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Abstract

In this paper, we analyse a special case of the “Sixth Problem of the
Millenium: Navier-Stokes equations, existence and smoothness”, whose
method of solution was suggested by Ladyzhenskaya in [7]. Whereas, the
latter proposed analysis of the problem for a homogeneous boundary
condition, we analyse the problem, at hand, with a non-homogeneous
boundary condition. Our situation of a non-homogeneous boundary
condition arises out of the application of a boundary permeation model
proposed by Sauer [9] for the second grade fluids. The model imposes a
zero initial velocity that will be explained later. We have already applied
the model and the trace-related canonical operators to confirm existence
and uniqueness of the ‘weak’ solution to the stationary version of the
current problem [3]. Our solutions are referred to as a ‘weak’ as they
possess weak derivatives in the sense of distributions or test functions.
Also, in [2] we set the necessary and sufficient conditions for the
existence of weak solutions to the problem at hand. In this paper, we wish
to confirm existence and uniqueness using trace-related canonical
operators; thus under different conditions to those proposed by
Ladyzhenskaya in [7].
2000 Mathematics Subject Classification: 76D03, 76D05, 76D27.
Keywords and phrases: nonlinear, non-stationary, permeable boundary, flows.

Received July 7, 2009




262 JOE HLOMUKA

1. Symbols Used

The following symbols will be used:

X = (X5 Xa3 X3) - position in a 3-dimensional space
v(X): velocity field in the fluid; x € Q
p: fluid volume density
W coefficient of viscosity; assumed constant
n(x): the unit exterior normal to T', where X € T’
ds: Lebesgue measure on the surface area on I'
da(x): the effective area measure on I’
¢(x): density function in terms of the area measure da,

ie,da=cds; 0<g(x)<l
3(x) : surface thickness at any point X € I"

o(X) : surface density of fluid at any x € T,

ie., o(x) = 8(x)g(x)p

YoV(X) : velocity at x e T
p: fluid pressure
ny(x) : the normal velocity component at X € T’

(we shall assume that yov(y,t) = -1, (y, t)n(x))

D(v): the rate of deformation tensor
K: mean curvature of the inner container
H2(Q): Sobolev space 2, on the bounded domain Q = R*
L2 (Q)/ L2(I): Spaces of Lebesque integrable functions defined on Q

and its boundary I, respectively
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2. Introduction

The proposed problem analysis in [7] is in the spaces Wy (), whereas our
version is analysed in the H3(Q) spaces. The Wy (Q) spaces are measurable
functions v:Q — R! in LM (Q) with generalized derivatives 6';(V with respect to

X up to order s. The norm in these spaces is given by, | V |yys ) = V[l m(q) +

Z ||a|>(<V"Lm(Qx[0 7))- The analysis of the problem confirms the existence and
0<k<s ’
uniqueness of a generalized solution.

We define the H 3, (Q) spaces as follows:

al*ly
g O+ OXey

He(Q) = {v e L"(Q): e "(Q) x < S};

where |k |:=1j+ 1+ +Kp; and has the norm defined by |V |ys o) =

1/m
o olxly
. The derivatives are
OXgy Oy +++ OXey

v |
0<|al<s ”axalaxotz "%y "Lm(Q)
weak derivatives, in the sense of distributions, with a compact support which is a
subset of Q.

In this case we will confirm the existence and uniqueness of a weak solution to
the problem in hand. However, for the sake of the regularity of the time-derivative,

we will seek our weak solution in the space L™ ([0, T], H3(Q)); T <o0; 1< m < oo,

Our boundary condition is the time-dependent boundary permeation model (1);
hence we have a non-homogeneous and time-dependent boundary condition. This,
obviously, contrasts sharply with the boundary condition in [7]. Our boundary
condition, applied in the statement for the conservation of linear momentum, leads to

the dynamic boundary equation, od[n,]+ pinZ + 2uxny (¥, t) + vop(Y) = Py(t);
yeTI (see (3) on p. 4 of [2], for the statement of the conservation of linear
momentum).

The preceding evolution boundary equation strengthens our boundary condition
further and is subsequently used in the analysis of the problem. It could also be

useful to compare the energy statements for the two problems (see (7) in this paper,
and (4.2)) on p. 272 of [7]).
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3. The Setting for the Problem

The setting for the problem is a Navier-Stokes fluid, in a container which, in
turn, is immersed in a larger container, with the same fluid. The boundary of the
inner container is permeable and denoted by I'; whilst the boundary of the outer

container is solid and denoted by T.

The body of fluid between I" and I, is denoted by an open bounded domain
QcR? , with the cone property whilst that inside the inner container is denoted by
Q.

In this setting, I" is the boundary for Q2 and is assumed smooth and infinitely
differentiable.

4. The Sauer-Maritz Boundary Permeation Model

We denote the unit exterior normal to I’ by n(x) and the trace operator y, will

be used to denote restriction to I'.

The original model assumes that Fluid particles are accelerated from rest in the
domain € across the boundary I' into Q, or they are decelerated from Q across I'

and come to rest in Q.

It is assumed the velocity field v(x, t) always satisfies the homogeneous

Dirichlet condition: v(,, t) =0, on T}, for t > 0.
At the permeable boundary I", we shall assume that
ToV(X, 1) = -y (X, )n(x). (1)

The scalar valued function m,, defined on T, is unknown, and is determined

by a dynamic boundary condition, which is an evolution equation. Also, the

incompressibility of the fluid leads to the condition V.v(x, t) = 0, which, in turn

leads to

j‘ nyds = 0.
r
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5. Initial Problem Formulation

We look for v(.,t) e H2(Q) such that

(2) p BV, + pVV(X, D)V(X, 1)~ pAV(x, 1)

=-vp(x)+f(x, t); x e Q  R*; f e L2(Q); subject to

V.v(x, t) = 0; (2)

YoV(Y, ) = —ny (Y, t)n(y); y e [(boundary permeation model).

(b) 50y [Ny ]+ pEny + 2umy (¥, 1) + 1o P(Y) = Po(t)
For this formulation, we choose the following test functions:
© = {v(x. t) € L*([0, TL H*(Q)). yov(y. 1)
=-—ny(y, t)n(y); on T; v(x, t) = 0 on [y; V.v(x, 1) = 0; T < oo}.
1

For further analysis we transform problem (4): we multiply 3(a) by p_E and 3(b) by
1
o 2 to obtain the following equations:
1 1l 1 L 1
p2oV(X, 1) + p2 (V.v(X, ) V(X, 1) = p 2pAV(X, t)+p 2Vp(x) = p 2f(x, 1),
A3)

1 1 1 1 1
4 — ., = S S
c20iy]+ po 2Cny + 2uko 2ny(Y, t) + o 2yop(y) = o 2Ry(t).
Remarks 5.1. (a) Assuming that (7, T,, n) are the unit vectors in tangential

and normal directions for an arbitrary point on the surface I' of the container, then

the velocity field on the surface would be given by, yov(y,t)=yovi(y,t)T +
YoVa(y, )to —my(y, t)n;y € T; where yogv; and y(V, are tangential to the surface
I.

(b) We, however, observe that the permeation model (1) and the definition of
the set ® of our test functions assume yqVv; and y,yV, are not effective. Thus, for

the purpose of the permeation model and the choice of our weak solutions,

YoV1 = YoV2 = 0. Later, this will be crucial in the characterisation of some operators.
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(c) With the trace-operator restriction as defined by Vv — vV, being injective,
then yov =0, will imply that v = 0. On the other hand, m, = 0 will imply that

v = 0. Hence, n, = 0 implies that y,v = 0; which in turn implies that v =0, in
terms of the definition of ©®.

6. Problem Reformulation as an Implicit Evolution Equation;
the Energy ldentity
First, we rewrite the problem now represented by (5) as follows:
1 1 1 1 1
p2v pZ(V.V)v -p 2Av p 2Vp p 2f
1 1 TH * - ’

1 1 1
po 2cny 2knys 2) (o 2yop

0y
a2ny o2 Po(t)

where the coupling is provided by the restriction of the trace operator defined by,

V > yoV, with YoV = —nyn.

We then conclude that

0tBv + Lv+ N(V)+/p =F, 4

where

1 1
Bv = <p 2v, 021’]V> e H2(Q)x LX(N) =Y;
1 1
Lv:={(—pup 2Av, 2ukn,c 2 )eY;

1 1
N(v) = <p2(v.V)V, pc 2@n3> ev;

1 1 1 1
p = <— p 2Vp,c 2y, p> and F = <p .o 2Po(t)> evy.

Remarks 6.1. (a) The said coupling relation provided for by the restriction of
the trace operator also “relates” all the preceding canonical operators to the trace-

operator.
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(b) It should not be hard to show that H?(Q)x L>(I) =Y is a real Hilbert

space.

(c) The trace-related canonical operators will be used in the analysis of the
problem at hand. As in general these operators are not closed, a suitable subspace of

H 2(Q) will be defined for the analysis of the problem.

Thus, we construct: A := dom(B) ) dom(L) (1 dom(N) > ©®.

1 1
(d) In the definition of the space A, we leftout ¢ : p — <— p 2Vp,c 2y, p>

since the relation (¢p, Bw), =0 (see p. 22 of [3]), renders the pressure ineffective

in the analysis of the problem. Thus, we reformulate the problem as follows:

We seek W(,t)e L>([0,TY);T <o, ve®, such that the following

conditions are satisfied:

subject to : (5)

oW + Lv+ N(v)+ /p = F,
w = (0, 0); for a fluid particle starting from the position of rest.

Remarks 6.2. (a) The initial conditions denote the status of a particle starting
from rest, either from outside or inside of the container.

(b) w = Bv. The solution to (5) will lead to the solution to (2), through the
bijection, ¥ : L2([0, T], H2(Q)) —» L2([0, T], Y); T < o, as referred to on p. 2 of

[2]. This bijection owes its existence to the Lions/Magenes trace theorem, on p. 39,
Theorem 8.3 of [8]. Also see Remarks 5.1(a) and 5.1(c) in this paper.

We now derive the energy identity for the problem: Taking the scalar product of
(4) with Bv we obtain the following interim expression:

(Ow, W)y + (Lv, w)y +(N(v), w)y + (£p, w)y, = (F, w)y. (6)
To simplify (6), we use the following identities:

LA 2, ]
oo wly = LS [AVIZ, o+l )

(Lv, w)y = 2p| D(v) ||i2(Q); by (1) of Proposition 3.3.1 in [4];
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(N(v), w)y = pj [g - %}]Sds; by (2) of Proposition 3.3.1 in [4];
r

(¢p, w)y = 0; by 7(b); p. 22 of [3];

(F, w) =(f, V)LZ(Q)'

We then simplify (6) to obtain the energy identity:

1y 2 1] 3 .
FE'©+20 DI ) ] 5= 5 |mids = (. Vi )
, 2 2
where E(t) = p|| v ||H2(Q) + 0| ny "Lz(r)'

As our external body forces are mainly gravitational, and hence conservative,
we have, f(x):=-VEp(x), where E,(x) is the gravitational potential energy of

the fluid particle at X. Hence f may be part of the expression %E/ (t), where,
%[E(t) - VEp(X)]/ :% E'(t). In that case we may then set f := 0; leading to the

vanishing of the right hand expression of (7).

We thus end up with the energy identity:

1 -/ 2 1| 34 =
3 E'(t) + 2y D(v) "LZ(Q) + pjr [g - 5} nyds = 0. (3)

We rewrite (8) and subsequently obtain, %E/(t) +24| D(v) ||2L2 @ pJ.F [% - g} nads.

By Theorem 7.1 of [2], the integral I r [% - g}né,ds is bounded. Hence

%E/(t) + 2y D(v) ||2L2(Q) = (0w, w)y +(Lv, w), is bounded.

7. Compact Imbeddings: The Rellich-Kondrachov Theorem

M
Remarks 7.1. (a) Let U Q, be the finite union of the k-dimensional planes in
l=1
R that intersect the bounded subdomain Qg of Q in accordance with the statement

of the Rellich-Kondrachov theorem (see Theorem 6.2; p. 144 of [1]).
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(b) Since Q2 is bounded, then Q = Q (see Remarks 6.3(4); p. 145 of [1]).

/

(c) Hence UQi na = Q(k). Inourcaseof R, k =2, and T < Qg.
i=1

(d) Assuming the cone property for Q; and since, mp >n for m=2; p =2

and n =3; by Part II of the Rellich Kondrachov theorem, and in view of the
boundedness of the trace y : U — y,u, the imbedding H2(Q) — L2(I) is compact;

a bounded sequence (U,) in H2(Q) will have a convergent subsequence.

8. The Riesz Representation for the Problem
Consider the implicit evolution equation:
oW + Lv+ N(v)+/p—-F=0. )

The following proposition shows that the preceding equation may be rewritten in
terms of an appropriate linear and bounded operator as the result of the application

of Riesz’s representation theorem:

Proposition 8.1 (Riesz’s representation). For the implicit evolution equation,
there exists a bounded linear operator

A:H2(Q) - Y; such that,
O0tW + Lv = Av; and the implicit equation is reduced in the form,
Av = —N(v).
Proof. We take the scalar product of (9) with Bv to obtain,
(Otw, w)y +(Lv, w)y +(N(v), w)y +(¢p, w), —(F, w)y =0.
Since we have shown that (/p, w), =0 and (F, w), =0,
(0w, W)y +(Lv, w), = —(N(v), w)y.
Finally, by (8),

1
(0w, W)y + (Lv, w)y = p_fr [5 - G}nid&
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We now define J : H2(Q)xY — R as follows:
J(v, w) = (Oyw, W)y + (Lv, W)y .
We then observe the following:

(a) J is a sesquelinear form by the definition 3.8-3 on p. 191 of [5];

(b) J is bounded since Jr [% - g} n\3,ds is bounded by Theorem 7.1 of [2].

Then, by Theorem 3.8-4, on p. 192 of [5], there exists a bounded linear operator
A:H*(Q)—>Y such that J(v,w)=(Av,w), and hence, dw +Lv = Av; which

implies that

Av = —N(v); and the result follows. (10)
9. Characterization of the Linear Operator ;B + L;t € [0, T]T <

We note that in the following analysis, the abstract Cauchy problem (5) is not

directly involved. However, due to the established relation, H?(Q)= HZ%(Q)

x H 3/2(1"), (see Proposition 10.4; (15) and (16) on p. 27 of [3]); the final result of

the analysis will infer on (5) as well.

Proposition 9.1. (a) The operator J;B + L is self-adjoint;

(b) There exists & > 0 (independent of V) such that

2 2
@B+ LI 2 ol vIE,,

Proof. (a) For 6, ¢ € 0,

(8B + )6, Bo)y = (2B, Bo), + (L6, Bp)y

=3

| —

1d
=5 gt [P0 @)n2(q) + 0(Nes e )12(r) ]+ 21(D(B), D(0))2(q),
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(BO, (9B + L)g), = (BO, 3,Bp), + (B, Lo)y,
1d

2 T oo, ®)n2(q) +5(Mes M) 12(r ]+ 20(D(B), D(9))2(q)
Hence, if

((0¢B+L)8, Bp), =(B6, (6;B + L)p) .

Since H2(Q) = H2(Q)x HY2(T'), then v is identifiable with Bv and the result

follows. O
(b) Wenowput 6 =0 = V.

Then

(8B + L)V, Bv), =5 —| BV +(Lv, Bv)

MI

1 d
dt
— gt PV g ol [+ 24 DO

d @) T Ve (@)

NI

Therefore,

(8B +L)v, Bv)y, =p I ] B - g]nids.

For the permeable boundary flows (n, # 0), there are two possibilities:
Case . ((0(B + L)v, Bv), >0,

¢< %and 1y > 0 (outward flows),

for or

G > %and 1y < 0(inward flows).

By definition (2); on p. 470 of [5], 0;B + L > 0. Hence, there exists C > 0, such
that,

M@B+UﬂﬁZQWHﬁ

=Clpllv + ofny|?

With & = Cp, the result follows.
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Case Il. (6B + L)v, Bv), <0,

G > 1 and ny > 0 (outward flows),

[\

for or

¢ < % and n, < 0(inward flows).

We now consider the spectrum of the operator 0;B + L as defined by the following

eigenvalue problem:
(6tB + L)v = ABv; A € o(;B + L).
Therefore,

((0¢B + L)v, Bv)y = A(Bv, Bv)y
2
=2 Bv .
Hence, for this case, A < 0. Note that A = 0 is excluded for flows.

Proceeding, we have,

| @B+ vy =27 By

2
=¥[p v olny

" Z(Q) L2 (F

> 3| v

v[? —
H) (r [atB L])
where r;(0;B + L) is the spectral radius of the operator 0;B + L, defined by,
(6B + L) := lim ¥||(6;B + L)"| (see (11) on p. 378 of [5]). Since d;B + L is

n—o0

bounded, the limit does exist. With & = %, the result follows. g
(r5[0¢B + L])

Proposition 9.2. The operator 6;B + L,

(a) is invertible, and (0;B + L)’1 is a bounded linear operator for t € [0, T],

T < oo

(b) is compact.
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Proof. (a) We put (6;B+ L)v =(0, 0). Then (—pl/z(v.V)v, —pcs_l/zgn\%)
= (0, 0). However, this implies that, pc_l/ 2cn2 = 0; which in turn, implies that
ny = 0.

Using general surface coordinates, any point on I' may be represented through

the basis (1, 15, n), where 1; and 7, are tangential and n normal to T".

Hence, in our situation, the velocity field at any point on the surface I of the

container may be represented in the form yyVv = ygV T + yoV2Tp — NyN.

Our permeation model, yov = —nyn, implies that, for our analysis, yoV; = yoVa
= 0. Hence, n, = 0 implies that yyv = 0; which in turn, implies that v = 0, by the
permeation model and the injection defined by, Vv = yyVv, for any fluid particle

racing to the surface I'.
Therefore, (6¢B + L)v = (0, 0) implies that Ker(6;B + L) = {0}. By Theorem

2.6-10; p. 88 of [5], (6;B + L)™" exists; is linear and bounded on ® < A. O

(b) By the Riesz’s representation (see Proposition 7.1), there exists a bounded
linear operator A such that, 6;B + L = A; which implies that 0B + L is bounded,

forte[0, T]; T < 0.

Further, the operator, L defined by Lv = <—up_1/ 2Av, 2;,Lcs_1/ 2K1’]V> is compact
in ® c A; by Proposition 10.1; p. 25 of [3].

Since 0;B + L is bounded, 0;B is bounded for t € [0, T]; T < oo.

Let (V) be a bounded sequence in ©.

Then (0,Bv,) is a bounded sequence in Y. Then there exists a subsequence
(6tBVg) of (6¢Bvy) in Y; where, Bv, = <p1/2vn, cl/znvn>. By the compact
imbedding of the Rellich-Kondrachov theorem (Remarks 7.1(d)), the subsequence
(6 Bvé) = 8t<p1/zvé, 01/2nvé>, due to the compact imbedding H2(Q) — L2(T),

converges in Y. Therefore, 0;B is compact for t € [0, T]; T < co. This implies that

0¢B + L is compact for t € [0, T]; T < oo, and the result follows. |
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Remarks 9.3. (a) In general, for our permeable boundary I, with the arbitrary

surface coordinate system (1, T5, N), the velocity field is given by
YoV = YoViTy + YovaTa + myn € LA(D).
(b) We observe that whilst yoVit) + 7oVaT, € L2(T'), nyn e L2(T')*. This is not
surprising as L2(T") is a Hilbert space.
(c) But by the trace theorem and the permeation model, yoVv :=-nn €

HY2 (T); which renders the component ygViT; + yoVyT, “redundant” for our
current problem. Hence, in this particular special case, we assert that, dim[H 32 ()]

= 1; and hence the relation, H?(Q) = H?(Q) x H 32 (T") is once more confirmed.

(d) In general, it may not be necessarily true that H 32 (T) = LX) (see the
definition of the Nikol’skii spaces in [8]).

10. Existence and the Uniqueness of the Weak Solution to the Problem

Proposition 10.1. The operator (8B + L)™'(=N) is compact in ©.

Proof. We have, ;B + L =—-N, which implies that —N is compact, by

Proposition 8.2(b). By Proposition 8.2(a) and Theorem 2.6 -10; on p. 88 of [5],

(0¢B + L)! exists; is linear and bounded in ® < A.

We also have that
0B+ L) 1 H2(Q)x HY2(I) > H2(Q);

~N:HY(Q) > HX(Q)x HY2(I),
Since H?(Q) = H2(Q) x H3/2(F) (see (15) and (16) of Theorem 10.4 on p. 27 of
3], (61B + L)_1 and (—N) satisfy the functions space requirement of Lemma 8.3-

2; on p. 422 of [5]. Hence, the operator (6;B + L)_1 (=N) is compact on O. O

Lemma 10.2. The solution to the equation, v = —a(3;B + L) 'N(v); o e

(0, 1), is uniformly bounded in ©.
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Proof. The solution of, v = —a(0;B + L)"'N(v); o € (0, 1) is the same as the

solution of (9B + L)V = —aN(v). Now, | (8B + L)V[y = a?| N(v)[y. However,

2

By Proposition 9.1(b), there exists y > 0 such that, | (8B + L)v [ > v ||H2(Q)

Therefore, &| v |||2_|2(Q) < o’ N(v) "\2( .

This implies that /] v lh2() <@l N(V) [y =of A(v)]; by (10). Since operator
A is bounded, it is therefore continuous. Hence, for any arbitrarily given ¢ > 0, there
exists 8 >0 such that, 0 <[ v; =Vy|y2(q) <3, implies that, || A(v;)—A(V2)[42(q)

<eE&.

Also, choosing & < m, we have, 0.<[[v; -V |2 <

€ . .
—— implies that,
IA]
[ Al vi— Vs ||H2(Q) < ¢. This, in turn, implies that | A(v;)— A(V;) ||H2(Q) <&,

since A is a bounded linear operator.
On the other hand, by (10), [vi—V;[y2(q) < m, implies that,

Ve vy = v, l2(q) < oi&: which in turn implies that, || vi -V [2(q) < =l

ik

Therefore, the continuity of N or A demands that, [v;-Vj|ly2(q) <

[ a 1
emin| —, —— |; and the result follows for v .= v{ — v,. O
(\E ||A||j b

Main result. Although our analysis up to now has involved V(Xx,t), the
solution of our original formulation, as opposed to W(t), the solution of our second

formulation of the problem as an implicit abstract problem, in our following main
result, we show that the solution to one problem implies the solution to the other

problem. Strictly speaking, we should be referring to the solution pair v(X, t); p(x)
or W(t); p(x). However, since pressure is eliminated through (¢p, Bv)y =0, and

does not take part in our analysis, the main result is confirmed in terms of the
velocity field only. The unique velocity field may then be used to calculate the
corresponding pressure.
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Theorem 10.3 (Existence and uniqueness). For v € ©, the following statements

are equivalent:
() the solution to the equation, v = —a.(0;B + L)"'N(v); o € (0, 1), exists and
is unique.

(I1) the solution to the equation, o;w + Lv + N(v)+ /p =0, exists and is

unique.

Proof. (I) By Lemma 10.2, the solution to the equation is uniformly bounded.
By Proposition 10.1, the operator, (6;B + L)"'(=N) is compact. Therefore, by the

Leray-Schauder Theorem, p. 245 in [10], the solution to the given equations exists.

To prove uniqueness to the solution: Let v{ and v, be the solutions to the

given equation. Then
I vi = Vally2(g) = @l(@B + L) N(v, = vp)lly
= o (8B + L)™' A(vy = V), by (10)
< o0 + L) Allvi = Vally2 ().
since A is linear and bounded.

Since, [(6¢B + L)_1A|| =1, by Proposition 8.1, [a(d{B + L)_1A|| <1, and the
uniqueness of the solution follows. On the other hand, the linear operator vy, defined
by V> oV is the bijective restriction of the trace; v : H2(Q) — H3/2(1")><

HY2 (T), since I is assumed to be infinitely differentiable.

From the bijection y it can be easily shown that if v is unique, then yyVv is
unique. Hence, w(t) := Bv := (pv, 6y(V) is unique as the solution of the abstract

implicit Cauchy problem 6;w + Lv + N(v) + ¢p = 0, provided t € (0, T). O

(IT) The solution to the abstract Cauchy problem (5) is given by,

w(t) = w(0) - j‘; [Lv(d) + N(V(9)) + ¢p(x)]dd; t € (0, T), T < 0

= wi0) - [ 1L(B~hw(o) + N(B i) + o]k
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since the operator B is bijective. The solution is unique if and only if, L(B™'w(¢))

+ N(B_lw(q))) + /p(x) is Lipschitz on w.
We now put
G(w(t), p(x)) = L(B™'w(t)) + N(B™'w(t)) + £p(x),
IG(ws(t), p(x)) - G(w,(t), p(x))ly
<[ILB™'wy (t) - LB™!wy (t)]ly +[[NB~'w,(t) - NB™'w; 1)y
= LB~ 'w,(t) — LB~ 'w (t)], +[|AB'w;(t) - AB™'w, (t)[}y; by (10)
<[|wy(t) - wi(t) |, LB~ + AB7!|; due to the linearity of LB™! and AB™

= Lip| w,(t) = w;(0) Iy,
where
Lip == |[LB™' + AB7!|,

since the operators L, A and B™! are bounded in ©, then G is Lipschitz on w(t) and

the solution of the abstract implicit Cauchy problem (5) is unique If

w(t) = (pv(t), yov(t)) is unique, then v(t) and yoVv(t) are unique. Then the

solution to the equation v = —a(0;B + L)"'N(v); a e (0, 1), exists and is unique. OJ
In Section 11, we will show that the existence and uniqueness is global on time.
11. Exponential Stability for the Flows

By (12), on p. 9 of [3], for the problem in hand, we have the following energy
inequality:

(11)

| w

E'(1) < 20| DV, B0 0 <B(D) <

We now rewrite (5) as follows: ;w = —Lv — /p — N(Vv) and consider the following
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eigenvalue problem: —Lv —/p = ABv; v € ® and A # 0 (it can be shown that A = 0

implies no flows). Then
(-Lv - fp, Bv), = A| B |}
This implies that
(-Lv, Bv)y —(¢p, Bv)y = A|Bv|7;
which implies that
=24 D) I, = MBVIY (12)
since
(¢p, Bv)y =0
and

B 2
(Lv, Bv)y =2y D(v) "LZ(Q)'

From (12), we deduce that A < 0 for the flows.

We rewrite (12), using (11) to obtain

E/(t) 2 2o 2 2 ,
] s N R R R P

from which we have the inequality
E/(t) - AB(t)E(t) < 0. (13)
The solution to the inequality (13) is
E(t) < Eq oxp(B(0); (14)
where

E(0) := E,.
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Since A < 0 and B(t) > 0, the flows experience exponential energy decay for

t>0. In terms of the observation in the middle of p. 14 in [3], where

2
E(t) < %{ﬁ_l} for all t, and C, >0, then we may re-write (14) as the
2

following exponential stability statement:

2
E(t) < %[ﬁc—;l} exp(AB(t)). (15)

From (14), we have that InE(t)<InE(0)+AB(t)t <In E(O)—i—%kt; with max

InE(t)—1nE(0)

[B(t)] = % (see p. 9 of [2]). Then tS%[ 7

}, since A < 0, from (12).
From the preceding inequality, since In E(t) — o as E(t) — 0, then
t < oo (16)

thus showing there is no restriction on time since the time interval for the existence

and the uniqueness of the ‘weak’ solution would be [0, o).

Thus, existence and uniqueness is global on time.
12. Conclusion

(a) The most critical requirement for our analysis is that both the open bounded
domains @ and €, be endowed with the or that 0Q =T is both smooth and

infinitely differentiable. Without these requirements we cannot define the trace

operator; hence our operators B, N and L would not make sense at all.

(b) The mean curvature k of the permeable boundary I" (as seen in the Main
result of [2]) is critical in the confirmation of the existence of the weak solution. If
the inner container were a rectangular prism, k = 0 for the four walls; however,
k = oo for the corners. There would be some uncertainty as to the existence of the

solution for the flows through the corners.

(c) On the outer boundary I'j, we have the same boundary condition as in [7];

namely, that v(x, t) = 0. However, this condition does not play the same critical
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role, in our analysis, as it does in [7]. Reading through [4], however, the condition
gives rise to the Poincare’s inequality which partly defines the boundedness of the

rate of deformation tensor D(v). The latter boundedness is very crucial in this
paper.
(d) The critical property of compactness for the operator &;B + L;t e (0,T),

T < oo, is deduced on the set of our weak solutions, ® — A. The closed domain set

A may coincide with H2(Q).

(e) The bijection ¥ : L2([0, T], H2(©2)) = L2([0, T] Y); T < =, is the reason for
the dual formulation of the problem in hand (see (2) and (5)). This has been
confirmed by Theorem 10.3

(f) By (16) it is now certain that our existence and uniqueness result is global on

time. Note that when t = 0, E(0) represents the gravitational potential energy for

the fluid particles in the container.
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