
 

Advances and Applications in Discrete Mathematics
Volume 4, Number 2, 2009, Pages 127-135 
Published Online: December 8, 2009 
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House 

 

:tionClassificaect Subj sMathematic 2000 06E30, 11A63, 11B85, 94C10.
 Keywords and phrases: Boolean functions, Thue-Morse sequence, Binary representation. 

Received April 7, 2009 

SUMS OF THE THUE-MORSE SEQUENCE OVER 
ARITHMETIC PROGRESSIONS 

T. W. CUSICK and P. STĂNICĂ 

Department of Mathematics 
State University of New York 
Buffalo, NY 14260, U. S. A. 
e-mail: cusick@buffalo.edu 

Department of Applied Mathematics 
Naval Postgraduate School 
Monterey, CA 93943, U. S. A. 
e-mail: p stanica@nps.edu 

Abstract 

In this paper, we use the theory of Boolean functions to find a new 
elementary proof for Moser’s conjecture that states that in the bounded 
sequence of nonnegative integers divisible by 3 there are more integers 
with an even number of 1s in their base-2 representation. This proof is 
simpler than the original proof by Newman in [5]. We further apply the 
method to prove a similar result for .5=p  

1. Introduction 

The well-known Thue-Morse sequence ( ){ }...,2,1,0: == nntT  is defined by 

( ) =nt  parity of the sum of the bits occurring in the binary representation of the 

nonnegative integer n. Thus, the sequence T, grouped in blocks of 4, is 

.10010110011010010110100110010110=T  (1) 
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For brevity, we call T the “TM sequence”. We denote the n2 -length initial 
segment of the TM sequence by .

2nT  It is easy to see from the definition that the TM 

sequence can also be generated by 

,001 == tT  

,1,11 222
≥= −− nTTT nnn  (2) 

where B  denotes the complement of B. 

Let n
2F  be the vector space of dimension n over the two-element field .2F  Let 

us denote the addition operator over 2F  by ⊕  (this is just addition modulo 2). A 

Boolean function on n variables may be viewed as a mapping from n
2F  into .2F  We 

order n
2F  lexicographically, and denote ( ),0,0...,,00 =v  ( ),1,0...,,01 =v  

( ).1,1...,,1
12
=

−nv  We interpret a Boolean function ( )nxxf ...,,1  as the outputs 

of the function obtained from all its inputs in lexicographic order, i.e., a binary string 

of length ,2n  [ ( ) ( ) ( ) ( )]....,,,,
12210 −

= nfffff vvvv  We will sometimes omit 

the commas in this representation of a Boolean function, and group the outputs in 
convenient blocks of size 4. 

The purpose of this paper is to show how ideas from the theory of Boolean 
functions can be used to prove results concerning the TM sequence. The first part of 
the paper is devoted to a new proof of a conjecture of L. Moser [5]. To state this, we 
define for integers 0>m  and i, 

( ) ( ) ( )

( )

∑
≡

≤≤

−=

mij
nj

jt
im nS

mod
,0

, .1  (3) 

Now, the conjecture of Moser says that ( ) 00,3 >nS  for any ,1≥n  that is, in any 

bounded sequence of the arithmetic progression 3mod0≡  of nonnegative integer 
written in base-2, there are always more such integers with an even number of 1’s in 
their binary expansion. The conjecture was first proved by Newman [5] (with a 
different notation from ours) using generating functions. We give a simpler proof 
using Boolean functions, and our method gives some better estimates for ( ).0,3 nS  

We use the same method to show a similar result for ,5=p  as well. 
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2. An Improvement of Newman’s Proof of Moser’s Conjecture 

We will always have 3=m  in (3) in this section, so we define 

( ) ( )nSnS ii ,3=    for .2,1,0=i  

We also define the following set B  of 4-bit strings: 

{ ,1010,0101,1100,0011 ===== BBAAB  

}.1111,0000,1001,0110 ==== DDCC  (4) 

These strings are needed in the following lemma, which characterizes all the 
Boolean functions in 2≥n  variables that are affine (that is, linear in all the 
variables and with a constant term 0 or 1). 

Lemma 1 (Folklore Lemma [6, Lemma 3.7.2]). Any affine function 

[ ]nttf
21 ...,,=  on n variables, ,2≥n  is a linear string of length n2  made up of 

4-bit blocks 221 ...,, −nII  given as follows: 

1. The first block 1I  is one of A, B, C, D, ,A  ,B  C  or .D  

2. The second block 2I  is 1I  or .1I  

3. The next two blocks ,3I  4I  are ,1I  2I  or ,1I  .2I  

  

.1−n  The 32 −n  blocks 23 212
...,, −− + nn II  are 321 ...,, −nII  or ....,, 321 −nII  

Our next lemma (which also appeared in [2]) shows that the initial strings of the 
TM sequence can simply be characterized in terms of linear Boolean functions. 

Lemma 2. The initial segment of length ,2,2 ≥nn  of the TM sequence is the 

truth table of the Boolean function 

( ) ,...,,, 2121 nn xxxxxxf ⊕⊕⊕=  

defined on n
2F  (ordered lexicographically). 
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Proof. By the Folklore Lemma (or directly using (2)), it is easy to see that 

,1 CCxx n =⊕⊕  which by (2) is exactly the initial segment of length n2  of 

the TM sequence.  

By Lemma 2, we can write (1) as 

 ....CCCCCCCCT =  (5) 

A simple induction argument using (5) gives Table 1. More precisely, to 

compute ( ),20
kS  we partition the multiples of 3 from 0 to 12 −k  into two subsets, 

the odd, respectively, even parity numbers. Since the even numbers are of the form 

6n, and ( ) ( ),36 ntnt =  this corresponds to ( ).2 1
0

−kS  The odd numbers are of the 

form ,36 +n  and since ( ) ( ),13136 +−=+ ntnt  this corresponds to ( ).2 1
1

−− kS  

Therefore, we obtain ( ) ( ) ( ).222 1
1

1
00

−− −= kkk SSS  In a similar way, ( ) =kS 21  

( ) ( )1
2

1
0 22 −− +− kk SS  and ( ) ( ) ( ).222 1

2
1

12
−− −= kkk SSS  By induction, we get 

Table 1 for all .1≥k  

Our next lemma will enable the evaluation of ( )nSi  from the binary expansion 

of n, by iterative use of the formulas from Table 1. 

Table 1. Values of ( )12 −m
iS  for ( )1 so2 ≥≥ km  

i  ( )122 −k
iS ( )12 12 −+k

iS

0 132 −⋅ k  k3  

1 13 −− k  k3−  

2 13 −− k  0 

Lemma 3. For any positive integers k and ,122 −≤ kr  we have for 2,1,0=t  

( ) ( ) ( )( ),11212 22 −−−=+− rSSrS tu
k

t
k

t  (6) 

where ( )tu  in { }2,1,0  is defined by ( ) ( ).3mod2+≡ ttu  For any positive integers k 
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and ,12 12 −≤ +kr  we have for 2,1,0=t  

( ) ( ) ( )( ),11212 1212 −−−=+− ++ rSSrS tv
k

t
k

t  (7) 

where ( )tv  in { }2,1,0  is defined by ( ) ( ).3mod1+≡ ttv  

Proof. To establish (6), let ( )122 +kT  denote the first 122 +k  elements ( ),nt  

,120 12 −≤≤ +kn  and let RT  and LT  denote the right and left halves of the string 

( ),2 12 +kT  respectively. By Lemmas 1 and 2, we have LR TT =  and plainly 

 ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

∑ ∑
≡ ≡

∈ +−≤∈

−+−=+−

3mod 3mod

2, ,12,

2 .1112

tj
L

tj

k
R

Tjt rjTjt

jtjtk
t rS  (8) 

The first sum on the right-hand side of (8) is ( )122 −k
tS  and since the number of 

entries in LT  is ( ),3mod1≡  it follows from the definition (3), using ,LR TT =  that 

the second sum on the right-hand side of (8) is ( ) ( ).1−− rS tu  This proves (6). 

An analogous argument proves (7); in this case, the number of entries in LT  is 

( ).3mod2≡   

Now we turn to give a lower bound for ( ).0 nS  Suppose the binary expansion of 

n is 

 ( ) ( ) ( ) ( ) ( ) ( ) .021,222 21 ≥>>>+++= jkkkn jkkk  (9) 

Then by Lemma 3, 

 ( ) ( ( ) ) ( )( ( ) ) ( ) ( )( ( ) ),1211212 12
2

1
00 −−++−−−= − jk

jp
jk

p
k SSSnS  (10) 

where the subscripts ( ),ip  ji ≤≤2  are determined by (6) or (7). 

Suppose the binary expansion of n is given by (9), so we can expand ( )nS0  in 

the form (10). Now we can follow Newman’s argument in our notation. From Table 
1, we find that the first two terms in (10) satisfy 

( ( ) ) ( )( ) 2111
0 312 −≥− kkS   and  ( )( ( ) ) 012 2

2 ≤−k
pS  (11) 
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and that all of the other terms satisfy 

( )(
( ) ) ( ) ( ) .33212 2ikik

ipS ≤−  (12) 

Using (11) and (12) in (10) gives 

( ) ( )( ) ( ) ( )( ) ( )∑ ∑
=

∞

=

−−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−≥−≥

j

i i

ikikknS
3 1

2112211
0 33

21333
23  

( )( ) ( ) ( ) ( ) ,203203133
213 211211 α−− >>⎟

⎠
⎞⎜

⎝
⎛ −−= nkk  

where ,4log3log=α  thus obtaining Newman’s bound. 

However, from (10) we easily obtain a stronger lower bound than Newman’s: 

Theorem 1. For any positive integer n, we have ( ) 00 >nS  and in fact 

( ) ,
9
3

0
α≥ nnS  where ....79.4log3log ==α  

Proof. First suppose the binary expansion of n is given by (9) with ( ) mk 21 =  

for some integer m. Then, from Table 1 and Lemma 3, the first two terms in (10) are 

bounded below by 132 −⋅ m  and 0. Now it follows trivially from Table 1 that for 
2≥m  (note we need to consider the cases j odd and j even separately, but the trivial 

lower bounds are the same), we have 

( ) 13122 −−≥−⇒≤ mj
iSmj  (13) 

and 

( ) .31212 1−−≥−−⇒−≤ mj
iSmj  (14) 

Using these bounds for the remaining terms in (10), we obtain 

( ) 33221
0 333332 −−−−− −−−−⋅≥ mmmmmnS  

3231332 2111 α−−− =>+−⋅= mmmm  

( ) ( ) ,19.9323 αααα ==⋅> nnn  

which is stronger than Newman’s bound. 
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If the binary expansion of n is given by (9) with ( ) ,121 += mk  then the estimate 

along the same lines as above is 

( ) 2211
0 33333 −−−− −−−+≥ mmmmmnS  

( ) ( ) α− =>+−= mmmm 21 232332133  

( ) ( ) ,22.92432 αααα ==⋅> nnn  

which is even better.  

The exact lim inf of ( ) αnnS0  was calculated by Coquet [1, Theorem 1]. It is 

....48.332 1 =+α  He also found the exact lim sup, which is ( ) ....67.65355 =⋅ α  

3. The Case 5=p  

Some other primes p also satisfy ( ) 00, >nS p  for any ,1≥n  or more generally 

( ) 00, >nS p  for all but finitely many .1≥n  The complete list of all primes 

1000<p  with the latter property was obtained by Drmota and Skałba [3]; the list is 

3, 5, 17, 43, 257, 463. It is no surprise that extensive calculations were required to 
prove this. 

Our Boolean functions method can be used to obtain such results for individual 
primes p, and here we explain the case .5=p  The method for any p imitates the 

proof we already gave for ,3=p  but of course the complexity of the calculations 

increase as p increases. We should mention here that the result for 5=p  was 

proven by Grabner [4] who showed that 

( ) ( ) ( ) ( ) ( )

( )

∑
≡

<≤

β η
+Φ=−=′

5mod0
0

5
160,5 ,5log1

j
nj

jt nnnnS  

where Φ  is a continuous nowhere differentiable periodic function of period 1, 

,16log5log=β  and 05 =η  for n even, and ( ) 151 −− nt  for n odd. Therefore, the 

sum ( ) .00,5 >′nS  
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An induction argument analogous to the one used to obtain Table 1 gives Table 
2. The only difference is that we must run the induction over four columns (in 
general, we would expect 1−p  columns) instead of 2. We omit the routine details. 

Our next lemma enables the evaluation of ( )nS 0,5  from the binary expansion of 

n, by iterative use of the formulas from Table 2. 

Table 2. Values of ( )12,5 −m
iS  for ( )1so3 ≥≥ km  

i  ( )12 14
,5 −−k
iS  ( )124

,5 −k
iS ( )12 14

,5 −+k
iS ( )12 24

,5 −+k
iS  

0 152 −⋅ k  154 −⋅ k  k5  k5  
1 0 15 −− k  k5−  k5−  

2 152 −⋅− k  15 −− k  0 k5−  

3 15 −k  15 −− k  0 k5  

4 15 −− k  15 −− k  0 0 

Lemma 4. For each i, ,41 ≤≤ i  and for any positive integers k and ≤r  

,12 24 −+− ik  we have for 40 ≤≤ t  

( ) ( ) ( )( ) ,41,11212 ,5
24

,5
24

,5 ≤≤−−−=+− +−+− irSSrS tu
ik

t
ik

t i  (15) 

where the values of ( ) { }4,3,2,1,0∈tui  are given by 

( ) ( ) .41,5mod2 ≤≤+≡ ittu i
i  

Proof. The argument is exactly like the proof of Lemma 3, but here we need to 
consider four cases instead of two, corresponding to the four columns in Table 2. We 
omit the details.  

Following the argument in the proof of Theorem 1, we obtain: 

Theorem 2. For any positive integer n, we have ( ) ,0,5
β> cnnS  where =β  

...58.16log5log =  and 0>c  is an absolute constant (one  can take ).066.0=c  

The constant c is very far from the best possible one, so we omit the tedious 
computations needed to get it. We are grateful to Ms. Thanh Nguyen for carrying out 
these computations. 
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