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Abstract 

When sampling a finite universe with unequal selection probabilities, the 
unbiased estimators recommended can yield inadmissible outcomes. 
Although Basu early warned about this weakness of the Horvitz-
Thompson estimation method, the very unrealistic Basu’s example rapidly 
relaxed statisticians and this crucial detail was almost forgotten and 
systematically omitted in textbooks. In predicting proportions, however, 
this shortfall is more visible and can appear even with reasonable 
sampling plans. This paper shows it first using an unrealistic laboratory 
design and later through a real data application. After mentioning a 
feasible solution, this note proposes to open a debate and suggests return 
to survey-sampling and inference foundations on the search for a solution 
that can widely be accepted. 



JOSE M. PAVÍA 130 

1. Introduction 

It is well known that we statisticians have a special fondness for unbiased and 
linear estimators. Thus, it is not surprising that after Horvitz and Thompson [9] 
discovered an unbiased linear estimator to calculate population means and totals 
when sampling finite universes without replacement with unequal selection 
probabilities and, later, Godambe [5] showed that no unbiased estimate of the 
population mean exists with minimum variance for all populations within Horvitz-
Thompson’s main classes of linear competitors, the Horvitz-Thompson estimator 
(HT) was broadly adopted (e.g., Kish [11] and Ogus [12]). And despite Basu [2, pp. 
212-213) rapidly showing its weaknesses, from that point onwards, researchers 
turned to proposing different rules for calculating admissible unbiased estimates of 
the sampling error and to developing more efficient sampling systems with an 
optimal choice of selection probabilities. 

The straightforward logic behind HT, which weighs each drawn value inversely 
to its probability of being selected, triggered the use of statistics based on HT being 
adopted in fields as diverse as forestry, medicine or economics and almost all 
sampling books recommend statistics derived from HT in multi-stage designs 
without replacement (where the chief use of unequal-probability sampling emerges). 
Unfortunately, this strategy leads in a more than negligible number of cases to 
illogical estimates when approximating proportions in both single and multi-stage 
sampling designs. Apparently, however, many authors’ textbooks have forgotten to 
warn practitioners about this fact (see, e.g., Ardilly and Tillé [1], Cochran [3], Pérez 
López [14], Särndal et al. [17], Thompson [20] and Tryfos [21]). This paper 
illustrates this by means of (i) a very simple single-stage simulated example and (ii) 
with real data from a two-stage cluster sampling design and provides an alternative 
tentative solution in the aim of opening a debate in search of a broadly accepted 
answer to this issue. 

Suppose a sample, ,nS  of n units must be chosen without replacement from a 

population of N zeros and ones ( ),,,, 21 Nyyy  such that the probability of the jth 

unit being drawn is ( ).,,2,1 Njj =π  It is well known that the HT estimator for 

the proportions of ones in the population is given by equation (1), 
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As example of multi-stage sampling design, consider a simple two-stage 
sampling design in which the N units are divided into K clusters of iN  units. In the 

first-stage k clusters are chosen without replacement with probabilities ( ,1=π ii   

)K,,2  of being selected and in the second-stage in  units are randomly selected 

in each one of the k clusters selected in the first-stage. Then, in these circumstances, 
the HT estimator for the proportions of ones in the population is given by equation 
(2), where ijy  is the value observed for the jth unit drawn in ith cluster and ip̂  is the 

proportion of ones estimated in ith cluster, 
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It is easy to prove that both, p̂  and ,ˆ̂p  are unbiased estimators of the proportion 

of ones in the sample. The reason is simple: the expected value of the sum of 

weights is one in both equations, .11
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 For instance, 

defining jα  the sample inclusion indicator function (i.e., ,1=α j  if jth unit being 

drawn, and 0, otherwise) and writing the estimator as a sum over the population, it 
follows straightforward that: 
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The fact that the expected value of the sum of weights is one, however, does not 
imply that weights not adding up to one can be obtained for a particular sample and 
that, therefore, single proportion estimates higher than one or groups of proportion 
estimates whose aggregation exceeds unity can occur. 

2. Examples 

In the first example, an experiment is simulated in which two units from a 
universe of zeros and ones and size five are drawn without replacement and unequal 
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selection probabilities in order to estimate the proportion of ones in the population. 
Although it is a very unrealistic example, it is useful to show in a simple way that 
illogical estimates can be obtained with the HT estimator. The second example takes 
real data from an electoral survey performed in one of the last regional elections held 
in Spain to show that if the theoretically recommended HT estimator had been used, 
it would have resulted in party shares adding up to more than 100 percent. 

2.1. A laboratory design 

Let { } { }1,0,0,1,1,,,, 54321 == uuuuuU  be a universe of size five of zeros 

and ones. Suppose a sample of two units is chosen without replacement from U, 
where the probabilities of being selected in the first extraction are, respectively, 
{ }1.,1.,1.,2.,5.  and in the second extraction the probabilities of selection are re-

weighed according to the first extraction. Thus, the probability (adjusted to three 
decimals) of each unit being drawn is, respectively, { };247.,247.,247.,467.,792.  

and, therefore, the HT estimate that would be obtained for each one of the ten 
possible samples would be those presented in Table 1. 

Table 1. Estimates for the proportion of ones in the population using the HT 
estimator 

Sample HT 
estimate 

Sample 
probability 

Sample HT 
estimate

Sample 
probability 

{ } { }1,1, 21 =uu  0.6812 0.3250 { } { }0,1, 42 =uu 0.4286 0.0472 
{ } { }0,1, 31 =uu  0.2526 0.1556 { } { }1,1, 52 =uu 1.2376 0.0472 
{ } { }0,1, 41 =uu  0.2526 0.1556 { } { }0,0, 43 =uu 0.0000 0.0222 
{ } { }1,1, 51 =uu  1.0616 0.1556 { } { }1,0, 53 =uu 0.8090 0.0222 
{ } { }0,1, 32 =uu  0.4286 0.0472 { } { }1,0, 54 =uu 0.8090 0.0222 

As can be deduced from Table 1, although (according to theory) the expected 
value of HT estimates fits the actual population mean (0.6), the use of the HT 
estimator would produce illogical estimates for two of the samples ({ }51, uu  and 

{ }),, 52 uu  which together have more than a 20% probability of occurring. 

2.2. A real data example 

On 27th May 2007 citizens from several Spanish regions were called to renew 
their regional parliaments. Divided into three constituencies (Alacant, Valencia and 
Castello), the voters from the Valencia region had to choose ninety-nine 
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representatives. In each constituency, seats are distributed using the d’Hondt rule 
(see, e.g., Pavía-Miralles [13]) among the parties receiving the greatest support. 
According to survey polls, for this election only three parties had real chances of 
obtaining seats in the parliament: the conservative party (PP), the socialist party (PS) 
and a coalition between the communist party and a leftwing nationalist-regionalist 
party (CpP). 

On election day, an exit-poll was conducted to advance final outcomes. In each 
constituency, a two-stage cluster sampling design was performed to collect data. In 
the first stage, a number of precincts (with all the precincts having the same 
probability of being selected) were randomly selected without replacement among 
all the precincts of the constituency. In the second stage, a pollster was sent to 
interview a sample of voters from each of the selected precincts. In practice, 
however, the interviews take place outside the voting building and the voters 
interviewed come from the several precincts located in the corresponding polling 
place. Thus, actually the primary units selected in the first stage were polling places 
and, due to the number of precincts varying among stations, they had unequal 
probabilities (albeit approximately proportional to their size) of being selected. 

In the constituency of Castello, the 287, 427 voters were distributed to cast their 
ballots in 729 precincts, divided into 343 locations. With the sampling plan devised 
above, twenty-five of these locations were selected in Castello to collect data. 
According to the theory, the two-stage statistic given by equation (2) is the best 
linear unbiased estimator to predict the proportions of votes that each party would 
reach. However, if that statistic had been used, the estimates would have been: PP 
52.86%, PS 41.90%, and CpP 12.17%, which sum up to more than 100% (and this 
without adding up the estimates corresponding to the rest of the parties and null and 
blank votes!). Similarly, illogical results would have been obtained in the 
constituency of Valencia (1,862, 566 voters), but not in Alacant (1, 168, 358 voters) 
because in that case the sum of the weights was virtually one: 0.995. 

3. Discussion 

In almost all the methods of sampling based on multi-stage survey designs, the 
population units are drawn with unequal probabilities of selection. It is usual, 
therefore, to construct population parameter estimators as weighted functions of the 
observed values, where the probabilities of selection are incorporated both implicitly 
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and explicitly into the estimator functions in order to balance observations. Usually 
the weights are proportional to strata or cluster size and therefore, their sum adds up 
to one and no problems arise. However, when the sum of weights differs from unity, 
incongruent estimates can become visible when predicting proportions. 

One obvious answer would be to take the HT estimator as a reference and to 
recalculate its weights to sum one. This strategy, which in the case of equation (2) 
would yield equation (3), involves, to a certain extent, recovering Godambe’s old 
idea (Godambe [5]) of considering that the three elements (observations, labels and 
sample) contain information and should be taken into account when constructing 
population estimators. In particular, he proposes to derive the estimators from the 
likelihood function associated to the complete sampling design after imposing some 
appropriate criteria, 
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The solution given in (3), however, has two main drawbacks: (i) it needs a 
theoretical justification and; (ii) it would require developing a mathematical 
expression for the variance of this estimator (it must be noted that the weights are 
random as they depend on the particular units drawn). The ratio adjustment approach 
may perhaps offer a solution for the first drawback – in fact, the use of ratio 
estimators was the first approach proposed (Hajek [7]) in order to fix this problem –
and, on the other hand, the second shortfall could be overcome, the level of 
complexity depending on the design of the sample, by using subsample replication 
techniques (see, e.g., Woodroof [22]). 

Alternatively, although finite population sampling is possibly the only area of 
statistics where the primary mode of analysis is based on randomization distribution 
rather than on statistical models (Smith [18] and Smith [19]), it might be worth 
taking into account the specific characteristics of the kind of universes dealt with 
when estimating proportions and to suggest models that make it possible to 
incorporate both the sample design and some parametric assumptions to generate 
reliable and efficient estimators (Särndal [16]), reopening, for this particular 
problem, the old debate between design based inference and model based inference 
(e.g., Royall [15]). 
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A different approach could be to adopt Fisher’s position, according to which 
randomization is relevant before the data are collected, but not in the analysis of the 
data (Fisher [4]). This would imply abandoning Neyman’s paradigm of building 
estimators based on all possible random samples that could be drawn (Neyman [10]). 
After all, what the user of the survey requires is an efficient estimate together with a 
measure of its accuracy for the particular survey in question. 

The examples and posterior discussion herein will hopefully arouse interest and 
lead others to investigate sampling systems of this type in order to reach a solution 
that can generally be accepted. It must be noted, likewise, that while the examples 
displayed deal with proportions and sampling without replacement, this problem is 
not exclusive to them. First, the estimator proposed by Hansen and Hurwitz (Hansen 
and Hurwitz [8]) to sample with replacement has similar limitations. Secondly, the 
use of the HT estimator to estimate totals and means could yield a clear 
overestimation in whatever population. 
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