf

XE
x

axfa loglog 21

( ) ( )∑ ∑−= θ
j j

jj XEaxf )(loglog 2

 + (term with no θ).

We can summarize the maximization process for OL mixtures by the

following algorithm:

1. Initial guess for ;ija

2. Calculate ip  and θ;

3. Update ;ija

4. Go to step 2 until ( ) ( ) .1 ε<−+ k
ij

k
ij aa
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3. An Example

In this section, we perform a comparative study for the EM

algorithm-based estimator using a mixture model of an inverse Gaussian

and a length-biased inverse Gaussian densities. Inverse Gaussian is one

of the most commonly used lifetime distributions applicable to a wide

variety of real life problems. Its distributional properties and relevant

applications can be found in Chhikara and Folks [3] and Seshadri [8].

Let X be an inverse Gaussian random variable with pdf

( )
( )

.0,,0,exp
2

,

2

22
21

3
>µλ>








π

λ=λµ|

µ−

µ

λ−

x
x

xf
x

x

(3.1)

The OL mixture of inverse Gaussian and length-biased inverse

Gaussian (MIG) is given by

( )
( )

.10,1exp
2

,,

2

22
21

3
≤≤








µ
+−








π

λ=λµ|

µ−

µ

λ−

pxpp
x

pxf
x

x

(3.2)

Using a random sample nXXX ...,,, 21  with pdf (3.2), we obtain the

normal equations for µ, λ, and p as

( )∑ ∑ µ+−µ
−

µ

λ−
µ

λ=
µ∂
∂

i i i

i
i

pxp

pxnxL

1223
(3.3)

( )∑ ∑µ
+

µ
−

λ
=

λ∂
∂

i i i
i x

nxnL 1
2
1

2

1
2 2

(3.4)

( )
( )∑ µ+−

µµ−
=

∂
∂

i i

i
pxp

x
p
L .

1
(3.5)

For example, for fixed p, we obtain the MLE for triples ( )p,, λµ  such as

( ( ) ) ( ( ) ),
2
1,

~
1

~
2,

~
,0,1

~
, 111 −−− −− XXXXXXXX  and ( ( ) ).1,

~~
,

~ 2 XXXX −

In general, we can obtain unique solutions for ( )λµ,  for fixed p that



w
w

w
.p

ph
m

j.c
om

ITERATIVE MIXTURE ESTIMATION FOR MODELS … 179

maximize the joint likelihood function obtained from (3.2). However, for

unknown p, we consider the nonparametric and the EM algorithm for the

estimation of mixing proportions since equation (3.5) results in a

polynomial of order n.

3.1. Simulation study

The EM estimators of the mixing parameter for a mixture of inverse

Gaussian and length-biased inverse Gaussian distributions were

compared through a simulation study of 5,000 simulations of sample size

100 each. Inverse Gaussian samples with ( ) ( )1,1 =λµ<λµ  and

( )1>λµ  were generated. In the tables given below, the first column

contains the values obtained using the EM algorithm. The second (search

method) column contains estimates of p obtained by substituting values

in 
1000

1  increments for ( )1,0∈p  until a solution for ( )λµ,  is achieved

in MLE equations. The MSE for each estimated value is presented in

parentheses within the same cell. The computations were performed by

using IMSL with FORTRAN. The following tables summarize the means

and the MSE’s (given in parentheses) of the estimators for different

parameter values.

Estimates of p for Mixture IG

Table 1. 





 <
λ
µ

1

EM alg. Search

0=p ( )0247.301761.1 EE ( )0212.201149.1 EE

25.0=p ( )0204.301810.2 EE ( )0211.301269.2 EE

50.0=p ( )0284.201293.5 EE ( )0286.101137.5 EE

75.0=p ( )0262.201771.7 EE ( )0219.201603.7 EE

1=p ( )0209.301626.9 EE ( )0201.301063.9 EE
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Table 2. 





 =
λ
µ

1

EM alg. Search

0=p ( )0266.301298.1 EE ( )0251.201222.1 EE

25.0=p ( )0249.301739.2 EE ( )0236.301912.2 EE

50.0=p ( )0261.201919.5 EE ( )0232.101532.5 EE

75.0=p ( )0273.201107.7 EE ( )0284.201204.7 EE

1=p ( )0255.301006.9 EE ( )0239.301945.9 EE

Table 3. 





 >
λ
µ

1

EM alg. Search

0=p ( )0245.401194.2 EE ( )0285.201769.1 EE

25.0=p ( )0267.301477.3 EE ( )0258.301253.2 EE

50.0=p ( )0286.201347.6 EE ( )0244.201721.5 EE

75.0=p ( )0298.201259.7 EE ( )0299.201554.7 EE

1=p ( )0278.401875.8 EE ( )0292.301543.9 EE
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The graphs below depict the distribution of p̂  obtained using the

search method for mixture inverse Gaussian model simulated under

different values of p.

Figure 1. Distribution of p̂  for mixture inverse Gaussian model.
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3.2. Remarks

From the simulation results, we observe that overall EM estimation
of the mixing parameter performs better since it has a smaller MSE than
that of the search method. Additionally it is important to note that the
computations the estimates obtained via the search method should be
considered for reference only, and not for comparison purposes, as the
search method is computationally cumbersome and impractical.
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