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Abstract

In this paper, we use the theory of Boolean functions to find a new
elementary proof for Moser’s conjecture that states that in the bounded
sequence of nonnegative integers divisible by 3 there are more integers
with an even number of 1s in their base-2 representation. This proof is
simpler than the original proof by Newman in [5]. We further apply the
method to prove a similar result for p = 5.

1. Introduction

The well-known Thue-Morse sequence T = {t(n): n =0, 1, 2, ...} is defined by
t(n) = parity of the sum of the bits occurring in the binary representation of the

nonnegative integer n. Thus, the sequence T, grouped in blocks of 4, is

T = 0110 1001 1001 0110 1001 0110 0110 1001 ---. (1)
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For brevity, we call T the “TM sequence”. We denote the 2" -length initial
segment of the TM sequence by T2n . It is easy to see from the definition that the TM

sequence can also be generated by

T =1t =0,

Tan=T

2 2n—1 Tzn—l s n= 15 (2)

where B denotes the complement of B.

Let 5 be the vector space of dimension n over the two-element field F,. Let

us denote the addition operator over F, by @ (this is just addition modulo 2). A
Boolean function on n variables may be viewed as a mapping from Fj into F,. We

order T3 lexicographically, and denote vy = (0, .., 0,0), v; =(0,..,0,1),
Von = (1, ..., 1,1). We interpret a Boolean function f(Xi, ..., X;) as the outputs

of the function obtained from all its inputs in lexicographic order, i.e., a binary string
of length 2", f =[f(vy), f(v;), TF(vy), ...h f(vznil)]. We will sometimes omit

the commas in this representation of a Boolean function, and group the outputs in
convenient blocks of size 4.

The purpose of this paper is to show how ideas from the theory of Boolean
functions can be used to prove results concerning the TM sequence. The first part of
the paper is devoted to a new proof of a conjecture of L. Moser [5]. To state this, we
define for integers m > 0 and |,

Smim =Y (. (3)

0<j<n,
j=i(mod m)

Now, the conjecture of Moser says that S3 o(n) > 0 for any n > 1, that is, in any

bounded sequence of the arithmetic progression = 0 mod3 of nonnegative integer
written in base-2, there are always more such integers with an even number of 1’s in
their binary expansion. The conjecture was first proved by Newman [5] (with a
different notation from ours) using generating functions. We give a simpler proof

using Boolean functions, and our method gives some better estimates for S3’0(n).

We use the same method to show a similar result for p =5, as well.
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2. An Improvement of Newman’s Proof of Moser’s Conjecture
We will always have m = 3 in (3) in this section, so we define
Si(n) = S3i(n) fori=0,12.
We also define the following set B of 4-bit strings:

B={A=0011, A =1100, B = 0101, B = 1010,

C =0110, C = 1001, D = 0000, D = 1111} @)

These strings are needed in the following lemma, which characterizes all the
Boolean functions in n > 2 variables that are affine (that is, linear in all the

variables and with a constant term 0 or 1).

Lemma 1 (Folklore Lemma [6, Lemma 3.7.2]). Any affine function

f=t, .. tzn] on n variables, n > 2, is a linear string of length 2" made up of

4-bit blocks Iy, ..., |2n—2 given as follows:

1. The first block 1, isone of A,B,C,D, A, B, C or D.
2. The second block 1, is 1, or 1.

3. The next two blocks 15, 14 are 1y, I, or I, I,.

n-3 T T
n-1. The 2 blocks |2n_3+1, ey |2n_2 are |1, ey |2n_3 or |1, ey |2n_3.

Our next lemma (which also appeared in [2]) shows that the initial strings of the

TM sequence can simply be characterized in terms of linear Boolean functions.

Lemma 2. The initial segment of length 2", n > 2, of the TM sequence is the

truth table of the Boolean function

f(Xg5 X5 ooy Xp) = X @ X @ -+ @ X,

defined on T} (ordered lexicographically).
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Proof. By the Folklore Lemma (or directly using (2)), it is easy to see that
XD ®X, = CC ---, which by (2) is exactly the initial segment of length 2" of
the TM sequence. g

By Lemma 2, we can write (1) as
T =CcCCCCcCcC.... 5)

A simple induction argument using (5) gives Table 1. More precisely, to
compute SO(Zk ), we partition the multiples of 3 from 0 to 2% — 1 into two subsets,
the odd, respectively, even parity numbers. Since the even numbers are of the form

6n, and t(6n) = t(3n), this corresponds to Sy(2X~!). The odd numbers are of the
form 6n + 3, and since t(6n +3)=1-1t(3n +1), this corresponds to — Sl(2k_1).
Therefore, we obtain 50(2k) = SO(Zk_l) - Sl(Zk_l). In a similar way, Sl(2k) =
—Sp(2* M)+ 5,2 and S,(2%) = 5,(2%") = 5,(27"). By induction, we get
Table 1 forall k > 1.

Our next lemma will enable the evaluation of Sj(n) from the binary expansion

of n, by iterative use of the formulas from Table 1.

Table 1. Values of S;(2™ —1) for m > 2 (sok > 1)

[ S, (2% —1) | ;221 - 1)

1 3k71 _3k
2 3kl 0

Lemma 3. For any positive integers k and r < 22k _ 1, wehavefort=0,1, 2

St (2% —1+1) = 5,2% —1) - Sy (r - 1), (6)

where u(t) in {0, 1, 2} is defined by u(t) =t + 2 (mod3). For any positive integers k
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22k+1

and r < -1, we havefor t =0, 1, 2

St 1+ 1) = 5,22 1) = Syp)(r - 1), (7)
where v(t) in {0, 1, 2} is defined by v(t) =t +1 (mod 3).
Proof. To establish (6), let T(22**!) denote the first 22**! elements t(n),

0<n<2?* _ 1, and let Tr and T denote the right and left halves of the string

T(22k+1), respectively. By Lemmas 1 and 2, we have T = T_L and plainly

SE*-141)= D ()4 > (-1, )

t(j)eTL, t(j)eTr, j<22K—1+r
j=t (mod3) 0 jRE’t(Jmods) ’

The first sum on the right-hand side of (8) is S; (22k —1) and since the number of

entries in T is =1 (mod 3), it follows from the definition (3), using Tg = T_L, that

the second sum on the right-hand side of (8) is —Sy)(r —1). This proves (6).

An analogous argument proves (7); in this case, the number of entries in T is

= 2 (mod 3). O

Now we turn to give a lower bound for Sy(n). Suppose the binary expansion of

nis
n =2k 4 2k@) 4ok k(1) > k(2) > - > k() = . (9)
Then by Lemma 3,
Sp(n) = So(2*M —1) = 555y 2KP) 1)+ - 4 (1)1 2K — 1), (10)
where the subscripts p(i), 2 <i < j are determined by (6) or (7).

Suppose the binary expansion of n is given by (9), so we can expand Sy(n) in

the form (10). Now we can follow Newman’s argument in our notation. From Table
1, we find that the first two terms in (10) satisfy

Sp2XV —1) 2 3KDD2 ang 5,2 —1) <0 (11)
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and that all of the other terms satisfy

| Spiy 20 —1)| < (2/3)3%0/2, (12)
Using (11) and (12) in (10) gives

j o
(k(@)-1/2 _ 2 N7 qk(i)/2 5 4(k()-1)/2] ; _ 2 i
So(n) =3 323 >3 [1 3;(«/5) ]

i
_ 3(|<(1)—1)/2(1 B %(ﬁ 3 1)—1) > 3072 120 > (n/3)* /20,

where o = log 3/log 4, thus obtaining Newman’s bound.
However, from (10) we easily obtain a stronger lower bound than Newman’s:

Theorem 1. For any positive integer n, we have Sy(n) >0 and in fact

V3

So(n) = Tna’ where o = log3/log4 =.79....

Proof. First suppose the binary expansion of n is given by (9) with k(1) = 2m
for some integer m. Then, from Table 1 and Lemma 3, the first two terms in (10) are

bounded below by 2 - 3™ and 0. Now it follows trivially from Table 1 that for
m > 2 (note we need to consider the cases j odd and j even separately, but the trivial

lower bounds are the same), we have
j<2m=s;(2) —1)>-3m"! (13)
and
j<am-1=-5;2 —1)> 3m", (14)
Using these bounds for the remaining terms in (10), we obtain
So(n) >9. 3m—l _ 3m—2 _ 3m—2 _ 3m—3 _ 3m—3
—2. 3m—1 _ 3m—1 1> 3m—1 _ 22ma/3
>n%/(3-2%) = (¥3/9)n* =.19-.-n%,

which is stronger than Newman’s bound.



SUMS OF THE THUE-MORSE SEQUENCE ... 133

If the binary expansion of n is given by (9) with k(1) =2m +1, then the estimate

along the same lines as above is
Sp(n) = 3™ +3M~1 _3m-1_3m=2_3m-2..
=3M 3™l 415 (2/3)3™ = (2/3)22M
>2n*/(3-4%)=(2/9)n* =.22---n%,
which is even better. O

The exact lim inf of Sy(n)/n® was calculated by Coquet [1, Theorem 1]. It is

24/3/3%*!1 = 48.... He also found the exact lim sup, which is 55/(3 - 65%) = .67....
3. The Case p=5

Some other primes p also satisfy S p’O(n) > 0 forany n 21, or more generally
Sp,0(N) >0 for all but finitely many n>1. The complete list of all primes

p <1000 with the latter property was obtained by Drmota and Skatba [3]; the list is
3,5, 17, 43, 257, 463. It is no surprise that extensive calculations were required to
prove this.

Our Boolean functions method can be used to obtain such results for individual
primes p, and here we explain the case p = 5. The method for any p imitates the
proof we already gave for p =3, but of course the complexity of the calculations
increase as P increases. We should mention here that the result for p =5 was

proven by Grabner [4] who showed that

! t . T] n
SS,O(n) = Z (—1) () _ nBCD(logm n) + #,
0<j<n
j=0(mod5)
where @ is a continuous nowhere differentiable periodic function of period 1,

B = log5/log16, and ns = 0 for n even, and (~1)"-! for n odd. Therefore, the

sum 55,0(“)’ > 0.
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An induction argument analogous to the one used to obtain Table 1 gives Table
2. The only difference is that we must run the induction over four columns (in
general, we would expect p —1 columns) instead of 2. We omit the routine details.

Our next lemma enables the evaluation of Ss ((n) from the binary expansion of

n, by iterative use of the formulas from Table 2.

Table 2. Values of S5 ;(2™ —1) for m >3 (so k > 1)

bl sg % o) | s -1 | s 1) | 55 2% 2 -
2.5 4. 51 5k 5k
0 —sk-1 _sk _sk
2 o5k sk-1 0 o
3 gk-1 sk-1 0 o
4 _5k-1 5k-1 0 0

Lemma 4. For each i, 1<i <4, and for any positive integers k and r <
24K=2+1 _1 e havefor 0 <t <4
S5 2% —14 1) =85 2% T )-S5 (y(r=1), 1<i<4, (15)
where the values of u;(t) € {0, 1, 2, 3, 4} are given by
uit) =t +2' (mods), 1<i<a4.

Proof. The argument is exactly like the proof of Lemma 3, but here we need to
consider four cases instead of two, corresponding to the four columns in Table 2. We

omit the details. O

Following the argument in the proof of Theorem 1, we obtain:

Theorem 2. For any positive integer n, we have Ss o(n) > cnP, where B=
log5/log16 = .58... and ¢ > 0 is an absolute constant (one can take ¢ = 0.066).
The constant € is very far from the best possible one, so we omit the tedious

computations needed to get it. We are grateful to Ms. Thanh Nguyen for carrying out
these computations.
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