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Abstract 

In this paper, we analyse a special case of the “Sixth Problem of the 
Millenium: Navier-Stokes equations, existence and smoothness”, whose 
method of solution was suggested by Ladyzhenskaya in [7]. Whereas, the 
latter proposed analysis of the problem for a homogeneous boundary 
condition, we analyse the problem, at hand, with  a non-homogeneous 
boundary condition. Our situation of a non-homogeneous boundary 
condition arises out of the application of a boundary permeation model 
proposed by Sauer [9] for the second grade fluids. The model imposes a 
zero initial velocity that will be explained later. We have already applied 
the model and the trace-related canonical operators to confirm existence 
and uniqueness of the ‘weak’ solution to the stationary version of the 
current problem [3]. Our solutions are referred to as a ‘weak’ as they 
possess weak derivatives in the sense of distributions or test functions. 
Also, in [2] we set the necessary and sufficient conditions for the 
existence of weak solutions to the problem at hand. In this paper, we wish 
to confirm existence and uniqueness using trace-related canonical 
operators; thus under different conditions to those proposed by 
Ladyzhenskaya in [7]. 



JOE HLOMUKA 262 

1. Symbols Used 

The following symbols will be used: 

 ( ) :;; 321 xxx=x  position in a 3-dimensional space 

 ( ) :xv  velocity field in the fluid; Ω∈x  

 ρ : fluid volume density 

 μ : coefficient of viscosity; assumed constant 

 ( ): xn  the unit exterior normal to Γ, where Γ∈x  

 ds : Lebesgue measure on the surface area on Γ 

 ( ): xda  the effective area measure on Γ 

 ( ): xς  density function in terms of the area measure da, 

  i.e., ( ) 10; <ς<ς= xdsda  

 ( ) :xδ  surface thickness at any point Γ∈x  

 ( ) :xσ  surface density of fluid at any ,Γ∈x  

  i.e., ( ) ( ) ( )ρςδ=σ xx x  

 ( ) :0 xvγ  velocity at Γ∈x  

 p : fluid pressure 

 ( ) :xvη  the normal velocity component at Γ∈x  

  (we  shall assume that ( ) ( ) ( ))xnyv tt v ,,y0 η−=γ  

 ( ) :vD  the rate of deformation tensor 

 κ : mean curvature of the inner container 

 ( ) :2 ΩH  Sobolev space 2, on the bounded domain 3R⊂Ω  

 ( ) ( ) :22 ΓΩ LL  Spaces of Lebesque integrable functions defined on Ω  

and its boundary Γ, respectively 
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2. Introduction 

The proposed problem analysis in [7] is in the spaces ( ),Ωs
mW  whereas our 

version is analysed in the ( )Ωs
mH  spaces. The ( )Ωs

mW  spaces are measurable 

functions lR→Ω:v  in ( )ΩmL  with generalized derivatives vk
x∂  with respect to 

kx  up to order s. The norm in these spaces is given by, ( ) ( ) += ΩΩ ms
m LW vv :  

[ ]( )∑
≤≤

×Ω∂
sk

TL
k
x m

0
,0 .v  The analysis of the problem confirms the existence and 

uniqueness of a generalized solution. 

We define the ( )Ωs
mH  spaces as follows: 

( ) ( ) ( ) ;;::
21 ⎭

⎬
⎫

⎩
⎨
⎧

≤κΩ∈
∂∂∂

∂Ω∈=Ω
ααα

κ
sLxxxLH mms

m
n

vv  

where +κ=κ 1:  ;2 nκ++κ  and has the norm defined by ( ) =Ω :s
mHv  

( )
.

/1

0 21

m

s Lmnxxx ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂∂
∂∑

≤α≤ Ωααα

κ v  The derivatives 
nxxx ααα

κ

∂∂∂
∂

21
 v  are 

weak derivatives, in the sense of distributions, with a compact support which is a 
subset of Ω. 

In this case we will confirm the existence and uniqueness of a weak solution to 
the problem in hand. However, for the sake of the regularity of the time-derivative, 

we will seek our weak solution in the space ([ ] ( )) .1;;,,0 ∞<≤∞<Ω mTHTL s
m

m  

Our boundary condition is the time-dependent boundary permeation model (1); 
hence we have a non-homogeneous and time-dependent boundary condition. This, 
obviously, contrasts sharply with the boundary condition in [7]. Our boundary 
condition, applied in the statement for the conservation of linear momentum, leads to 

the dynamic boundary equation, [ ] ( ) ( ) ( );,2  00
2 tPyptyvvvt =γ+μκη+ρζη+η∂σ  

Γ∈y  (see (3) on p. 4 of [2], for the statement of the conservation of linear 

momentum). 

The preceding evolution boundary equation strengthens our boundary condition 
further and is subsequently used in the analysis of the problem. It could also be 
useful to compare the energy statements for the two problems (see (7) in this paper, 
and (4.21) on p. 272 of [7]). 
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3. The Setting for the Problem 

The setting for the problem is a Navier-Stokes fluid, in a container which, in 
turn, is immersed in a larger container, with the same fluid. The boundary of the 
inner container is permeable and denoted by Γ; whilst the boundary of the outer 
container is solid and denoted by .0Γ  

The body of fluid between Γ and 0Γ  is denoted by an open bounded domain 

,3R⊂Ω  with the cone property whilst that inside the inner container is denoted by 

.0Ω  

In this setting, Γ is the boundary for Ω and is assumed smooth and infinitely 
differentiable. 

4. The Sauer-Maritz Boundary Permeation Model 

We denote the unit exterior normal to Γ by ( )xn  and the trace operator 0γ  will 

be used to denote restriction to Γ. 

The original model assumes that Fluid particles are accelerated from rest in the 
domain 0Ω  across the boundary Γ into Ω, or they are decelerated from Ω across Γ 

and come to rest in .0Ω  

It is assumed the velocity field ( )tx,v  always satisfies the homogeneous 

Dirichlet condition: ( ) ,0., =tv  on 0Γ  for 0.t >  

At the permeable boundary Γ, we shall assume that 

( ) ( ) ( ).,,0 xnxxv tt vη−=γ  (1) 

The scalar valued function ,vη  defined on Γ, is unknown, and is determined 

by  a  dynamic boundary condition, which is an evolution equation. Also, the 
incompressibility of the fluid leads to the condition ( ) ,0,. =∇ tv x  which, in turn 

leads to 

.0∫Γ =η dsv  
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5. Initial Problem Formulation 

We look for ( ) ( )Ω∈ 2 ., Htv  such that 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

[ ] ( ) ( ) ( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=γ+μκη+ρζη+η∂σ

Γ∈η−=γ

=∇

Ω∈⊂Ω∈+−∇=

Δμ−∇ρ+∂ρ

.,2  )b(

.model) permeationboundary (;,,

;0,.

subject to;;;,

,,,. , (a)

00
2

0

23

tPypty

yytyty

tx

LRxtxxp

txtxtxtx

vvvt

v

t

nv

v

ff

vvvv

 (2) 

For this formulation, we choose the following test functions: 

{ ( ) ([ ] ( )) ( )tyHTLtx ,,,,0,: 0
22 vv γΩ∈=Θ  

( ) ( ) ( ) ( ) }.;0,.;on0,;on;, 0 ∞<=∇Γ=Γη−= Ttxtxytyv vvn  

For further analysis we transform problem (4): we multiply 3(a) by 2
1−

ρ  and 3(b) by 

2
1−

σ  to obtain the following equations: 

( ) ( )( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

σ=γσ+ημκσ+ζηρσ+η∂σ

ρ=∇ρ+Δμρ−∇ρ+∂ρ

−−−−

−−−

.,2  

,,,,,.,

02
1

02
1

2
1

22
1

2
1

2
1

2
1

2
1

2
1

2
1

tPypty

txxptxtxtxtx

vvvt

t fvvvv
 (3) 

Remarks 5.1. (a) Assuming that ( )n,, 21 ττ  are the unit vectors in tangential 

and normal directions for an arbitrary point on the surface Γ of the container, then 
the velocity field on the surface would be given by, ( ) ( ) +τγ=γ 1100 ,, tyty vv  

( ) ( ) ;;,, 220 Γ∈η−τγ ytyty v nv  where 10vγ  and 20vγ  are tangential to the surface 

Γ. 

(b) We, however, observe that the permeation model (1) and the definition of 
the set Θ of our test functions assume 10vγ  and 20vγ  are not effective. Thus, for 

the purpose of the permeation model and the choice of our weak solutions, 
.  2010 0vv =γ=γ  Later, this will be crucial in the characterisation of some operators. 
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(c) With the trace-operator restriction as defined by ,0vv γ  being injective, 

then ,0 0v =γ  will imply that .0v =  On the other hand, 0=ηv  will imply that 

.0v =  Hence, 0=ηv  implies that ;0 0v =γ  which in turn implies that ,0v =  in 

terms of the definition of Θ. 

6. Problem Reformulation as an Implicit Evolution Equation; 
the Energy Identity 

First, we rewrite the problem now represented by (5) as follows: 

( )

( )

,

2

.

02
1

2
1

02
1

2
1

2
1

2
1

22
1

2
1

2
1

2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

σ

ρ
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

γσ

∇ρ
+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

σκη

Δρ−
μ+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ςηρσ

∇ρ
+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ησ

ρ
∂

−

−

−

−

−

−

−
tPp

p

vv

t
fvvvv

v

 

where the coupling is provided by the restriction of the trace operator defined by, 
,0vv γ  with .0 nv vη−=γ  

We then conclude that 

( ) ;Fpvvv =+++∂ NLBt  (4) 

where 

( ) ( ) ;,: 222
1

2
1

YLHB v =Γ×Ω∈ησρ=
−

vv  

;2,: 2
1

2
1

YL v ∈σμκηΔμρ−=
−−

vv  

( ) ( ) ;,.: 22
1

2
1

YN ∈ςηρσ∇ρ=
−

vvvv  

ppp 02
1

2
1

,: γσ∇ρ−=
−−

 and ( ) .,: 02
1

2
1

YtP ∈σρ=
−−

fF  

Remarks 6.1. (a) The said coupling relation provided for by the restriction of 
the trace operator also “relates” all the preceding canonical operators to the trace-
operator. 
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(b) It should not be hard to show that ( ) ( ) YLH =Γ×Ω 22  is a real Hilbert 

space. 

(c) The trace-related canonical operators will be used in the analysis of the 
problem at hand. As in general these operators are not closed, a suitable subspace of 

( )Ω2H  will be defined for the analysis of the problem. 

Thus, we construct: =Λ : .)()()( Θ⊃NdomLdomBdom ∩∩  

(d) In the definition of the space Λ, we left out ppp 02
1

2
1

,: γσ∇ρ−→
−−

 

since the relation ( ) 0p, =YBw  (see p. 22 of [3]), renders the pressure ineffective 

in the analysis of the problem. Thus, we reformulate the problem as follows: 

We seek ( ) [ ]( ) ,,;,,0., 2 Θ∈∞<∈ vw TYTLt  such that the following 

conditions are satisfied: 

( )

⎪⎩

⎪
⎨
⎧

=

=+++∂

rest. ofposition   thefrom starting  particle fluid afor ;0,0:
:subject to

,v

w

Fpvw NLt
 (5) 

Remarks 6.2. (a) The initial conditions denote the status of a particle starting 
from rest, either from outside or inside of the container. 

(b) .: vw B=  The solution to (5) will lead to the solution to (2), through the 

bijection, ([ ] ( )) [ ]( ) ,;,,0,,0: 222 ∞<→Ωχ TYTLHTL  as referred to on p. 2 of 

[2]. This bijection owes its existence to the Lions/Magenes trace theorem, on p. 39, 
Theorem 8.3 of [8]. Also see Remarks 5.1(a) and 5.1(c) in this paper. 

We now derive the energy identity for the problem: Taking the scalar product of 
(4) with vB  we obtain the following interim expression: 

( ) ( ) ( )( ) ( ) ( ) .,,,,, YYYYYt NL wFwpwvwvww =+++∂  (6) 

To simplify (6), we use the following identities: 

( )
( ) ( )

;
2
1, 22

22 ⎥⎦
⎤

⎢⎣
⎡ ησ+ρ=∂

ΓΩ LvHYt dt
d vww  

( ) ( )
( )

;2, 2
2 Ω

μ=
LY DL vwv  by (1) of Proposition 3.3.1 in [4]; 
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( )( ) ∫Γ η⎥⎦
⎤

⎢⎣
⎡ −ςρ= ;

2
1, 3dsN vYwv  by (2) of Proposition 3.3.1 in [4]; 

( ) ;0, =Ywp  by 7(b); p. 22 of [3]; 

( ) ( ) ( ).,, 2 Ω= LY vfwF  

We then simplify (6) to obtain the energy identity: 

( ) ( )
( )

( ) ( )∫Γ ΩΩ
=η⎥⎦

⎤
⎢⎣
⎡ −ςρ+μ+ ;,

2
1v2

2
1

22
32/

LvL
dsDtE vf  (7) 

where ( )
( ) ( )

.: 22
22 ΓΩ

ησ+ρ=
LvH

tE v  

As our external body forces are mainly gravitational, and hence conservative, 
we have, ( ) ( ),: xxf pE−∇=  where ( )xpE  is the gravitational potential energy of 

the  fluid particle at x. Hence f may be part of the expression ( ),
2
1 / tE  where, 

[ ( ) ( )] ( ).
2
1 

2
1 // tEEtE p =∇− x  In that case we may then set ;: 0f =  leading to the 

vanishing of the right hand expression of (7). 

We thus end up with the energy identity: 

( ) ( )
( )

.02
122

1 32/
2 ∫ΓΩ

=η⎥⎦
⎤

⎢⎣
⎡ −ςρ+μ+ dsDtE vL

v  (8) 

We rewrite (8) and subsequently obtain, ( ) ( )
( ) ∫ΓΩ

η⎥⎦
⎤

⎢⎣
⎡ ς−ρ=μ+ .2
122

1 32/
2 dsDtE vL

v  

By Theorem 7.1 of [2], the integral ∫Γ η⎥⎦
⎤

⎢⎣
⎡ ς− dsv

3
2
1  is bounded. Hence 

( ) ( )
( )

( ) ( )YYL
LDtE wvwwv ,,2

2
1

t
2/

2 +∂=μ+
Ω

 is bounded. 

7. Compact Imbeddings: The Rellich-Kondrachov Theorem 

Remarks 7.1. (a) Let ∪
M

1=
Ω  be the finite union of the k-dimensional planes in 

3R  that intersect the bounded subdomain 0Ω  of Ω in accordance with the statement 
of the Rellich-Kondrachov theorem (see Theorem 6.2; p. 144 of [1]). 
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(b) Since Ω is bounded, then 0Ω=Ω  (see Remarks 6.3(4); p. 145 of [1]). 

(c) Hence .0
1

k

i
i Ω=ΩΩ

=
∩∪  In our case of ,2,3 =kR  and .0

kΩ⊂Γ  

(d) Assuming the cone property for Ω; and since, nmp >  for 2;2 == pm  

and ;3=n  by Part II of the Rellich_Kondrachov theorem, and in view of the 

boundedness of the trace ,: 0uu γ→γ  the imbedding ( ) ( )Γ→Ω 22 LH  is compact; 

a bounded sequence ( )nu  in ( )Ω2H  will have a convergent subsequence. 

8. The Riesz Representation for the Problem 

Consider the implicit evolution equation: 

( ) .0Fpvvw =−+++∂ NLt  (9) 

The following proposition shows that the preceding equation may be rewritten in 
terms of an appropriate linear and bounded operator as the result of the application 
of Riesz’s representation theorem: 

Proposition 8.1 (Riesz’s representation). For the implicit evolution equation, 
there exists a bounded linear operator 

( ) ;: 2 YHA →Ω  such that, 

;vvw ALt =+∂  and the implicit equation is reduced in the form, 

( ).vv NA −=  

Proof. We take the scalar product of (9) with vB  to obtain, 

( ) ( ) ( )( ) ( ) ( ) .0,,,,, =−+++∂ YYYYYt NL wFwpwvwvww  

Since we have shown that ( ) 0, =Ywp  and ( ) ,0, =YwF  

( ) ( ) ( )( ) .,,, YYYt NL wvwvww −=+∂  

Finally, by (8), 

( ) ( ) .2
1,, 3∫Γ η⎥⎦

⎤
⎢⎣
⎡ ς−ρ=+∂ dsL vYYt wvww  
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We now define ( ) RYHJ →×Ω2:  as follows: 

( ) ( ) ( ) .,,:, YYt LJ wvwwwv +∂=  

We then observe the following: 

(a) J is a sesquelinear form by the definition 3.8-3 on p. 191 of [5]; 

(b) J is bounded since ∫Γ η⎥⎦
⎤

⎢⎣
⎡ ς− dsv

3
2
1  is bounded by Theorem 7.1 of [2]. 

Then, by Theorem 3.8-4, on p. 192 of [5], there exists a bounded linear operator 

( ) YHA →Ω2:  such that ( ) ( )YAJ wvwv ,, =  and hence, ;vvw ALt =+∂  which 

implies that 

( );vv NA −=  and the result follows. (10) 

9. Characterization of the Linear Operator ∞<∈+∂ TTtLBt ],0[;  

We note that in the following analysis, the abstract Cauchy problem (5) is not 

directly involved. However, due to the established relation, ( ) ( )Ω≅Ω 22 HH  

( ),23 Γ× H  (see Proposition 10.4; (15) and (16) on p. 27 of [3]); the final result of 

the analysis will infer on (5) as well. 

Proposition 9.1. (a) The operator LBt +∂  is self-adjoint; 

(b) There exists 0>ξ  (independent of v) such that 

( )
( )

.22
2 Ω

α≥+∂
HYt LB vv  

Proof. (a) For θ, ,Θ∈ϕ  

( )( ) ( ) ( )YYtYt BLBBBLB ϕθ+ϕθ∂=ϕθ+∂ ,,,  

( ) ( )YY BLBB
dt
d ϕθ+ϕθ= ,,

2
1  

[ ( ) ( ) ( ) ( )] ( ) ( )( ) ( ),,2,,2
1

222 ΩΓϕθΩ ϕθμ+ηησ+ϕθρ= LLH DDdt
d  



EXISTENCE AND UNIQUENESS FOR THE ‘WEAK’ SOLUTION … 271 

( )( ) ( ) ( )YYtYt LBBBLBB ϕθ+ϕ∂θ=ϕ+∂θ ,,,  

( ) ( )YY LBBB
dt
d ϕθ+ϕθ= ,,

2
1  

[ ( ) ( ) ( ) ( )] ( ) ( )( ) ( ).,2,,2
1

222 ΩΓϕθΩ ϕθμ+ηησ+ϕθρ= LLH DDdt
d  

Hence, if 
( )( ) ( )( ) .,, YtYt LBBBLB ϕ+∂θ=ϕθ+∂  

Since ( ) ( ) ( ),2322 Γ×Ω≅Ω HHH  then v is identifiable with vB  and the result 

follows.  

(b) We now put .v=ϕ=θ  

Then 

( )( ) ( )vvvvv BLB
dt
dBLB YYt ,

2
1, 2 +=+∂  

( ) ( )
( )

( )
.22

1 222
222 ΩΓΩ

μ+⎥⎦
⎤

⎢⎣
⎡ ησ+ρ=

LLvH
Ddt

d vv  

Therefore, 

( )( ) .2
1, 3∫Γ η⎥⎦

⎤
⎢⎣
⎡ ς−ρ=+∂ dsBLB vYt vv  

For the permeable boundary flows ( ),0≠ηv  there are two possibilities: 

Case I. ( )( ) ,0, ≥+∂ Yt BLB vv  

for 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<η≥ς

>η≤ς

.flows) (inward 0 and 2
1

or
,flows) (outward 0 and 2

1

v

v
 

By definition (2); on p. 470 of [5], .0>+∂ LBt  Hence, there exists ,0>C  such 
that, 

( ) 22
YYt BCLB vv ≥+∂  

[
( ) ( )

]22
22 ΓΩ

ησ+ρ=
LvH

C v  

( )
.v 2

2 Ω
ρ≥

H
C  

With ,ρ=ξ C  the result follows. 
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Case II. ( )( ) ,0, ≤+∂ Yt BLB vv  

for 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<η≤ς

>η≥ς

.flows) (inward 0and2
1

or
,flows) (outward 0and2

1

v

v
 

We now consider the spectrum of the operator LBt +∂  as defined by the following 

eigenvalue problem: 

( ) ( ).; LBBLB tt +∂σ∈λλ=+∂ vv  

Therefore, 

( )( ) ( )YYt BBBLB vvvv ,, λ=+∂  

.2
YBvλ=  

Hence, for this case, 0.<λ  Note that 0=λ  is excluded for flows. 

Proceeding, we have, 

( ) 222
YYt BLB vv λ≥+∂  

[
( ) ( )

]222
22 ΓΩ

ησ+ρλ=
LvH

v  

( ) [ ]( ) ( )
;2

2
22

22 Ω
σ

Ω +∂

ρ≥ρλ≥
H

t
H LBr

vv  

where ( )LBr t +∂σ  is the spectral radius of the operator ,LBt +∂  defined by, 

( ) ( )n n
tnt LBLBr +∂=+∂

∞→σ lim:  (see (11) on p. 378 of [5]). Since LBt +∂  is 

bounded, the limit does exist. With 
[ ]( )

,: 2LBr t +∂

ρ=ξ
σ

 the result follows.  

Proposition 9.2. The operator , LBt +∂  

(a) is invertible, and ( ) 1−+∂ LBt  is a bounded linear operator for ],,0[ Tt ∈  

;∞<T  

(b) is compact. 
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Proof. (a) We put ( ) .0,0=+∂ vLBt  Then ( ) 22121 ,. vςηρσ−∇ρ− −vv  

.0,0=  However, this implies that, ;0221 =ςηρσ− v  which in turn, implies that 

.0=ηv  

Using general surface coordinates, any point on Γ may be represented through 
the basis ( ),,τ,τ 21 n  where 1τ  and 2τ  are tangential and n normal to Γ. 

Hence, in our situation, the velocity field at any point on the surface Γ of the 
container may be represented in the form .ττ 2201100 nv vvv η−γ+γ=γ  

Our permeation model, ,0 nv vη−=γ  implies that, for our analysis, 2010 vv γ=γ  

.0=  Hence, 0=ηv  implies that ;00 =γ v  which in turn, implies that ,0=v  by the 

permeation model and the injection defined by, ,0vv γ  for any fluid particle 

racing to the surface Γ. 

Therefore, ( ) 0,0=+∂ vLBt  implies that ( ) { }.0Ker =+∂ LBt  By Theorem 

2.6-10; p. 88 of [5], ( ) 1−+∂ LBt  exists; is linear and bounded on .Λ⊂Θ   

(b) By the Riesz’s representation (see Proposition 7.1), there exists a bounded 
linear operator A such that, ;ALBt =+∂  which implies that LB +∂ t  is bounded, 

for .];,0[ ∞<∈ TTt  

Further, the operator, L defined by vL κημσΔμρ−= −− 2121 2,: vv  is compact 

in ;Λ⊂Θ  by Proposition 10.1; p. 25 of [3]. 

Since LBt +∂  is bounded, Bt∂  is bounded for .];,0[ ∞<∈ TTt  

Let ( )nv  be a bounded sequence in Θ. 

Then ( )nBvt∂  is a bounded sequence in Y. Then there exists a subsequence 

( )/
qt Bv∂  of ( )nt Bv∂  in Y; where, .,: 2121

nnnB vvv ησρ=  By the compact 

imbedding of the Rellich-Kondrachov theorem (Remarks 7.1(d)), the subsequence 

( ) ,, /
21/1/

q
qtqt B v

2vv ησρ∂=∂  due to the compact imbedding ( ) ( ),22 Γ→Ω LH  

converges in Y. Therefore, Bt∂  is compact for .];,0[ ∞<∈ TTt  This implies that 

LBt +∂  is compact for ,];,0[ ∞<∈ TTt  and the result follows.   
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Remarks 9.3. (a) In general, for our permeable boundary Γ, with the arbitrary 
surface coordinate system ( ),,τ,τ 21 n  the velocity field is given by 

( ).ττ: 2
2201100 Γ∈η+γ+γ=γ Lvv vnv  

(b) We observe that whilst ( ) ( ) .,ττ 22
220110

⊥Γ∈ηΓ∈γ+γ LLvv vn  This is not 

surprising as ( )Γ2L  is a Hilbert space. 

(c) But by the trace theorem and the permeation model, ∈η−=γ nv v:0  

( );23 ΓH  which renders the component 220110 ττ vv γ+γ  “redundant” for our 

current problem. Hence, in this particular special case, we assert that, [ ( )]Γ23dim H  

;1=  and hence the relation, ( ) ( ) ( )Γ×Ω≅Ω 2322 HHH  is once more confirmed. 

(d) In general, it may not be necessarily true that ( ) ( )⊥Γ=Γ 223 LH  (see the 

definition of the Nikol’skii spaces in [8]). 

10. Existence and the Uniqueness of the Weak Solution to the Problem 

Proposition 10.1. The operator ( ) ( )NLBt −+∂ −1  is compact in Θ. 

Proof. We have, ,NLBt −=+∂  which implies that N−  is compact, by 

Proposition 8.2(b). By Proposition 8.2(a) and Theorem 2.6 -10; on p. 88 of [5], 

( ) 1−+∂ LBt  exists; is linear and bounded in .Λ⊂Θ  

We also have that 

( ) ( ) ( ) ( );: 22321 Ω→Γ×Ω+∂ − HHHLBt  

( ) ( ) ( ).: 2322 Γ×Ω→Ω− HHHN  

Since ( ) ( ) ( )Γ×Ω≅Ω 2322 HHH  (see (15) and (16) of Theorem 10.4 on p. 27 of 

[3]), ( ) 1−+∂ LBt  and )( N−  satisfy the functions space requirement of Lemma 8.3-

2; on p. 422 of [5]. Hence, the operator ( ) )( 1 NLBt −+∂ −  is compact on Θ.  

Lemma 10.2. The solution to the equation, ( ) ( );1 vv NLBt
−+∂α−=  ∈α  

( ),1,0  is uniformly bounded in Θ. 
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Proof. The solution of, ( ) ( ) ( )1,0;1 ∈α+∂α−= − vv NLBt  is the same as the 

solution of ( ) ( ).vv NLBt α−=+∂  Now, ( ) ( ) .222
YYt NLB vv α=+∂  However, 

By Proposition 9.1(b), there exists 0>γ  such that, ( )
( )

22
2 Ω

ξ≥+∂
HYt LB vv  

Therefore, 
( )

( ) . 222
2 YH

N vv α≤ξ
Ω

 

This implies that ( ) ( ) ( ) ;2 vvv AN YH α=α≤ξ Ω  by (10). Since operator 

A is bounded, it is therefore continuous. Hence, for any arbitrarily given 0,>ε  there 

exists 0>δ  such that, ( ) ,0 221 δ<−< ΩHvv  implies that, ( ) ( ) ( )Ω− 221 HAA vv  

.ε<  

Also, choosing ,
A
ε<δ  we have, ( ) AH

ε<−< Ω2210 vv  implies that, 

( ) .A 221 ε<− ΩHvv  This, in turn, implies that ( ) ( ) ( ) ,221 ε<− ΩHAA vv  

since A is a bounded linear operator. 

On the other hand, by (10), ( ) ,A 221
ε<− ΩHvv  implies that, 

( ) ;221 αε<−ξ ΩHvv  which in turn implies that, ( ) .221
ξ

αε<− ΩHvv  

Therefore, the continuity of N or A demands that, ( ) <− Ω221 Hvv  

;A
1,min ⎟

⎠

⎞
⎜
⎝

⎛
ξ
αε  and the result follows for .: 21 vvv −=   

Main result. Although our analysis up to now has involved ( ),, txv  the 

solution of our original formulation, as opposed to ( ),tw  the solution of our second 

formulation of the problem as an implicit abstract problem, in our following main 
result, we show that the solution to one problem implies the solution to the other 
problem. Strictly speaking, we should be referring to the solution pair ( ) ( )xxv pt ;,  

or ( ) ( ).; xw pt  However, since pressure is eliminated through ( ) ,0, =YBp v  and 

does not take part in our analysis, the main result is confirmed in terms of the 
velocity field only. The unique velocity field may then be used to calculate the 
corresponding pressure. 
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Theorem 10.3 (Existence and uniqueness). For ,Θ∈v  the following statements 
are equivalent: 

 (I) the solution to the equation, ( ) ( ) ( ),1,0;1 ∈α+∂α−= − vv NLBt  exists and 

is unique. 

(II) the solution to the equation, ( ) ,0=+++∂ pvvw NLt  exists and is 

unique. 

Proof. (I) By Lemma 10.2, the solution to the equation is uniformly bounded. 

By Proposition 10.1, the operator, ( ) ( )NLBt −+∂ −1  is compact. Therefore, by the 

Leray-Schauder Theorem, p. 245 in [10], the solution to the given equations exists. 

To prove uniqueness to the solution: Let 1v  and 2v  be the solutions to the 

given equation. Then 

( ) ( ) ( ) YtH NLB 21
1

21 2 vvvv −+∂α=− −
Ω  

( ) ( ) ,21
1

Yt ALB vv −+∂α= −  by (10) 

( ) ( ) ,221
1

Ω
− −+∂α≤ Ht ALB vv  

since A is linear and bounded. 

Since, ( ) ,11 =+∂ − ALBt  by Proposition 8.1, ( ) ,11 <+∂α − ALBt  and the 

uniqueness of the solution follows. On the other hand, the linear operator 0γ  defined 

by vv 0γ  is the bijective restriction of the trace; ( ) ( ) ×Γ→Ωγ 232: HH  

( ) ,21 ΓH  since Γ is assumed to be infinitely differentiable. 

From the bijection 0γ  it can be easily shown that if v is unique, then v0γ  is 

unique. Hence, ( ) vvvw 0,:: σγρ== Bt  is unique as the solution of the abstract 

implicit Cauchy problem ( ) ,0=+++∂ pvvw NLt  provided ).,0( Tt ∈   

(II) The solution to the abstract Cauchy problem (5) is given by, 

( ) ( ) ( )( ) ( )[ ] ( )∫ ∞<∈φ+φ+φ−=
t

TTtdNLt
0

,,0;0:)( xpvvww  

( ) [ ( ( )) ( ( )) ( )]∫ φ+φ+φ−= −−
t

dBNBL
0

11 ;0 xpwww  
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since the operator B is bijective. The solution is unique if and only if, ( ( ))φ− w1BL  

( ( )) ( )xpw +φ+ −1BN  is Lipschitz on w. 

We now put 

( ) ( )( ) ( ( )) ( ( )) ( ),:, 11 xpwwxw ++= −− tBNtBLptG  

( ) ( )( ) ( ) ( )( ) YptGptG xwxw ,, 12 −  

( ) ( ) ( ) ( ) YY tNBtNBtLBtLB 1
1

2
1

1
1

2
1 wwww −−−− −+−≤  

( ) ( ) ( ) ( ) ;2
1

1
1

1
1

2
1

YY tABtABtLBtLB wwww −−−− −+−=  by (10) 

( ) ( ) ;11
12

−− +−≤ ABLBtt Yww  due to the linearity of 1−LB  and 1−AB  

( ) ( ) ,Lip 12 Ytt ww −=  

where 

,:Lip 11 −− += ABLB  

since the operators L, A and 1−B  are bounded in Θ, then G is Lipschitz on ( )tw  and 

the solution of the abstract implicit Cauchy problem (5) is unique If 
( ) ( ) ( )ttt vvw 0,: γρ=  is unique, then ( )tv  and ( )tv0γ  are unique. Then the 

solution to the equation ( ) ( ) ( ),1,0;1 ∈α+∂α−= − vv NLBt  exists and is unique.  

In Section 11, we will show that the existence and uniqueness is global on time. 

11. Exponential Stability for the Flows 

By (12), on p. 9 of [3], for the problem in hand, we have the following energy 
inequality: 

( ) ( )
( )

( ) ( ) .2
30;2 2/

2 ≤β<βμ−≤
Ω

ttDtE
L

v  (11) 

We now rewrite (5) as follows: ( )vvw NpLt −−−=∂  and consider the following 
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eigenvalue problem: Θ∈λ=−− vvv ;BpL  and 0≠λ  (it can be shown that 0=λ  

implies no flows). Then  

( ) ., 2
YY BBpL vvv λ=−−  

This implies that 

( )YBL vv,− ( ) ;, 2
YY BBp vv λ=−  

which implies that 

( )
( )

,2 22
2 YL

BD vv λ=μ−
Ω

 (12) 

since  

( ) 0, =YBp v  

and  

( ) ( )
( )

.2, 2
2 Ω

μ=
LY DBL vvv  

From (12 ), we deduce that 0<λ  for the flows. 

We rewrite (12), using (11) to obtain 

( )
( ) ( ) ( )

( );22222
/

22 tEBt
tE

LvHY λ=ηλσ+λρ=λ≤
β ΓΩ

vv  

from which we have the inequality 

( ) ( ) ( ) .0/ ≤λβ− tEttE  (13) 

The solution to the inequality (13) is 

( ) ( )( );exp0 ttEtE λβ≤  (14) 

where 

( ) .:0 0EE =  
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Since 0<λ  and ( ) ,0>β t  the flows experience exponential energy decay for 

.0>t  In terms of the observation in the middle of p. 14 in [3], where 

( )
2

2

13
2
1

⎥
⎦

⎤
⎢
⎣

⎡ −<
C

tE  for all t, and 0,2 >C  then we may re-write (14) as the 

following exponential stability statement: 

( ) ( )( ).exp13
2
1

2

2
ttCtE λβ⎥

⎦

⎤
⎢
⎣

⎡ −≤  (15) 

From (14), we have that ( ) ( ) ( ) ( ) ;2
30ln0lnln tEttEtE λ+≤λβ+≤  with max 

( )[ ]
2
3=β t  (see p. 9 of [2]). Then ( ) ( ) ,0lnln

3
2

⎥⎦
⎤

⎢⎣
⎡

λ
−≤ EtEt  since , 0<λ  from (12). 

From the preceding inequality, since ln ( ) ∞→tE  as ( ) ,0→tE  then 

;∞<t  (16) 

thus showing there is no restriction on time since the time interval for the existence 
and the uniqueness of the ‘weak’ solution would be ).[0, ∞  

Thus, existence and uniqueness is global on time. 

12. Conclusion 

(a) The most critical requirement for our analysis is that both the open bounded 
domains Ω and 0Ω  be endowed with the or that Γ=Ω∂ :  is both smooth and 

infinitely differentiable. Without these requirements we cannot define the trace 
operator; hence our operators B, N and L would not make sense at all. 

(b) The mean curvature κ of the permeable boundary Γ (as seen in the Main 
result of [2]) is critical in the confirmation of the existence of the weak solution. If 
the inner container were a rectangular prism, 0=κ  for the four walls; however, 

∞=κ  for the corners. There would be some uncertainty as to the existence of the 
solution for the flows through the corners. 

(c) On the outer boundary ,0Γ  we have the same boundary condition as in [7]; 

namely, that ( ) .0, =txv  However, this condition does not play the same critical 
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role, in our analysis, as it does in [7]. Reading through [4], however, the condition 
gives rise to the Poincare’s inequality which partly defines the boundedness of the 
rate of deformation tensor ( ).vD  The latter boundedness is very crucial in this 

paper. 

(d) The critical property of compactness for the operator ( ),,0; TtLBt ∈+∂  

,∞<T  is deduced on the set of our weak solutions, .Λ⊂Θ  The closed domain set 

Λ may coincide with ( ).2 ΩH  

(e) The bijection ([ ] ( )) [ ]( ) ,;,,0,,0: 222 ∞<→Ωχ TYTLHTL  is the reason for 

the dual formulation of the problem in hand (see (2) and (5)). This has been 
confirmed by Theorem 10.3 

(f) By (16) it is now certain that our existence and uniqueness result is global on 
time. Note that when ( )0,0 Et =  represents the gravitational potential energy for 

the fluid particles in the container. 
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