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Abstract

In this paper, testing the numerical scheme for the regularized long wave
(RLW) equation and study of motion, interaction and development of the
solitary wave solution are presented. These schemes impose the amplitude
of a one solitary wave solution and predict the progress of the wave
solutions with errors and the demonstrating the shape, height and velocity
of an undular bore consistency.

1. Introduction

We consider the RLW equation
Ui +Uy +eUUy —pUyy =0, 1)
where ¢ and p are parameters and the subscripts x and t denote differentiation. The

physical boundary conditions require U — 0 as x — #c. Boundary conditions
will be selected from the homogeneous boundary conditions:
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Ua, t) =B, U(b, t) =B,
Uy(a,t)=0, Uy, t)=0, te(0,T],
U@, t)=0, Ul(b,t)=0, 2)
and its initial condition
U(x, t)= f(x), xela,b], (3)
where f(x) is a localized disturbance inside the interval [a, b].

This equation is the favorite nonlinear wave equation which can be used to
model a large number of problems arising in various areas of applied sciences [1, 2].
In 1966, Peregrine [6] derived the RLW equation to model development of an
undular bore. In 1984, Morrison et al. [4] derived the one-dimensional nonlinear
dispersive waves which is accurate and equally valid model for the same wave
simulated by the Korteweg-de Vries (KdV) equation and RLW equation. In 1972,
Benjamin et al. [1] discovered the BBM equation that is also known as the RLW
equation. In this paper, we have used a collocation method with quintic B-spline to
investigate the motion of one solitary wave solution, and an undular bore for the

RLW equation in Eq. (1) to predict the progressive wave with small error norms.
2. Quintic B-spline Collocation Method

We divided the interval [a, b] by nodes Xp such that a < x; <---< Xy =b

b-a
N

and h = =Xme1 — Xm>- M=0,1,2, ..., N. We use 10 knots of the interval

[a, b] as
X5 < X_g < X3 < X_p <X and XN+1 < XN+2 < XN+3 < XN+4 < XN+55

and applied quintic B-spline analyzed solutions of the RLW equation.

The quintic B-spline K,(X) with basis form over the domain [a, b], that is,

{K_1, Kop, K_3, Ky, K_s} is given by
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5

(X=Xm=3)", [Xm—3> Xm-21,
5 5

(X=Xm-3)” =6(X=Xm_2)", [Xm—2> Xm-1];
5 5 5

(X=Xm—3)" =6(X=Xp_2)” +15(X=Xp_1), [Xm-1> Xm ],

(X_ Xm-3 )5 _6(X_ Xm-2 )5 +15(X_ Xm-1 )5

—-20(x—x 5, Xy s X R

Km(X)z% ( 5m) 5 5 [m m+1] )
h (X=Xm-3)" =6(X=Xm_2) +15(X=Xp_1)

—=20(X— X )5 +15(X = X1 )5» [Xm+1> X2,

(X_ Xm-3 )5 _6(X_ Xm—2)5 +15(X_ Xm-1 )5

5 5 5
=20(X =X )” +15(X = X1 )" =6(X=Xm12), [Xm+2> Xm+3 1,

0, otherwise.

The set of quintic B-spline Kp(x), m=-2,..., N+2, forms a basis over the interval
[a, b]. A global interpolation U y (X, t) to the analytic solutions U (X, t) is given by

N+2

UG = D" 8n(Kn(x), (5)
m=-2

where 8,(t) are time-dependent parameters to be determined from the conditions in

Eq. (2) and Eq. (3). The function of quintic B-spline and its derivatives are
continuous. Similarly, the trial solutions with derivatives are continuous. The node

of U and its derivatives at the knots Xp, in terms of parameters 8, used from the

B-spline function in Eq. (4) and the trial solutions in Eq. (5), are as follows

Up =UXp) = 8m_n + 2681 + 668 + S0,

' ) 5
U =U'(xp) = F(5m+2 + 108, —108m_1 = 3m_2),
n 14 20
Un =U"(xp) = h_2(5m+2 + 28041 = 68m + 281 +8m_2),

m 4 60
Un =U"(xp) = h_3(6m+2 = 28m41 +28m_1 —3m_2)s

120
Ur(n4) =U (4)(Xm) = h_4(8m+2 — 4341 + 68y —4dy_; +Op_2). (6)
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Applying the knots X, i =0, 1, ..., N and substituting the variables U,,, Uy, and
Up, in Eq. (6) into Eq. (1), we get the nonlinear ordinary differential equation:

By 42680 | + 668, + 268, 1 + 8.0 + S—rf(&mz 108, — 1081 —81_5)
- h_2(5m+2 + 2041 — 60y + 20m_1 +Om_2) =0, (7)

where . denotes derivative with respect to time and ¢ =1+ &dy,, dy, = dy_»

+260_1 + 663, + 26341 + Oma-
Interpolating time parameters 3y, carried out time step of Eq. (7) and using the
Crank-Nicholson and forward difference scheme with its time derivatives &y,

between time level nand n+1 as

6n+l + 6” . 6n+1 _ 61‘1
8m: mz m96m: mAt m» (8)

we get a recurrence relationship between time level n and n + 1 successive unknown
parameters 81! and 81, i=m-2, ., m+2,

n+1 n+1 n+1 n+1 n+1
OUmdm=2 + Om2dm_1 + Am3dm  + Omadmi1 + msOmin

= Omsdm_2 + Amadm_1 + Am3dm + AmaBms1 + Amsdma2, )
where
oy = 2h? = 5chAt — 40, oy = 52h? — 50chAt — 80y,
om3 = 132h? +240p,  appy = 2h? + 50chAt — 80y,
oms = 2h? + 5chAt — 40, m=0,1, .., N. (10)

The nonlinear system before solving has (N + 5)x (N + 5) dimension. We applied
three boundary conditions to the system in Eq. (9) and eliminated the parameters

n+l qn+l gn+l n+1
8.3, 8.1, ON+1> ON+2-

We determine boundary conditions U(a, t) =By, Uy(a, t) =0,U(b, t) =B,
and U, (b, t) = 0, the result of this system changes to (N +1)x (N +1) dimension.

Therefore, we applied the Gauss elimination procedure at every time step to solve
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the matrix system. To increase the accuracy of this system iterate the procedure at
least two or three times, before moving to next step that solves the unknown

parameters,

(8*)n+l _ Sn +%(8n+1 _ 6”). (11)

Applying the von Neumann stability analysis verifies the stability of the nonlinear

system in Eq. (9). Let U in the term of nonlinear UU, be a locally constant p for the

RLW equation and assume terms d,, are also equal to a constant p. The Fourier

3 = f)neim(p substituted into the difference scheme in Eq. (9) obtains

A n+1 A
p™ = P " {[(oemy + ctms) €08 20 + (ot + Otg ) COS @ + 0tpy3]

+il(om — 0tps)sin 2¢ + (amy = ama)sin @]} /{[(otmy + atms) cos 2¢
+ (02 + 0tma ) cos @ + o3 |+ i[(0tms — oty )sin 2¢ + (0t — am )sin @]}

the difference equation is given by

™! = p"a,
where q is defined by
X +iy
q - X — |y k)

where

X = (0 + Oms) €08 2¢ + (o + Cma ) COS O + Om3,
Y = (0t — 0ys)sin 2¢ + (otymp — opg)sin @,

where ¢ =1+ ¢p and o, i =1, 2, 3, 4, 5 are given in Eq. (10). Difference scheme
in Eq. (9) satisfies the von Neumann’s condition |q| <1 that is unconditionally

stable.
3. The Conversation Laws and the Error Norms

Partial differential equations posses an infinite number of conversation laws. An
important state in the development of the general method of the solution for the
RLW equation is that solutions obey a number of independent conversation laws [6,
Definition, pp. 21-22].
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For the RLW equation there are only three conversation laws [5],

(M C =] _“;de,
(i) C, = jj‘; U2+ (U, )*]dx,
(i) C; = jjo [U3 +3U2]dx.

Numerical method of nonlinear equation can be imposed by the properties, time
assessed migration of the solitary wave solutions. We measured the accuracy of the
numerical algorithm by L, and L, norms as

1
N 2
L, = ||U exact —U2||2 _ [szluﬁxact _U?lz} ,
1

and

L, = U —uy?| = mng|U§"XelCt -ufl.

0

4. Numerical Solutions of Equation

4.1. One solitary wave solution

The analytical solution of the RLW equation is

U(x, t) = 3csech?(K[x — X — I(1 + c)t]),

which represents one solitary wave solution with amplitude 3c, v =1+ eC is the
wave velocity and k = %(sc /(1 + SC))%.

The initial condition

U(x, 0) = 3csech?(k(x — X)),

and we choose the boundaries 3; =0, 3, =0, -40 < X <60 and time 0 < X < 20.

The parameters h = 0.125, At = 0.1, ¢ = 0.3; 0.09 and & = u =1 are used the same

with the previous method [3, 7]. The program recorded the values of quantities

C;, C,, C5 at the time steps, values L, and L, norms.
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This is algorithm of one solitary wave solution of amplitude 0.3 at time t = 20,

to an L, error norm with the value 0.082 x 10°, while the quantities of conversation
laws (C;, C,, C3) change by less than 0.002. In the simulation of one solitary wave
solution with amplitude 0.3 the collocation method with quartic-QBCM at time
t =20, to an L, error norm with value 0.083 x 103, when the quantities of

conversation laws (C;, C,, C3) change by less than 0.003. In the procedure of

quadratic B-spline with the error norm at time t = 20 is only 0.086 x 10° and the

quantities of conversation laws (C;, C,, C3) change by less than 7 x 1075, Cubic

spline with time t = 20 has value 67.35 x 10° and also found the changing of the

quantities of conversation laws less than 0.05, the error in this simulation is so poor.

We see that for one solitary wave solution with amplitude 0.3 using quintic
B-spline collocation that its solution of quintic B-spline is more accurate than the
solution of quartic-QBCM 2 and Galerkin-quadratic, but this solution is nearly the
same quartic-QBCM 1. As the finite difference scheme is the least accurate of all
methods. In Figure 1, comparing the initial wave profile with time t =20, we
observed that the wave amplitude and any non-physical oscillation have a small

change. In Figure 2 shown the error of the wave maximum and oscillates smoothly

between —2x10™* and 3x107>.

In Table 2, we change the amplitude to 0.09 and get the same results of each
method but they have the better accuracy of the error norms. The quintic collocation,
quartic and Galerkin quadratic have nearly the results of the error but finite
difference cubic is poor in compare with other methods but better than that in
Table 1.

Table 1. Invariants and error norm for one solitary wave solution with amplitude
0.3, Ax = 0.125, At = 0.1 and —40 < X < 60

Method Time Cy Co C3 Ly x103 L, x 103
Quintic collocation 20 3.97993 0.810445 2.57900 0.214 0.082
Quartic-QBCM 1 20 3.97995 0.81046  2.57901 0.215 0.083
Quartic-QBCM 2 20 3.97995 0.81046  2.57901 0.357 0.129
Galerkin-quadratic 20 3.97989 0.808650 2.57902 0.220 0.086

f.d cubic 20 441219 0.897342 0.85361 196.1 67.35
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Figure 1. Profiles of the solitary wave at t = 0 and t = 20.
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Figure 2. The error = exact — numerical numerical solution at t = 20 in Figure 1.

Table 2. Invariants and error norm for one solitary wave solution with amplitude
0.09, AX = 0.125, At = 0.1 and —-40<Xx<60

Method Time G C, C; L, x 103 Ly X 103
Quintic collocation 20  2.10830 0.127303 0.388809 0.355 0.298
Quartic-QBCM 1 20  2.10832 0.12909 0.38881 0.359 0.302
Quartic-QBCM 2 20 2.10831 0.12913 0.38881 0.356 0.295
Galerkin-quadratic 20 2.10460 0.127302 0.388803 0.563 0.432

f.d cubic 20 2.333  0.140815 0.430052 14.45 3.996
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Figure 3. Solitary wave solution, amplitude 0.09 at

t =20, Ax = 0.125, At = 0.1, — 40 < x < 60.

4.2. Undular bore and modeling

We study the development of an undular bore, follow Peregrine [6] and use as

initial condition

U(x, 0) = o.suo[l - tanh( X —dXo ﬂ

and boundary conditions
U(a,t)=Uy, U(b,t)=0,

where U (X, 0) represents the elevation of the water above the equilibrium surface at
time t = 0. The constant U, is the change in water level that is centered on X = X

and d denotes the slope between the still water and deeper water. For the algorithm

we choose the value of parameters as follows, ¢ =1, p = 0.16666667, U, = 0.1

and d = 5.
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Table 3. The amplitudes of the undular bore at time t = 400

Position =~ Amplitude  Position = Amplitude

Present method
Leading undulation 263.896 0.177 264.788 0.181
Second undulation 254.632 0.150 256.356 0.164
Third undulation 242.383 0.122 248.125 0.146
Cubic B-spline
Leading undulation 264.962 0.178 265.922 0.182
Second undulation 253.923 0.153 254.163 0.162
Third undulation 244.823 0.132 244.082 0.145

The physical boundary conditions are U -0 as X —>o and U > U, as

X — —o0,

In Table 3 are shown the maximum position and amplitude of the undular bore
at time t = 400. The amplitude of the present method closes to the amplitude of
cubic B-spline for each slope. The difference between the amplitude of leading
undulation for each slope is 0.181—0.177 = 0.004; it is the same result of cubic
B-spline. We see that the undulations were nearly the same velocity for each steep
slope. The position of leading undulation is 264.788 when d = 2, while with d =5
the position of leading undulation is 263.896. In Figures 4 and 5 are shown the
undulation and a space/time of the gentle slope d = 5 at time t = 400.
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Figure 4. A gentle slope d = 5 of the undulation at t =400.
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Figure 5. The undulation d = 5 for a space/time.

In Figures 6 and 7 are shown the undulation and the growth of the amplitude
with slope d =2 at time t = 400.

0.5+

T T T T T 1
200 50 W X 3% 0 450 00

Figure 6. The undulation at t = 400 with slope d =2.
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Figure 7. The undulation d = 2 with growth of the amplitude.
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5. Conclusions

The numerical scheme for the RLW equation has shown the amplitude of one

solitary wave solution in each time step and predicts wave progress of an undular

bore with the small error that is examined by the error norms L, and L.
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