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Abstract 

In this paper, we study the asymptotic behavior of solutions of higher 
order neutral difference equations of the form 

( ) ( ) ,, nnknn
m hxnfpxx =++Δ −  

where 1≥m  is an integer. We establish conditions under which all 

nonoscillatory solutions are asymptotic to banm +−1  with ., R∈ba  

The obtained results extend those that are known for non-neutral higher 
order difference equations. 

1. Introduction 

In this paper, we study the asymptotic behavior of non-oscillatory solutions of 
the neutral difference equations of the form 

( ) ( ) ,, nnknn
m hxnfpxx =++Δ −  (1) 
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where ( ) { } 0000 ,...,1, nnnnNn +=∈  is a positive integer, m, 1≥k  are integers, 

{ }nh  is a sequence of real numbers, p is a non-negative real number, and ( )0: nf N  

RR →×  is a continuous function. The forward difference operator Δ is defined as 

usual, that is, .1 nnn xxx −=Δ +  The higher order difference for a positive integer m 

is defined as ( ) ., 01
nnn

m
n

m xxxx =ΔΔΔ=Δ −  

By a solution of equation (1), we mean a real sequence { }nx  which is defined 

for all knn −≥ 0  and satisfies equation (1) for all ( ).0nn N∈  As is customary, a 

nontrivial solution { }nx  of equation (1) is said to be nonoscillatory if the terms nx  

of the sequence { }nx  are either eventually positive or eventually negative and 

oscillatory otherwise. 

The neutral delay difference equations arise in a number of important 
applications including problems in population dynamics when maturation and 
gestation are included, in “cobweb” models in economics where demand depends on 
current price but supply depends on the price at an earlier time, and in electrical 
transmission in lossless transmission lines between circuits in high speed computers. 

Oscillation theory of higher-order neutral difference equations has developed 
very rapidly in recent years. It has concerned itself largely with the oscillatory and 
asymptotic behavior of solutions (see, e.g., [1-3, 6, 8-14] and the references 
containing therein). The asymptotic behavior of nonoscillatory solutions of equation 
(1) has been studied using fixed point theorems and summation averaging techniques 
with the condition ( ) 0, >unuf  for 0≠u  and for all ( )0nn N∈  (see, for example 

[1, 2, 3, 9, 10, 12, 14] and the references cited therein). Motivated by this 
observation, in this paper, we investigate the asymptotic behavior of nonoscillatory 
solutions of equation (1) without using the above said conditions on the nonlinear 
function. For a general background on difference equations and inequalities we can 
refer to [1] and [7]. 

2. Asymptotic Behavior of Nonoscillatory Solutions 

In this section, we investigate the asymptotic behavior of nonoscillatory 
solutions of equation (1). We begin with the following lemma which can used to 
obtain useful information about the properties of nonoscillatory solutions of equation 
(1). 
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Lemma 1. Let { }nx  be an eventually positive or eventually negative sequence 

and 

( ),, 0
1

nnx
n

knpxw kn
m

nn N∈⎟
⎠
⎞⎜

⎝
⎛ −+= −

−
 (2) 

where ,0 ∞<≤ p  k is a positive integer. If ,lim cwnn
=

∞→
 then .

1
lim

p
cynn +

=
∞→

 

Proof. Assume that { }nx  is eventually positive since the proof for the case { }nx  

is eventually negative is similar. First note that { }nx  is bounded since ,nn wx ≤  for 

all ( ).0nn N∈  Next, let { }in  and { }jn  be divergent subsequences of positive 

integers such that α==
∞→∞→ nnni

xx i inflimlim  and .suplimlim β==
∞→∞→ nnnj

xx j  In view 

of (2), we see that 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

+== −

−

∞→∞→ kn

m

i

i
nini iii x

n
kn

pxwc
1

limlim  

( ) ( ).1lim1inflim
1

p
n

kn
px

m

i

i
inn

+α=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

+≥
−

∞→∞→
 

Hence .
1 p

c
+

≤α  Similarly, one can show that .
1

β≤
+ p
c  The proof is now 

complete. ~ 

Next, we state the discrete type Bihari inequality established by Hull and 
Luxemburg [5]. 

Lemma 2. Let { }ny  and { }nf  be non-negative sequences defined on ( )0nN  

and let ( )∞→+ ,0: RW  be continuous and nondecreasing. If 

( ),
1

0
∑
−

=

+≤
n

ns
ssn yWfdy  

for all ( ) ,0nn N∈  where d is a nonnegative constant, then for ,10 nnn ≤≤  

( ),01 nn N∈  we have 

 ( ) ,
1

1

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤ ∑

−

=

−
n

ns
sn fdGGy  (3) 
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where ( ) ( )∫ >>=
u

u
uu

sW
dsuG

0
0,0, 0  arbitrary, and 1−G  is the inverse of G such 

that ( ) ( ),
1

1

0
∑
−

=

−∈+
n

ns
s GDomfdG  for .10 nnn ≤≤  

Remark 3. If ( )∫ ∞→
u

u sW
ds

0
 as ,∞→u  then (3) is valid for all ( ).0nn N∈  

Theorem 4. Assume that ∞<≤ p0  and k is a positive integer. If there exists a 

positive real sequence { }nq  and a continuous nondecreasing function ++ → RR:g  

such that 

( ) ,, 1 ⎟⎠
⎞

⎜
⎝
⎛≤

−mn
n

u
gqunf  (4) 

∑
∞

=

∞<
0nn

nq  and ∑
∞

=

∞<
0

,
nn

nh  (5) 

and 

( ) ( )∫ ∞→=
u

u sg
dsuG

0
,    as ,∞→u  

then every nonoscillatory solution { }nx  of equation (1) is asymptotic to ,1 banm +−  

where a and b are real constants. 

Proof. Let { }nx  be a nonoscillatory solution of equation (1). Define 

 .knnn pxxz −+=  (6) 

Then nn xz >  and from equation (1), we have 

 ( ) ., nnn
m hxnfz +−=Δ  (7) 

If we denote ,10,0 −≤≤α=Δ miz in
i  then summing (7), m times from 0n  to 

,1−n  we obtain 

 ( )∑ ∑
−

=

−

=
−

− +−=Δ
1 1

1
1

0 0

,
n

ns

n

ns
ssmn

m hxsfdz  (8) 
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and 

( )( ) ( )
( ) ( ) ( )

( )∑ ∑ ∑
−

=

−

=

−

=

−−

−
−−+

−
−−−

−
=

1

0

1 1 11
0

0 0

.
!1

1,
!1

1
!

m

i

n

ns

n

ns
s

m

s

m

i

i

n h
m
snxsf

m
snd

i
nn

z  (9) 

It follows from (9) that 

 ( )∑ ∑∑
−

=

−

=

−−
−

=

− ++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤

1 1
11

1

0

1

0 0

,
n

ns

n

ns
s

m
s

m
m

i

m
in hnxsfnndz  (10) 

and in view of (4), it is clear that 

( ) ., 11 ⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎠
⎞

⎜
⎝
⎛≤

−− m
n

nm
n

nn
n

z
gq

n
x

gqxnf  

Then from (10), we have 

 ∑ ∑ ∑
−

=

−

=

−

=
−− +⎟
⎠
⎞

⎜
⎝
⎛+≤

1

0

1 1

11
0 0

.
m

i

n

ns

n

ns
sm

s
sim

n h
S

zgqd
n

z  (11) 

From condition (5), there exists a positive constant md  such that ,
1

0
∑
−

=
≤

n

ns
ms dh  

for all ( ) ,0nn N∈  and from (11), we have 

 ,
1

11
0

∑
−

=
−− ⎟
⎠
⎞

⎜
⎝
⎛+δ≤

n

ns
m

s
sm

n

S
z

gq
n

z
 (12) 

where ∑
−

=
+=δ

1

0
.

m

i
im dd  Applying Lemma 2 on (12), we obtain 

( ) ,
1

1
1

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+δ≤ ∑

−

=

−
−

n

ns
sm

n qGG
n

z
 

where 1−G  is the inverse function of G. Let 

( ) ∑
−

=

∞<+δ=δ
1

1
0

.
m

ns
sqG  

Since 1−G  is increasing, we conclude that 

( ) .1
1

21 ∞<δ=δ≤ −
−

G
n

z
m

n  
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On the other hand, by (4), we have 

( )∑ ∑ ∑
−

=

−

=

−

=
−− ⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎠
⎞

⎜
⎝
⎛≤

1 1 1

11
0 0 0

,
n

ns

n

ns

n

ns
m

s
sm

s
ss

S
z

gq
S

x
gqxsf  

( )∑
−

=

δ<δ≤
1

32
0

.
n

ns
sqg  

Therefore, ( )∑
∞

= 0

,
nn

nxnf  exists and from (8), we see that there exists a constant 

R∈1a  such that .lim 1
1 azn

m
n

=Δ −
∞→

 Then by Stolz’s theorem [4], we have 

.limlim 1
1

1 az
n

z
n

m
nm

n
n

=Δ= −
∞→−∞→

 

Now, we put ,1−= m
n

n
n

z
w  then (6) implies ,

1
kn

m
nn y

n
knpyw −

−
⎟
⎠
⎞⎜

⎝
⎛ −+=  where 

,1−= m
n

n
n

x
y  Lemma 1 implies that 

.
1

lim 1
1 p

aa
n

x
m

n
n +

==
−∞→

 

This completes the proof. ~ 

Remark 5. If in the proof of Theorem 4, we choose 1−md  sufficiently large so 

that ,0lim 1
1 ≠=Δ −
−

∞→ mn
m

n
dz  then the corresponding solution { }nx  of equation (1) 

is asymptotic to ,1 banm +−  where .0≠a  

Corollary 6. Consider the equation 

 ( ) ( ),, 0nnhxepxx nnnknn
m N∈=++Δ −  (13) 

where p is a non-negative real number and k is a positive integer, and 

∑
∞

=

− ∞<
0

1

nn
n

m en   and  ∑
∞

=

− ∞<
0

.1

nn
n

m hn  

Then every nonoscillatory solution { }nx  of equation (13) is asymptotic to banm ++1  

as .∞→n  
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Proof. The conclusion follows from Theorem 4 with n
m

n enq 1−=  and 

( ) .uug =  ~ 

Remark 7. For 0=p  and 0=nh  Corollary 6 corresponds to the well-known 

result [7] for the equation .0=+Δ nnn
m yey  

Corollary 8. Consider the equation 

 ( ) ( ),,0 0nnxepxx nnknn
m N∈=++Δ α

−  (14) 

where ,0,10 ∞<≤<α< p  k is a positive integer and 

( )∑
∞

=

−α ∞<
0

.1

nn
n

m qn  

Then every nonoscillatory solution { }ny  of equation (14) is asymptotic to 

banm +−1  as .∞→n  

Proof. Apply Theorem 4 with 

( ) 0,1 ≡= −α
nn

m
n henq  and ( ) .α= uug  

As a final result of this section, we extend the conclusion of Theorem 4 to more 
general equation 

 ( ) ( ) ,,, 1 nnnknn
m hyynfpxx =++Δ +−  (15) 

where .2≥m  

Theorem 9. Assume that ,0 ∞<≤ p  k is a positive integer and ( )vunf ,,  is 

continuous in ( ) ( ){ }.,,,,, 0 RN ∈∈= vunnvunD  If there exists a positive 

sequence { }nq  and a continuous nondecreasing function ( )∞→+ ,0: Rg  such 

that 

( ) ,,, 1 v
n

u
gqvunf mn ⎟

⎠
⎞

⎜
⎝
⎛≤

−
 on D, 

( ) ( ) ,
0
∫ ∞→=

u

u ssg
dsuG  as ∞→u  
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and 

∑
∞

=

− ∞<
0

1

nn
n

m qn   and  ,
0

∑
∞

=

∞<
nn

sh  

then every oscillatory solution { }nx  of equation (15) is asymptotic to banm +−1  as 

,∞→n  where a and b are real constants. 

Proof. Proceeding as in the proof of Theorem 4, we have 

( )∑ ∑
−

=

−

=
+−

− +−=Δ
1 1

11
1

0 0

,,
n

ns

n

ns
sssmn

m hxxsfdz  

and 

( )( ) ( )
( ) ( ) ( )

( )∑ ∑ ∑
−

=

−

=

−

=

−

+

−

−
−−+

−
−−−

−
=

1

0

1 1 1
1

1
0

0 0

.!1
1,,!1

1
!

m

i

n

ns

n

ns
s

m
ss

m
i

i

n hm
snxxsfm

sndi
nnz  

If follows that 

 ∑ ∑ ∑
−

=

−

=

−

=
−−

+⎟
⎠
⎞

⎜
⎝
⎛+≤

1

0

1 1

11
0 0

m

i

n

ns

n

ns
sm

s
sim

n h
S

x
gqd

n
z

 (16) 

and 

 ∑ ∑ ∑
−

=

−

=

−

=
+−− +⎟

⎠
⎞

⎜
⎝
⎛+≤

Δ
1

1

1 1

112
0 0

.
m

i

n

ns

n

ns
ssm

s
sim

n hx
S

xgqd
n

z  (17) 

Since nn xz ≥  and g is nondecreasing, we have from (16) and (17) 

 ∑ ∑ ∑
−

=

−

=

−

=
+−−

+⎟
⎠
⎞

⎜
⎝
⎛+≤

1
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1 1
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ssm

s
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S

z
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n
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 (18) 

and 

 .
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1 1

112
0 0
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ssm

s
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Let nR  be the right side of (18). Then we have nm
n R

n
z

≤
−1  and .2 nm

n R
n

z
≤

Δ
−

 

Hence nn
m

n zRnz +≤ −
+

2
1  or ( ) .1 2

1 n
m

n Rnnz −
+ +≤  Thus from (18), we 

obtain 

( ) ( )∑ ∑ ∑
−

=

−

=

−

=

− +++≤
1

0

1 1
2

0 0

.1
m

i

n

ns

n

ns
sss

m
in hRgRssdR  

The rest of the proof is similar to that of Theorem 4 and hence the details are 
omitted. ~ 

3. Examples 

In this section, we give some examples to illustrate the results obtained in 
Section 2. 

Example 10. Consider the nonlinear, difference equation 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
+⎟

⎠
⎞⎜

⎝
⎛ +Δ − 2

2

221
2

112
1

2
1

n

n
nn

x
x

n
xx  

 ( ) ( ) ( ) .2,
211

3
154

1
24 ≥

++−
+

++
= n

nnnnn
 (20) 

Set ( ) ( ) ( )211
3

154
1,1,2 244 ++−

+
++

===
nnnnn

h
n

qm nn  and ( ) .
1 2

2

u
uug
+

=  

Then applying Theorem 4, we see that for any nonoscillatory solution { }nx  of (20) 

there exist reals a and b such that banxn +→  as .∞→n  Observe that { } =nx  

⎭⎬
⎫

⎩⎨
⎧ +

n
n 12  is a solution of (20) which is asymptotic to 2n as .∞→n  

Example 11. Consider the nonlinear difference equation 

 ( ) ( ) ( )
( ) ( ) ( )

,0
11651

2230182 2

2

2322

36

1
3 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

++++−

+++
++Δ −

n

n
nn

x
x

nnnnn
nnnxx  (21) 

where .2≥n  Set ,3=m  ,1
4n

qn =  0=nh  and ( ) .
1 2

2

u
uug
+

=  Then applying 
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Theorem 4, we see that for any nonoscillatory solution { }nx  of (21), there exist reals 

a and b such that ban +2  as .∞→n  Observe that { }
⎭⎬
⎫

⎩⎨
⎧ +=

n
nxn

12  is a solution 

of (21) which is asymptotic to 2n  as .∞→n  

Remark 12. The known results in the literature [1, 2, 3, 10, 12, 14] do not apply 
to the equation (20) and (21) since the condition ( ) 0, >unuf  for 0≠u  is not 

satisfied. 

Example 13. Consider the following higher order Emden-Fowler type nonlinear 
difference equation 

 ( ) ,0=++Δ αβ
− nknn

m xnpxx  (22) 

where 10 <α<  is a ratio of odd integers, ,10 <≤ p  k is positive integer. Then by 

Corollary 8 every nonoscillatory solution { }nx  of equation (22) is asymptotic to 

banm +−1  as ∞→n  provided ( ) .011 <+β+−α m  

4. Conclusion 

If 2=m  and ,0≡nh  then the results obtained in this paper reduces to that of 

in [8]. Further, the results obtained in this paper can be extended to more general 
equation of the form 

( ( )) ( ) ,,1
nnknn

m
n hxnfpxxa =++ΔΔ −

−  

where { }na  is a positive real sequence, without much difficulty and hence the details 

are left to the reader. 

References 

 [1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York 
2000. 

  [2] R. P. Agarwal and S. R. Grace, Oscillation of higher-order nonlinear difference 
equations of neutral type, Appl. Math. Lett. 12(8) (1999), 77-83. 

 [3] R. P. Agarwal, E. Thandapani and R. J. Y. Wong, Oscillations of higher-order neutral 
difference equations, Appl. Math. Lett. 10(1) (1997), 71-78. 



ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF HIGHER ORDER …  201 

 [4] T. J. Bromwhich, An Introduction of Theory of Infinite Series, Macmillan, London, 
1926. 

 [5] T. E. Hull and W. A. J. Luxemburg, Numerical methods and existence theorems for 
ordinary differential equations, Numer. Math. 2 (1960), 30-41. 

 [6] G. Ladas and C. Qian, Comparison results and linearized oscillations for higher-order 
difference equations, Internet. J. Math. Math. Sci. 15(1) (1992), 129-142. 

 [7] B. G. Pachpattle, Inequalities for Finite Difference Equations, Marcel Dekker, New 
York, 2002. 

 [8] E. Thandapani, R. Arul and P. S. Raja, The asymptotic behavior of nonoscillatory 
solutions of nonlinear neutral type difference equations, Math. Comput. Modelling 
39(13) (2004), 1457-1465. 

 [9] E. Thandapani, S. L. Marian and J. R. Graef, Asymptotic behavior of nonoscillatory 
solutions of neutral difference equations, Advances in difference equations, IV, 
Comput. Math. Appl. 45(6-9) (2003), 1461-1468. 

 [10] F. J. Yang and J. C. Liu, Positive solution of even-order nonlinear neutral difference 
equations with variable delay, J. Systems Sci. Math. Sci. 22(1) (2002), 85-89. 

 [11] B. G. Zhang and B. Yang, Oscillation in higher-order nonlinear difference equations, 
Chinese Ann. Math. Ser. A 20(1) (1999), 71-80. 

 [12] Y. Zhou, Oscillations of higher-order linear difference equations, Advances in 
difference equation, III, Comput. Math. Appl. 42(3-5) (2001), 323-331. 

 [13] Y. Zhou, Existence of nonoscillatory solutions of higher order neutral difference 
equations with general coefficients, Appl. Math. Lett. 15 (2002), 785-791. 

 [14] Y. Zhou and Y. Q. Huang, Existence for nonoscillatory solutions of higher-order 
nonlinear neutral difference equations, J. Math. Anal. Appl. 280 (2003), 63-76. 


