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Abstract

Cox’s proportional hazards model has so far been the most popular

model for the regression analysis of censored survival data. By retaining

the multiplicative hazard rate form of the absolutely continuous model

the Cox regression model has also been extended to mixed discrete-

continuous Cox regression model.

In this paper we apply empirical likelihood ratio method to the mixed

discrete and continuous Cox regression model with right-censoring and

derive its limiting distribution. Based on the result we construct a

confidence region for the regression parameter. Simulation studies are

conducted to evaluate the performance of the proposed empirical

likelihood method under different circumstances.

1. Introduction

Emerged in the twentieth century, survival analysis has received a
lot of research attention and experienced tremendous growth in medical
studies. We are particularly interested in the regression model for the
survival rate incorporating information from the covariates. Several
models have been introduced to allow us to quantify the relationship
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between the failure time and a set of explanatory variables. In survival
analysis, Cox [6] model has been considered as a major tool for regression
analysis of survival data, often called the proportional hazards model.
Let ( )Zt |λ  denote the hazard function for the life time T under covariate

( ).tZ  The hazard function for the failure time T associated with a

p-vector of possibly time-varying covariates ( )⋅Z  takes the form

( ) ( ) ( ( )),exp 00 tZtZt Tβλ=|λ (1.1)

under the Cox [6, 7] model, where ( )tZ  is a p-vector of possibly time-

varying covariates, 0β  is a true p-vector of regression parameters, and

( )t0λ  is an unspecified baseline hazard function. Under this model, the

covariates ( )⋅Z  have multiplicative effects on the hazard function, and

the regression parameters are interpreted as the logarithms of the
hazard ratios or relative risks. Cox [6, 7] introduced a semiparametric
approach to inference based on the proportional hazards model (1.1). The
valuable model for the analysis of survival data seems simple and easy to
interpret for medical researchers and the Cox regression models in
various forms have been successfully applied in biostatistical research
and clinical trial studies.

However, the proportional hazards assumption may not be
appropriate for some data analyses. In medical studies, the failure times
can be either continuous or discrete. Many researchers have extended the
model (1.1) to accommodate discrete failure time. Prentice and
Kalbfleisch [21] have proposed a new model which included discrete and
continuous failure time data by defining the cumulative hazard function
instead of hazard function. The mixed discrete and continuous model is
given as

{ } ( ) ( ( )),exp 00 tZdtZdt TβΛ=|Λ (1.2)

where ( ) ( ) ( )−Λ−Λ=Λ ttdt 000  if t is a mass point of the failure

distribution, while ( ) ( ){ } ( )dttdtdttddt 000 λ=Λ=Λ  at a continuity point

of the failure distribution. The regression parameter in (1.2) retains a
natural and useful relative risk interpretation, even if the failure time
distribution includes discrete elements. The discrete hazard ( )dt0Λ  at any

mass point of the failure distribution must be equal to or less than one.
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Empirical likelihood method is a powerful nonparametric method. It
holds some unique features, such as range respecting, transformation-
preserving, asymmetric confidence interval, and Bartlett correctability.
The use of empirical likelihood (EL) in survival analysis traces back to
Thomas and Grunkemeier [26] who derived pointwise confidence
intervals for survival function with right censored data (see also Li [11]
and Murphy [15]). For right-censoring data, this approach has been used
in the construction of simultaneous confidence band under a variety of
setting, see Hollander et al. [9], Einmahl and McKeague [8], Li and Van
Keilegom [12], and McKeague and Zhao [14], among others.

Owen [16, 17] introduced empirical likelihood confidence regions for
the mean of a random vector based on i.i.d. complete data. Since, the
empirical likelihood has been widely applied to do inference for the
parameter of interest. For instance, Owen [18] and Chen [3, 4] derived
empirical likelihood inference procedures for linear model. Qin and
Lawless [24] applied it to a general estimating equation. Adimari [1]

extended it to smooth functions of M-functionals. Wang and Rao [29, 30]

extended it to linear model for missing data. Kolaczyk [10] and Chen and
Cui [5] considered empirical likelihood for generalized linear models
based on constraints derived from the score function of the quasi-
likelihood. Partial linear regression model was investigated by Wang and
Jing [27] and Shi and Lau [25]. Cox proportional hazard model was
studied by Qin and Jing [22]. Qin and Jing [23] and Li and Wang [13]
developed empirical likelihood methods for regression coefficients in the
linear regression model with right censored data. Under right censoring,

Adimari [2] derived confidence interval for a class of M-functional (e.g.,

mean, quantile), and Wang and Jing [28] developed an adjusted empirical
likelihood confidence interval for a functional of survival function. Pan
and Zhou [20] studied the empirical likelihood ratios for parameters
which are linear functionals of the cumulative hazard functions based on
a Poisson extension of the likelihood. More recently, Wang and Rao [30]
constructed empirical likelihood confidence interval for the mean under
missing response data.

However, to the best of our knowledge the inference for the
parameter under mixed discrete and continuous Cox regression model
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has not been developed yet via empirical likelihood. In the present paper,
we propose an empirical likelihood approach for the model (1.2). Based on
the idea of empirical likelihood (cf. Owen [16, 17]) estimating equation
concerning with regression parameter is essential. We focus on model
(1.2), make full use of the estimating function of Prentice and Kalbfleisch
[21], and find one tractable likelihood-ratio based confidence region for
the unknown regression parameter. Our approach does not require to
estimate the limiting covariance matrices; instead one carries out a
constrained maximization of the empirical likelihood, which can be done
reliably by Newton-Raphson method. Moreover, the EL confidence region
is adapted to the data set. The proposed confidence region and main
asymptotic result are presented in Section 2. In Section 3, we conduct
simulation to investigate the performance of the empirical likelihood
method in terms of coverage probability. Proof is given in the Appendix.

2. Main Results

2.1. Preliminaries

Consider model (1.2). Under it, we define the cumulative intensity
process

( ) ( ) { ( )} ( )∫ Λβ=Λ
t

i
T

ii dssZsYt
0

00 .exp (2.1)

Let T denote the failure time and C denote the censoring time.

Assume T and C are conditionally independent given covariate ( ).tZ

Suppose that data consist of n independent samples of ( ),,, iii ZX δ  where

( ),,min iii CTX =  ( ).iii CXI ≤=δ  Let ( ) ( ) ( )nitXItN iii ...,,1=≤δ=

be a counting process for the i-th subject, which indicates that the failure

time of the i-th subject is observed up to time t. Let ( ) ( )tXItY ii ≥=

denote the predictable indicator process indicating whether or not the i-

th subject is at risk just before time t. Let τ satisfy ( ) .0>τ>iXP

Prentice and Kalbfleisch [21] proposed the following estimating function:

( ) { ( ) ( ) ( )} ( )∑ ∫
=

τ
−=β

n

i
iii dtNtZtZtYU

1 0
, (2.2)
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where

( )
( ) ( ) { ( )}

( ) { ( )}
.

exp

exp

1

1

∑
∑

=

=

β

β
=

n

j j
T

j

n

j j
T

jj

tZtY

tZtZtY
tZ

The regression coefficients are estimated by solving the equation ( )β̂U

.0=  The resulting estimator β̂  is obtained by Newton-Raphson algorithm.

Under model (1.2), the counting process ( )tNi  can be uniquely

decomposed so that for every i and t,

( ) ( ) ( ),ttMtN iii Λ+= (2.3)

where ( )tMi  is a square integrable martingale.

It follows that from (2.2) and (2.3),

( ) { ( ) ( ) ( )} ( )∑ ∫
=

τ
−=β

n

i
iii tdMtZtZtYU

1 0
0 , (2.4)

which is a martingale.

2.2. EL confidence region

Now consider empirical likelihood approach. It is clear that ( )0βEU

0=  from the estimating equation (2.4). For ,1 ni ≤≤  we define

( ) ( )
( ) ( )∫

τ








α
α

−=
0 0

1
, ,

ˆ
ˆ

tdM
t
t

tZW iiin

where ( ) ( ) { ( )}∑ β=α ⊗−
i j

T
i

r
ir tZtYZnt 0

1 expˆ  with ,10 =⊗a  .1 aa =⊗

Therefore, an empirical likelihood at the true value 0β  is given by

( ) ,0,0,1:sup
1 1

,0












=≥==β ∏ ∑ ∑
= =

n

i

n

i
iniiii WppppL

by standard empirical likelihood (cf. Owen [16, 17]). Let ( )nppp ...,,1=

be a probability vector, i.e., ∑ =
=n

i ip
1

1  and 0≥ip  for .1 ni ≤≤  Note
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that ∏ =
n
i ip

1
 attains its maximum at .1 npi =  Thus, empirical

likelihood ratio at the 0β  is defined by

( ) .0,0,1:sup
1 1

,0












=≥==β ∏ ∑ ∑
= =

n

i

n

i
iniiii WpppnpR

By using Lagrange multipliers, we know that ( )0βR  is maximized when

{ } ,...,,1,11 1
, niW

n
p in

T
i =λ+= −

where ( )Tpλλ=λ ...,,1  satisfies the equation

∑
=

=
λ+

n

i in
T

in

W

W

n
1 ,

, .0
1

1 (2.5)

The value of λ may be found by numerical search (e.g., Newton-

Raphson method), see the discussion in Chapter 12 of Owen [19]. Thus
combining above equalities, we have

( ) ( ) { }∏ ∑
= =

λ+=−=β−
n

i

n

i
in

T
i WnpR

1 1
,0 ,1log2log2log2

where λ satisfies equation (2.5).

Let ( )( ) ( ) { ( )}tZktYEZts Tjkj
111

, exp, β=β ⊗  with ,,1 10 aaa == ⊗⊗  and

Taaa =⊗2  for 2,1,0=j  and .2,1=k  Also, we define the matrices

( ) ( )( ) ( )∫
τ

Λββ=
0

00
1,0

01 ,,, duusucA

and

( ) ( )( ) ( ) ( )∫
τ

Λ∆Λββ−=Γ
0

00
2

0
1,0

02 ,,, duuusucA

where ( ) ( ) ( ) ( ) Teesscsse −== 1,01,2
1

1,01,1 ,  and { ( ) ( ) −−= Tessc 2,12,2
2

( ( ) ) ( )}{ ( )} .21,02,02,1 −+ sseese TT
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Assume Γ is positive definite. Suppose that ( )t0λ  is continuous. We

assume that covariate vector iZ  is time-invariant and bounded. Now, we

state our main result and explain how it can be used to construct
confidence region for β.

Theorem 2.1. Under above conditions, we have

( ) ,log2 2
0 pR χ→β−

D

where 2
pχ  is the chi-square distribution with degrees of freedom p.

Under the conditions of Theorem 2.1 an asymptotic ( )%1100 α−

confidence region for β is given by

{ ( ) ( )},log2: 2 αχ≤β−β= pRR (2.6)

where ( )αχ2
p  is the upper α-quantile of the distribution of .2

pχ

3. Simulation Study

In this section we investigate the performance of the proposed
empirical likelihood (EL) confidence interval in terms of coverage
probability.

Consider one simple mixed discrete and continuous Cox regression
model with true regression parameter .0β  The model is

{ } ( ) { },exp 00 ZdtZdt βΛ=|Λ

where Z ’s are drawn from Bernoulli variable with ( ) ( === ZPZP 5.0

) .5.05.0 =−  Let 0β  be 0 and 0.693, respectively.

To simulate failure time ,iT  we assume that baseline cumulative

hazard function ( )dt0Λ  is 0.1 at integer values ...,2,1=t  and ( ) 00 =Λ dt

otherwise. Censoring variable C ’s are from the exponential distribution
with parameter λ, where λ is chosen to obtain a desired censoring rate
(CR). CR is chosen to be 10%, 30%, and 50%, respectively. Finally,
simulated observations from the mixed discrete and continuous Cox
regression model are ( )iii ZX δ,,  for ,...,,1 ni =  where ( ),,min iii CTX =

and ( ).iii CTI ≤=δ
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Such simulation is repeated 2000 times to generate simulated data.
Then the coverage probabilities for the empirical likelihood (EL) methods
based on these 2000 simulated data sets are simply the proportions of
these data sets which satisfy the inequality (2.6). The sample size n is
chosen to be 50, 75, 100, and 200, respectively. We take 0.90, 0.95, and
0.99 as the nominal confidence level ,1 α−  respectively. The simulation

results are presented in Tables 1 and 2, respectively.

We make the following observations from the numerical studies. The
empirical likelihood coverage probabilities tend to achieve the nominal
levels with moderate sample sizes. At each nominal confidence level, the
accuracy of coverage probabilities increases as the sample size n

increases. Under lower censoring rate ( )%30%,10CR =  confidence

intervals have close coverage probability when sample size n is 50, 70,
100, and 200, respectively. In general, the accuracy of coverage
probability for empirical likelihood method decreases as the censoring
rate increases. The empirical likelihood confidence interval works well in
terms of coverage probability. The proposed approach can be applied to
this model and leads to reasonable results.

Table 1. 00 =β  and ( ) 1.00 =Λ dt  at integer values of t

CR(%) n 90.01 =α− 95.01 =α− 99.01 =α−

50 0.895 0.946 0.986

10 70 0.899 0.946 0.988

100 0.902 0.952 0.988

200 0.899 0.948 0.990

50 0.896 0.945 0.988

30 70 0.892 0.954 0.989

100 0.896 0.945 0.991

200 0.897 0.948 0.989

50 0.894 0.940 0.976

50 70 0.888 0.942 0.985

100 0.895 0.942 0.986

200 0.897 0.945 0.987
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Table 2. 693.00 =β  and ( ) 1.00 =Λ dt  at integer values of t

CR(%) n 90.01 =α− 95.01 =α− 99.01 =α−

50 0.874 0.933 0.984

10 70 0.876 0.935 0.984

100 0.881 0.934 0.986

200 0.886 0.940 0.986

50 0.878 0.936 0.976

30 70 0.887 0.937 0.983

100 0.890 0.940 0.986

200 0.891 0.945 0.986

50 0.873 0.929 0.971

50 70 0.877 0.933 0.975

100 0.884 0.931 0.978

200 0.885 0.942 0.985

Appendix: Proof of Theorem 2.1

Proof of Theorem 2.1. Let

( )
( ) ( )∫

τ








α
α

−=
0 0

1 ,tdM
t
t

ZW iii

where ( ) ( { ( )}) .1,0,exp 0 =β=α ⊗ rtZYZEt i
T

i
r

ir

For any ,pa R∈  we have [ ( ( ) ( )) ] ( ),1ˆsup 2
000 OttnEt =α−ατ≤≤  and

[ ( ( ) ( )) ] ( ).1ˆsup 2
110 OtatanE TT

t =α−ατ≤≤  By the monotone property of

( ),0 tΛ  we know that ( )t0Λ  can have at most countably many points of

discontinuity in [ ].,0 τ  We denote them ...,,, 21 ττ  respectively. Following

the proof of Lemma 2 of Qin and Jing [22], we have for each i,

( ( )) ( )
( )

( )
( ) ( )( ) ( )∫

τ
Λ∆Λ−








α
α

−
α
α

=−
0

2

0

1

0

12
, 1

ˆ
ˆ

dtt
t

ta
t

ta
EWWaE ii

TT

iin
T
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( )

( )
( )

( )∫
τ









α
α

−
α
α

=
0

2

0

1

0

1
ˆ

ˆ
t

ta
t

ta
E

TT

( ( ) { } ( )) ( ) { } ( )dtZtYtZtY i
T

ii
T

i 0000 expexp1 Λβ∆Λβ−

 
( )

( )
( )

( )∫
τ











α
α

−
α
α

≤
0

2

0

1

0

1
ˆ

ˆ
dt

t
ta

t
ta

EM
TT

( )
( )

( )
( ) ( )∑

∞

=

τ∆Λ









τα
τα

−
τα
τα

+
1

0

2

0

1

0

1
ˆ

ˆ

i
i

i

i
T

i

i
T aa

EM

 
( )

( )
( )

( )∫
τ









α
α

−
α
α

≤
0

2

0

1

0

1
ˆ

ˆ
dt

t
ta

t
ta

EM
TT

( )
( )

( )
( ) ( )τΛ








α
α

−
α
α

+
τ≤≤

0

2

0

1

0

1

0 ˆ
ˆ

sup
t

ta
t

ta
EM

TT

t

 ( ),1o=

where in the third step we use the fact that ( )dt0Λ  is bounded at any

mass point, ( )t0λ  is continuous, iZ  is bounded, here M is a constant.

Applying the same argument as that in Qin and Jing [22], we get

Γ→∑ =
Pn

i
T

inin nWW
1 ,,  and then, we have

( ),max 21
,1

noW pinni
=

≤≤
(A.1)

( )∑
=

=
n

i
pin noW

n
1

213
, .1 (A.2)

Let ,ρθ=λ  where 0≥ρ  and .1=θ  Recall ∑ =
=Γ n

i
T

ininn WWn
1 ,,1

( ),1po+Γ=  where Γ is the limit of ∑ =
n
i

T
iiWWn

1
.1  Let 0>σp  be the

smallest eigenvalue of Γ. Then, ( ).1ppn o+σ≥θΓθ  From Prentice

and Kalbfleisch [21], it is obvious that ( )∑ =
− Γ→n

i in NWn
1 ,

21 .,0
D

 Thus,

( ).1 21
1 ,

−
=

=∑ nOWn p
n
i in  By (A.1), the equation (2.5) and the
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argument used in Owen [17], we know that

( ).21−=λ nOp (A.3)

Consider a Taylor expansion to the right-hand side of ( ),log2 0β− R

( ) ( )∑
=

+






 λ−λ=β−

n

i
nin

T
in

T rWWR
1

2
,,0 ,

2
12log2 (A.4)

where ( )∑ =
λ= n

i in
T

pn WOr
1

3
, .1  Hence, by (A.2), ( ) 31 λ= pn Or

( )∑ =
=n

i pin oW
1

3
, .1  Furthermore, since

( )∑ ∑
= =















λ+

λ
+λ−=

λ+

n

i

n

i in
T

in
T

in
T

in
in

T
in

W

W
WW

nW

W
n

1 1 ,

2
,

,,
,

,

1
11

1

1

( )
∑ ∑∑
= == λ+

λ
+λ













−=

n

i

n

i in
T

in
T

in
n

i

T
ininin

W

WW

n
WW

n
W

n
1 1 ,

2
,,

1
,,,

1

111

,0=

it follows that

( )∑∑
=

−

=

+












=λ

n

i
pin

n

i

T
inin oWWW

1
,

1

1
,, .1

Similarly, we have

( ) ( )
( )∑ ∑ ∑ ∑

= = = =

=
λ+

λ
+λ−λ=

λ+

λn

i

n

i

n

i

n

i in
T

in
T

in
T

in
T

in
T

in
T

W

W
WW

W

W

1 1 1 1 ,

3
,2

,,
,

, .0
11

Since

( )
( )∑

=

=
λ+

λn

i
p

in
T

in
T

o
W

W

1 ,

3
, ,1

1

we know that ( ) ( )∑ ∑ ∑= = =
+λ=λn

i
n
i

n
j pin

T
in

T oWW
1 1 1 ,

2
, .1  As a result,
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the following is true

 ( )0log2 β− R

( )∑
=

+λ=
n

i
pin

T oW
1

, 1

( ) .1 2

1
,

21
1

1
,,

1

1
,

21
pp

n

i
in

n

i

T
inin

Tn

i
in oWnWWnWn χ→+









































= ∑∑∑

=

−
−

=

−

=

− D

Combining these results, we conclude Theorem 2.1.
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