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Abstract 

Starting from single-variable quadratic and cubic polynomials with integer 
coefficients, we construct families of optimal lattice packings of rank two 
and three in Euclidean space. Each family has infinitely many members. 

1. Introduction and Notation 

An n-dimensional lattice is a discrete subgroup of 
nR  of rank n. More explicitly, 

it can be described as a set ,1 ⎭
⎬
⎫

⎩
⎨
⎧

∈|=Λ ∑ =
n
i iii ava Z  where each ,iv  ,...,,1 ni =  is 

a n×1  vector with entries in ,R  and the set { }n
iiv 1=  is linearly independent over .R  

The parameter that describes the packing properties of Λ is its center density 

( ) ,det Mnρ=Λδ  where ρ, the packing radius of Λ, is equal to half the minimal 

distance between lattice points, and M, the generator matrix, is an nn ×  matrix 
whose rows are ....,,1 nvv  The absolute value of the determinant of M gives the 

volume of a fundamental region of Λ. Finding the densest lattice packing in each 
dimension is a classic problem in geometry of numbers, and it is part of Hilbert’s 
18th problem. For a complete account on the subject, the reader is referred to [2]. 

The purpose of this paper is to illustrate the fact that families of polynomials 
with integer coefficients can produce lattices with maximum achievable center 
density. Essentially, the method consists of constructing a generator matrix from the 
set of roots of a polynomial. With the technique, we construct two infinite families 

of dense lattices in ,2R  and an infinite family of dense lattices in .3R  This is 
illustrated in Sections 2, 3, and 4. Although the examples are restricted to 
dimensions 2 and 3, the objective is to suggest that the technique be extended to 
higher dimensions. 

The method resembles the one from geometry of numbers in which one starts 

with a number field K of degree n and its canonical embedding .: nK R→σ  Then 
a lattice is obtained as ( ),Iσ  where I is an integral ideal in the ring of algebraic 

integers of K, see [1, Chapter 2, Section 3], [2, Chapter 8, Section 7], and [4, Chapter 
8]. The lattice ( )Iσ  is the geometric representation of I. However, contrary to the 

method being presented, it is not known how to construct the densest three-
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dimensional lattice (that is, the face-centered cubic lattice) as the geometric 
representation of an ideal in a number field. 

2. Quadratic Polynomials with Real Roots 

Hereupon, given two points ( )nu αα= ...,,1  and ( )nv ββ= ...,,1  in ,nR  their 

inner product will be denoted by ,11 nnvu βα++βα=⋅  as is customary. The 

squared Euclidean distance from v to the origin, namely, ,vv ⋅  is denoted by .2v  

Let ( ) [ ],2 XbaXXXf Z∈++=  where 0≠a  and .42 ba >  Denote the roots 

of ( )Xf  by 1α  and .2α  Observe that the vectors ( )211 , αα=v  and ( )122 , αα=v  

form a basis of 2R  since 

.04det 2

12

21
≠−−=

αα

αα
= baaM  

Define fΛ  as the lattice generated by 1v  and .2v  

Lemma 1. With the above notation, let 21 yvxvv +=  be a point in ,fΛ  where 

., Z∈yx  Then 

( ) ( ) .42 2222 bxyyxbav ++−=  

Proof. We have 

( ).122122
2

11
22 vvvvxyvvyvvxv ⋅+⋅+⋅+⋅=  

Since 2
2

2
12211 α+α=⋅=⋅ vvvv  and ,2 211221 αα=⋅=⋅ vvvv  the result 

follows.  

Theorem 1. Let ( ) [ ],2 XbaXXXf Z∈++=  where 0≠a  and .62 ba =  

Let 1α  and 2α  be the distinct real roots of ( ),Xf  and define ( )211 , αα=v  and 

( )., 122 αα=v  Under these conditions, 

{ }Z∈|+α=Λ if avav 2211  (1) 

has center density equal to ,
32

1  the maximum achievable in dimension 2. 
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Proof. If ,21 fyvxvv Λ∈+=  then by Lemma 1, 

( ).4 222 xyyxbv ++=  

For ,, Z∈yx  the minimum value of the latter expression is equal to 4b, attained at 

( ) ( ),0,1, =yx  for example. Hence, the packing radius of fΛ  is ,b=ρ  and the 

volume of its fundamental region is 

( ) .32det bMv f ==Λ  

Therefore, the center density of fΛ  is 

( ) .
32

1
=Λδ f   

Observe that Theorem 1 yields an infinite family of quadratic polynomials 
whose associated lattices, that is, those defined in (1), have center density equal to 
that of the hexagonal lattice. 

3. Quadratic Polynomials with Complex Roots 

Let ( ) [ ],2 XbaXXXf Z∈++=  where 0≠a  and .42 ba <  Denote the 

roots of ( )Xf  by 1α  and .2α  Let ( )zℜ  and ( )zℑ  denote the real and imaginary 

parts of ,C∈z  and define ( ) ( )( )111 , αℑαℜ=v  and ( ) ( )( ),, 222 αℑαℜ=v  that is, 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−= 2
4,2

2
1

abav  and .2
4,2

2
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−= abav  The volume of the fundamental 

region of the lattice fΛ  generated by 1v  and 2v  is ,2
4 2aba −

 and the expression 

which gives the squared distance of fyvxvv Λ∈+= 21  to the origin is: 

( ) ( ).2
4

42
4

22
2

22
2

2 xyyxabxyyxav −+
−

+++=  

Hence,  

( ) .222 xyayxbv +−=  
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Theorem 2. Let ( ) [ ],2 XbaXXXf Z∈++=  where 0≠a  and .32 ba =  Let 

1α  and 2α  be the distinct complex roots of ( ),Xf  and define 1v  and 2v  as in the 

previous paragraph. Under these conditions, 

{ }Z∈|+=Λ if avava 2211  (2) 

has center density equal to ,
32

1  the maximum achievable in dimension 2. 

Proof. Observe that in this case ( ).222 xyyxbv ++=  For ,, Z∈yx  the 

minimum value of this expression is equal to b, attained at ( ) ( ),0,1, =yx  for 

example. Hence, the packing radius is ,2
b  and the volume of the fundamental 

region is equal to .2
3b  Therefore, the center density of fΛ  is .

32
1   

Theorem 2 also yields an infinite family of quadratic polynomials whose 
associated lattices, that is, those defined in (2), have the maximum achievable center 
density in dimension 2. 

4. Cubic Polynomials with Real Roots 

In this section, we consider cubic polynomials whose roots are real. A family of 
such polynomials whose associated lattices have a record center density in 
dimension 3 will be presented. 

Lemma 2. Let ( ) [ ]XcbXaXXXf Z∈+++= 23  have real roots ,1α  ,2α  

and .3α  If 

,

132

213

321

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ααα

ααα

ααα

=M  

then ( ) ( ).3det 2 baaM −−=   

Proof. We have det .3 321
3
3

3
2

3
1 ααα−α+α+α=M  From the Newton-Girard 

relations, it follows that .222
3

2
2

2
1 ba −=α+α+α  Multiplying the left-hand side of 
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the latter equation by 321 α+α+α  and the right-hand side by ,a−  we get 

( ).222
23

2
32

2
13

2
31

2
12

2
21

3
3

3
2

3
1 baa −−=αα+αα+αα+αα+αα+αα+α+α+α  

Expanding the left-hand side, we obtain 

( ) ( ) ( ) ( ).22
132231321

3
3

3
2

3
1 baaaaa −−=α−−αα+α−−αα+α−−αα+α+α+α  

The latter equality is equivalent to 

( ),23 2
321

3
3

3
2

3
1 baaab −−=−ααα−α+α+α  

whence the result follows.  

Lemma 3. Let ( ) [ ]XcbXaXXXf Z∈+++= 23  have real roots ,1α ,2α  

and .3α  Define ( ),,, 3211 ααα=v  ( ),,, 2132 ααα=v  and ( ).,, 1323 ααα=v  If  

x, y, and z are integers and ,321 zvyvxvv ++=  then 

( ) ( ) ( ).22 22222 yzxzxybzyxbav +++++−=  

Proof. We have ( ).,, 123312231 zyxzyxzyxv α+α+αα+α+αα+α+α=  

Then 

( )( ) ( )( ),2 323121
2222

3
2
2

2
1

2 yzxzxyzyxv ++αα+αα+αα+++α+α+α=  

which in turn is equal to ( ) ( ) ( ).22 2222 yzxzxybzyxba +++++−   

Let ( ) [ ].23 XcbXaXXXf Z∈+++=  A necessary and sufficient condition 

for its roots ,1α  ,2α  and 3α  to be real and distinct is that its discriminant is strictly 

greater than zero [3, p. 48]. This is equivalent to imposing 

( ) ( ).418427 223 bababacc −<−+  

Theorem 3. Let ( ) [ ],123 XbXaXXXf Z∈+++=  where ,0>a  ,42 ba =  

and .9≥b  As before, let ,1α  ,2α  and 3α  be the real roots of ( ),Xf  and define 

( ),,, 3211 ααα=v  ( ),,, 2132 ααα=v  and ( ).,, 1323 ααα=v  Then 

{ }Z∈|++=Λ if avavava 332211  (3) 

has center density equal to ,8
2  the maximum achievable in dimension 3. 
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Proof. If ( ),,, 123312231 zyxzyxzyxv α+α+αα+α+αα+α+α=  then 

from Lemma 3 it follows that 

( ).2 2222 yzxzxyzyxbv +++++=  

The minimum value of the latter expression is 2b, attained, for example, when 

( ) ( ).0,0,1,, =zyx  It follows that the packing radius of fΛ  is ,2b=ρ  and the 

volume of its fundamental region is: 

( ) .2det bbMv f ==Λ  

Therefore, the center density of fΛ  is 

( ) .8
2=Λδ f   

Theorem 3 yields an infinite family of polynomials whose associated lattices, 
that is, those defined in (3), have the same density as the face-centered-cubic lattice 
[2, p. 15]. 
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