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Abstract 

In this paper, testing the numerical scheme for the regularized long wave 
(RLW) equation and study of motion, interaction and development of the 
solitary wave solution are presented. These schemes impose the amplitude 
of a one solitary wave solution and predict the progress of the wave 
solutions with errors and the demonstrating the shape, height and velocity 
of an undular bore consistency. 

1. Introduction 

We consider the RLW equation 

,0=μ−ε++ xxtxxt UUUUU  (1) 

where ε and μ are parameters and the subscripts x and t denote differentiation. The 
physical boundary conditions require 0→U  as .±∞→x  Boundary conditions 
will be selected from the homogeneous boundary conditions: 
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( ) ( ) ,,,, 21 β=β= tbUtaU  

( ) ( ) ( ],,0,0,,0, TttbUtaU xx ∈==  

( ) ( ) ,0,,0, == tbUtaU xxxx  (2) 

and its initial condition 

( ) ( ) [ ],,,, baxxftxU ∈=  (3) 

where ( )xf  is a localized disturbance inside the interval [ ]., ba  

This equation is the favorite nonlinear wave equation which can be used to 
model a large number of problems arising in various areas of applied sciences [1, 2]. 
In 1966, Peregrine [6] derived the RLW equation to model development of an 
undular bore. In 1984, Morrison et al. [4] derived the one-dimensional nonlinear 
dispersive waves which is accurate and equally valid model for the same wave 
simulated by the Korteweg-de Vries (KdV) equation and RLW equation. In 1972, 
Benjamin et al. [1] discovered the BBM equation that is also known as the RLW 
equation. In this paper, we have used a collocation method with quintic B-spline to 
investigate the motion of one solitary wave solution, and an undular bore for the 
RLW equation in Eq. (1) to predict the progressive wave with small error norms. 

2. Quintic B-spline Collocation Method 

We divided the interval [ ]ba,  by nodes mx  such that bxxa N =<<< 1  

and ....,,2,1,0,1 Nmxx
N

abh mm =−=−= +  We use 10 knots of the interval 

[ ]ba,  as 

12345 −−−−− <<<< xxxxx  and ,54321 +++++ <<<< NNNNN xxxxx  

and applied quintic B-spline analyzed solutions of the RLW equation. 

The quintic B-spline ( )xKm  with basis form over the domain [ ],, ba  that is, 

{ }54321 ,,,, −−−−− KKKKK  is given by 
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The set of quintic B-spline ( ) ,2...,,2, +−= NmxKm  forms a basis over the interval 

[ ]., ba  A global interpolation ( )txU N ,  to the analytic solutions ( )txU ,  is given by 

( ) ( ) ( )∑
+

−=

δ=
2

2
,,

N

m
mmN xKttxU  (5) 

where ( )tmδ  are time-dependent parameters to be determined from the conditions in 

Eq. (2) and Eq. (3). The function of quintic B-spline and its derivatives are 
continuous. Similarly, the trial solutions with derivatives are continuous. The node 
of U and its derivatives at the knots mx  in terms of parameters mδ  used from the 

B-spline function in Eq. (4) and the trial solutions in Eq. (5), are as follows 

( ) ,6626 212 +−− δ+δ+δ+δ== mmmmmm xUU  

( ) ( ),10105
2112 −−++ δ−δ−δ+δ=′=′ mmmmmm h

xUU  

( ) ( ),26220
21122 −−++ δ+δ+δ−δ+δ=′′=′′ mmmmmmm

h
xUU  

( ) ( ),2260
21123 −−++ δ−δ+δ−δ=′′′=′′′ mmmmmm

h
xUU  

( ) ( )( ) ( ).464120
21124

44
−−++ δ+δ−δ+δ−δ== mmmmmmm

h
xUU  (6) 
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Applying the knots Nixi ...,,1,0, =  and substituting the variables mm UU ′′,  and 

mU ′′′  in Eq. (6) into Eq. (1), we get the nonlinear ordinary differential equation: 

( )21122112 10105266626 −−++++−− δ−δ−δ+δ+δ+δ+δ+δ+δ mmmmmmmmm h
c  

( ) ,026220
21122 =δ+δ+δ−δ+δ− −−++ mmmmm

h
 (7) 

where . denotes derivative with respect to time and 2,1 −δ=ε+= mmm ddc  

.266626 211 ++− δ+δ+δ+δ+ mmmm  

Interpolating time parameters mδ  carried out time step of Eq. (7) and using the 

Crank-Nicholson and forward difference scheme with its time derivatives mδ  

between time level n and 1+n  as 

,,2
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t

n
m

n
m

m

n
m

n
m

m Δ
δ−δ

=δ
δ+δ

=δ
++

 (8) 

we get a recurrence relationship between time level n and 1+n  successive unknown 

parameters 1+δn
i  and ,2...,,2, +−=δ mmin

i  
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,251231425
n
mm

n
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mm

n
mm ++−− δα+δα+δα+δα+δα=  (9) 

where 

,805052,4052 2
2

2
1 μ−Δ−=αμ−Δ−=α tchhtchh mm  

,80502,240132 2
4

2
3 μ−Δ+=αμ+=α tchhh mm  

....,,1,0,4052 2
5 Nmtchhm =μ−Δ+=α  (10) 

The nonlinear system before solving has ( ) ( )55 +×+ NN  dimension. We applied 

three boundary conditions to the system in Eq. (9) and eliminated the parameters 

.,,, 1
2

1
1

1
1

1
2

+
+

+
+

+
−

+
− δδδδ n

N
n
N

nn  

We determine boundary conditions ( ) ( ) ( ) 21 ,,0,,, β==β= tbUtaUtaU x  

and ( ) ,0, =tbU x  the result of this system changes to ( ) ( )11 +×+ NN  dimension. 

Therefore, we applied the Gauss elimination procedure at every time step to solve 
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the matrix system. To increase the accuracy of this system iterate the procedure at 
least two or three times, before moving to next step that solves the unknown 
parameters, 

( ) ( ).2
1 11 nnnn δ−δ+δ=δ ++∗  (11) 

Applying the von Neumann stability analysis verifies the stability of the nonlinear 
system in Eq. (9). Let U in the term of nonlinear xUU  be a locally constant p for the 

RLW equation and assume terms md  are also equal to a constant p. The Fourier 
ϕ=δ imnn

m ep̂  substituted into the difference scheme in Eq. (9) obtains 

{ ( ) ( )[ ]34251
1 cos2cosˆˆ mmmmm

nn pp α+ϕα+α+ϕα+α=+  

( ) ( )[ ]} {[( ) ϕα+αϕα−α+ϕα−α+ 2cossin2sin 514251 mmmmmmi  

( ) ] ( ) ( )[ ]}ϕα−α+ϕα−α+α+ϕα+α+ sin2sincos 2415342 mmmmmmm i  

the difference equation is given by 

,ˆˆ 1 qpp nn =+  

where q is defined by 

,
iyx
iyxq

−
+

=  

where 

( ) ( ) ,cos2cos 34251 mmmmmx α+ϕα+α+ϕα+α=  

( ) ( ) ,sin2sin 4251 ϕα−α+ϕα−α= mmmmy  

where pc ε+= 1  and 5,4,3,2,1, =α imi  are given in Eq. (10). Difference scheme 

in Eq. (9) satisfies the von Neumann’s condition 1≤q  that is unconditionally 

stable. 

3. The Conversation Laws and the Error Norms 

Partial differential equations posses an infinite number of conversation laws. An 
important state in the development of the general method of the solution for the 
RLW equation is that solutions obey a number of independent conversation laws [6, 
Definition, pp. 21-22]. 



SIRIRAT SUKSAI and USA HUMPHRIES 

 

208 

For the RLW equation there are only three conversation laws [5], 

  (i) ∫
∞

∞−
= ,1 UdxC  

 (ii) [ ( ) ]∫
∞

∞−
μ+= ,22

2 dxUUC x  

(iii) [ ]∫
∞

∞−
+= .3 23

3 dxUUC  

Numerical method of nonlinear equation can be imposed by the properties, time 
assessed migration of the solitary wave solutions. We measured the accuracy of the 
numerical algorithm by 2L  and ∞L  norms as 

,
2
1

1

2
2

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Δ=−= ∑

N
n
j

exact
j

exact UUxUUL  

and 

.max2 n
j

exact
j

j
exact UUUUL −=−= ∞∞  

4. Numerical Solutions of Equation 

4.1. One solitary wave solution 

The analytical solution of the RLW equation is 

( ) ( )[ ]( ) ,11sech3, 0
2 tcxxkctxU ε+−−=  

which represents one solitary wave solution with amplitude cc ε+=υ 1,3  is the 

wave velocity and ( )( ) .1
2
1

2
1

cck ε+με=  

The initial condition 

( ) ( )( ) ,sech30, 0
2 xxkcxU −=  

and we choose the boundaries 6040,0,0 21 ≤≤−=β=β x  and time .200 ≤≤ x  

The parameters 09.0;3.0,1.0,125.0 ==Δ= cth  and 1=μ=ε  are used the same 

with the previous method [3, 7]. The program recorded the values of quantities 

321 ,, CCC  at the time steps, values 2L  and ∞L  norms. 
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This is algorithm of one solitary wave solution of amplitude 0.3 at time ,20=t  

to an ∞L  error norm with the value ,10082.0 3×  while the quantities of conversation 

laws ( )321 ,, CCC  change by less than 0.002. In the simulation of one solitary wave 

solution with amplitude 0.3 the collocation method with quartic-QBCM at time 

,20=t  to an ∞L  error norm with value ,10083.0 3×  when the quantities of 

conversation laws ( )321 ,, CCC  change by less than 0.003. In the procedure of 

quadratic B-spline with the error norm at time 20=t  is only 310086.0 ×  and the 

quantities of conversation laws ( )321 ,, CCC  change by less than .107 6−×  Cubic 

spline with time 20=t  has value 31035.67 ×  and also found the changing of the 
quantities of conversation laws less than 0.05, the error in this simulation is so poor. 

We see that for one solitary wave solution with amplitude 0.3 using quintic 
B-spline collocation that its solution of quintic B-spline is more accurate than the 
solution of quartic-QBCM 2 and Galerkin-quadratic, but this solution is nearly the 
same quartic-QBCM 1. As the finite difference scheme is the least accurate of all 
methods. In Figure 1, comparing the initial wave profile with time ,20=t  we 

observed that the wave amplitude and any non-physical oscillation have a small 
change. In Figure 2 shown the error of the wave maximum and oscillates smoothly 

between 4102 −×−  and .103 5−×  

In Table 2, we change the amplitude to 0.09 and get the same results of each 
method but they have the better accuracy of the error norms. The quintic collocation, 
quartic and Galerkin quadratic have nearly the results of the error but finite 
difference cubic is poor in compare with other methods but better than that in 
Table 1. 

Table 1. Invariants and error norm for one solitary wave solution with amplitude 
1.0,125.0,3.0 =Δ=Δ tx  and 6040 ≤≤− x  

Method Time 1C  2C  3C  3102 ×L  310×∞L  

Quintic collocation 20 3.97993 0.810445 2.57900 0.214 0.082 
Quartic-QBCM 1 20 3.97995 0.81046 2.57901 0.215 0.083 
Quartic-QBCM 2 20 3.97995 0.81046 2.57901 0.357 0.129 

Galerkin-quadratic 20 3.97989 0.808650 2.57902 0.220 0.086 
f.d cubic 20 4.41219 0.897342 0.85361 196.1 67.35 
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Figure 1. Profiles of the solitary wave at 0=t  and .20=t  

 

Figure 2. The −= exacterror numerical solutionnumerical  at 20=t  in Figure 1. 

Table 2. Invariants and error norm for one solitary wave solution with amplitude 
0.09, 1.0,125.0 =Δ=Δ tx  and 6040 ≤≤− x  

Method Time 1C  2C  3C  3
2 10×L 310×∞L  

Quintic collocation 20 2.10830 0.127303 0.388809 0.355 0.298 
Quartic-QBCM 1 20 2.10832 0.12909 0.38881 0.359 0.302 
Quartic-QBCM 2 20 2.10831 0.12913 0.38881 0.356 0.295 

Galerkin-quadratic 20 2.10460 0.127302 0.388803 0.563 0.432 
f.d cubic 20 2.333 0.140815 0.430052 14.45 3.996 
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Figure 3. Solitary wave solution, amplitude 0.09 at 
.6040,1.0,125.0,20 ≤≤−=Δ=Δ= xtxt  

4.2. Undular bore and modeling 

We study the development of an undular bore, follow Peregrine [6] and use as 
initial condition 

( ) ,tanh15.00, 0
0 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

−=
d

xx
UxU  

and boundary conditions 

( ) ( ) ,0,,, 0 == tbUUtaU  

where ( )0,xU  represents the elevation of the water above the equilibrium surface at 

time .0=t  The constant 0U  is the change in water level that is centered on cxx =  

and d denotes the slope between the still water and deeper water. For the algorithm 
we choose the value of parameters as follows, ,16666667.0,1 =μ=ε  1.00 =U  

and .5=d  
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Table 3. The amplitudes of the undular bore at time 400=t  

      5=d       2=d  
 Position Amplitude Position Amplitude 

Present method     
Leading undulation 263.896 0.177 264.788 0.181 
Second undulation 254.632 0.150 256.356 0.164 
Third undulation 242.383 0.122 248.125 0.146 
Cubic B-spline     

Leading undulation 264.962 0.178 265.922 0.182 
Second undulation 253.923 0.153 254.163 0.162 
Third undulation 244.823 0.132 244.082 0.145 

The physical boundary conditions are 0→U  as ∞→x  and 0UU →  as 
.−∞→x  

In Table 3 are shown the maximum position and amplitude of the undular bore 
at time .400=t  The amplitude of the present method closes to the amplitude of 
cubic B-spline for each slope. The difference between the amplitude of leading 
undulation for each slope is ;004.0177.0181.0 =−  it is the same result of cubic 
B-spline. We see that the undulations were nearly the same velocity for each steep 
slope. The position of leading undulation is 264.788 when ,2=d  while with 5=d  
the position of leading undulation is 263.896. In Figures 4 and 5 are shown the 
undulation and a space/time of the gentle slope 5=d  at time .400=t  

 

Figure 4. A gentle slope 5=d  of the undulation at .400=t  
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Figure 5. The undulation 5=d  for a space/time. 

In Figures 6 and 7 are shown the undulation and the growth of the amplitude 
with slope 2=d  at time .400=t  

 

Figure 6. The undulation at 400=t  with slope .2=d  

 

Figure 7. The undulation 2=d  with growth of the amplitude. 
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5. Conclusions 

The numerical scheme for the RLW equation has shown the amplitude of one 
solitary wave solution in each time step and predicts wave progress of an undular 
bore with the small error that is examined by the error norms 2L  and .∞L  
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