
 

Advances and Applications in Discrete Mathematics
Volume 4, Number 2, 2009, Pages 115-126 
Published Online: December 8, 2009 
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House 

 

 :tionClassificaect Subj sMathematic 2000 Primary 05C50; Secondary 00A08.
 Keywords and phrases: Lights Out puzzle, torus, linear algebra, finite fields. 

Received July 3, 2009 

TWO REMARKS ON TORUS LIGHTS OUT PUZZLE 

MASATO GOSHIMA and MASAKAZU YAMAGISHI 

Field of Mathematics and Mathematical Science 
Department of Computer Science and Engineering 
Graduate School of Engineering 
Nagoya Institute of Technology 
Gokiso-cho, Showa-ku, Nagoya 
Aichi 466-8555, Japan 

Department of Mathematics 
Nagoya Institute of Technology 
Gokiso-cho, Showa-ku, Nagoya 
Aichi 466-8555, Japan 
e-mail: yamagishi.masakazu@nitech.ac.jp 

Abstract 

We present a method to solve kk 22 ×  Torus Lights Out puzzle, and a 

criterion for the solvability of kk 55 ×  Torus Lights Out puzzle. Both the 
method and the criterion are easy to memorize. 

1. Introduction 

Lights Out puzzle consists of a 55 ×  square array of lighted buttons, each light 
may be on or off. Pushing a button changes the on/off state of the button itself and of 
the neighboring ones on the same row or column. Given an initial configuration of 
lights, the purpose is to turn all the lights out. See [1] for how to solve this puzzle 
with linear algebra mod 2. There are several variants of this puzzle, see [2, Chapter 
6]. 
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In this note, we are interested in Torus Lights Out puzzle, namely Lights Out 
puzzle on a torus. See Section 2 for the precise formulation. Our first aim is to show 

that, given an initial configuration of kk 22 ×  Torus Lights Out, we can solve it by 
repeating the procedure: 

push all buttons which are “on”. 

Our second aim is to give a criterion for the solvability of kk 55 ×  Torus Lights Out. 

We divide the set of kk 55 ×  buttons into five disjoint subsets in a certain way. 
Given an initial configuration, we count lighted buttons in each subsets and obtain 
five numbers. By doing the same thing for the transpose of the configuration, we 
obtain another five numbers. We shall show that, under some assumption, we can 
determine whether the configuration is solvable or not by looking at these ten 
numbers. 

2. Torus Lights Out Puzzle 

Lights Out puzzle can be formulated on an arbitrary locally finite graph, see for 
example [4]. In this note, however, we exclusively consider the case where the graph 
is an nn ×  torus as follows. Suppose 3≥n  and let nT  be the finite undirected 

graph consisting of 

• vertices: ( )yx,  with { },...,,2,1, nyx ∈  

• edges: two vertices ( ),, yx  ( )yx ′′,  are connected by an edge if and only if 

either ( xx ′=  and ( ))nyy mod1±≡′−  or ( yy ′=  and ( )).mod1 nxx ±≡′−  

Note that ,nnn CCT ×≅  the graph product (Cartesian product) of two copies of 

,nC  where nC  denotes the cycle graph with n vertices. Let nV  be the vertex set of 

.nT  

Let 2F  be the finite field with 2 elements. A configuration of nT  is a map 

,: 2F→nVf  which we often identify with the nn ×  matrix 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

.

,2,1,

,22,21,2
,12,11,1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

nnfnfnf

nfff
nfff

 



TWO REMARKS ON TORUS LIGHTS OUT PUZZLE 117 

We also regard f as a column vector in 
2

2
nF  by introducing the lexicographic order 

in .nV  

For a vertex ( ) ,, nVyxv ∈=  let vb  be the configuration, as an nn ×  matrix, 

whose ( )yx ′′, -entry is 1 if ( ) ( )yxyx ,, =′′  or ( ),, yx ′′  ( )yx,  are adjacent (i.e., 

there exists an edge connecting the two vertices), 0 otherwise. For example, 

( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0001

0000

0001

1011

1,1b  

for the vertex ( ) .1,1 4V∈  

The rule of nn ×  Torus Lights Out puzzle is as follows: pushing a sequence of 
buttons located at vertices svvv ...,,, 21  changes a configuration f into 21 vv bbf ++  

,svb++  where the addition is done in .
2

2
nF  A solution to f is a sequence of 

vertices svvv ...,,, 21  such that 

 ,21 Obbbf svvv =++++  (1) 

where O is the zero configuration. We say f is solvable if there is a solution to f. The 
purpose of this puzzle is to determine whether a given configuration is solvable or 
not, and to find a solution if it is solvable. 

We note that 44 ×  Torus Lights Out puzzle is known as Mini Lights Out or 
Keychain Lights Out, whose solution is given in [2], [3]. 

Example 1. The configuration 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0111

0011

1001

0001

f  

has a solution ( ),1,11 =v  ( ),3,12 =v  ( ),3,23 =v  ( );2,34 =v  
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⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0100

0000

0100

1110

0001

0000

0001

1011

f  

.

0010

0111

0010

0000

0000

0100

1110

0100

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+  

A solution svvv ...,,, 21  is said to be minimal if ( ).jivv ji ≠≠  Each solution 

can be reduced to a minimal one, since .Obb vv =+  Since the order of the vertices 

is irrelevant in (1), we can and will identify a minimal solution with a subset of .nV  

Thus nVS ⊂  is a solution to f if and only if 

∑
∈

=
Sv

vbf  

holds. Let Sδ  be the characteristic function of :nVS ⊂  

( )
⎩
⎨
⎧

∉

∈
=δ

,0

,1

Sv

Sv
vS  

and let A be the adjacency matrix of :nT  

( )
⎩
⎨
⎧

== ∈ otherwise.0

,adjacentare,if1
,,

vu
aaA uvVvuuv n

 

Regarding configurations as column vectors, we have 

( )∑
∈

δ+=
Sv

Sv AIb ,  

where I is the identity matrix of size .22 nn ×  Thus we have the following: 

Proposition 2. A configuration f of nT  is solvable if and only if the equation 

( ) fwAI =+  

has a solution .
2

2
nw F∈  If this is the case, then the subset VS ⊂  such that Sw δ=  

gives a minimal solution to f. 
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Example 3. The configuration 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

000

000

001

f  

is not solvable. Indeed, since 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=+

111100100

111010010

111001001

100111100

010111010

001111001

100100111

010010111

001001111

AI  

and 

( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=|+

0111100100

0111010010

0111001001

0100111100

0010111010

0001111001

0100100111

0010010111

1001001111

fAI  

have rank 5 and 6 over ,2F  respectively, the equation ( ) fwAI =+  has no solution. 

By Proposition 2, the set of solvable configurations of nT  is the image of the 

linear transformation of 
2

2
nF  determined by .AI +  Let 

( ) ( )AInnd +−= 2rank2
F  

be the dimension of the kernel of this linear transformation. It follows that the ratio 
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of solvable configurations to all configurations of nV  is ( ),21 nd  and also that there 

are ( )nd2  minimal solutions for each solvable configuration. 

Table 1 

n    3 4 5 6 7 8 9 10 

d(n)    4 0 8 8 0 0 4 16 
 

n  11 12 13 14 15 16 17 18 19 20 

d(n)  0 16 0 0 12 0 16 8 0 32 
 

n  21 22 23 24 25 26 27 28 29 30 

d(n)  4 0 0 32 8 0 4 0 0 24 

Example 4. There are sixteen minimal solutions for 

.

111

111

111

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=f  

They are: 

• ( ) ( ) ( ){ }3,1,2,1,1,1  and similar patterns (there are 6), 

• ( ) ( ) ( ) ( ) ( ){ }3,3,2,3,3,2,2,2,1,1  and similar patterns (there are 9), and 

• .3V  

Remark 5. We can observe interesting, mysterious, arithmetic properties of 
( ),nd  see our paper in preparation or [5]. There have been known some relations to 

deep mathematics such as Chebyshev polynomials and elliptic curves. See, for 
example, [5] and references therein. 

3. kk 22 ×  Torus Lights Out 

For a configuration f of ,nT  consider the procedure: 

 push all buttons located at v with ( ) .1=vf  (2) 

We claim that, given an arbitrary configuration of ( ),2
2

≥kT k  we can change it 

into the zero configuration by repeating this procedure at most 12 −k  times. 
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Example 6. Let f be the configuration in Example 1: 

.

0111

0011

1001

0001

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=f  

Pushing buttons at v such that ( ) ,1=vf  namely at 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),3,4,2,4,1,4,2,3,1,3,4,2,1,2,1,1  

changes f into 

.

0111

0001

1101

0100

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

 

Pushing buttons at 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3,4,2,4,1,4,1,3,4,2,3,2,1,2,3,1  

then changes this into the zero configuration. The solution thus obtained is by no 
means minimal, but has the advantage that it is easy to memorize. 

Since the procedure (2) changes f into ( ) ,AffAIf =++  our claim follows 

from the following theorem. In the statement and the proof, we shall work in the ring 
of integers, not in .2F  

Theorem 7. ( )2mod
12 OA

k
≡

−
 holds for ( ).2

2
≥kT k  

Proof. Put kn 2=  and introduce the circulant matrix 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

011

101

101

110

B  

of size .nn ×  Then we have 



MASATO GOSHIMA and MASAKAZU YAMAGISHI 122 

,BIIB

B

B

B

B

OII

IOI

IOI

IIO

A ⊗+⊗=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=  

where I is the identity matrix of size nn ×  and YX ⊗  is the Kronecker product of 
X and Y. Since 2n  is a power of 2, we have 

( ).2mod222 nnn BIIBA ⊗+⊗≡  

It is enough to show that ( ).2mod2 OBn ≡  This follows, for example, from the 

observation that B is the adjacency matrix of the cycle graph .nC  Let the vertices of 

nC  be nvvv ...,,, 21  connected in this order. The ( )ji, -entry of 2nB  is equal to 

the number of paths of length 2n  from iv  to .jv  Again since 2n  is a positive 

power of 2, it is easy to see that this number is 

( )

( )

2
mod 2 , 2,

2 2

2 2,

0 mod 2 ,

n
i j i j n

n i j

i j n

i j

⎧⎛ ⎞
⎪⎜ ⎟ ≡ − ≠
⎜ ⎟⎪ − −⎝ ⎠⎪
⎨

− =⎪
⎪
⎪ ≡⎩

 

and is even for all i, j. ~ 

Since any configuration of kT
2

 is solvable, we have the following (cf. [5, 

2.12(f)]). 

Corollary 8. ( ) ( ).202 ≥= kd k  

Remark 9. Our method gives the solution 

fAAff
k 12 1−−

+++  

to a configuration f of .
2kT  Its reduced minimal solution is the unique minimal 

solution to f. In the case ,2=k  this minimal solution is identical to that given in [3]. 
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Remark 10. Our method is also valid for kk ′× 22  Torus Lights Out. Let f be a 
configuration of ( ).2

22
≥′>× ′ kkCC kk  By considering the “tiled” configuration 

( ),
2 kk

fff
′−

 

we see that we can change f into the zero configuration by repeating the procedure 

(2) at most 12 −k  times. 

4. kk 55 ×  Torus Lights Out 

We shall give a criterion for the solvability of kk 55 ×  Torus Lights Out. For a 
configuration f of kT

5
 and for ,4,3,2,1,0=i  define 

( ) { ( ) ( ) ( ) }.1,5mod2,#
5

=≡+|∈== vfiyxVyxvfN ki  

Table 2. ( )yx 2+  mod 5 in the case 1=k  

x 
y 

1 2 3 4 5 
 

1 3 4 0 1 2 

2 0 1 2 3 4 

3 2 3 4 0 1 

4 4 0 1 2 3 

5 1 2 3 4 0 

Lemma 11. If a configuration f of kT
5

 is solvable, then the congruences 

( ) ( ) ( ) ( ) ( ) ( )2mod43210 fNfNfNfNfN ≡≡≡≡  

and 

( ) ( ) ( ) ( ) ( ) ( )2mod43210 fNfNfNfNfN ttttt ≡≡≡≡  

hold. Here ft  is the transpose of f regarded as a square matrix. 

Proof. It is enough to show the first half, since if f is solvable, then so is .ft  
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Let 

{ ( ) ( )},5mod2,
5

iyxVyxvS ki ≡+|∈==  

and let iSi δ=δ  be its characteristic function. We have 

( ) ( ),2mod, ii ffN δ≡  

where ,  is the standard inner product. In particular, ( )fNi  mod 2 is linear in f. If 

f is solvable, then ∑ ∈
= Sv vbf  for some ,

5kVS ⊂  and hence 

( ) ( ) ( )∑
∈

≡≡
Sv

vii SbNfN ,2mod  

since ( ) 1=vi bN  for any i and v. This proves the first half. ~ 

Example 12. The configuration 

5

00000

00000

00000

01011

00101

Vf ∈

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=  

satisfies 

( ) ( ) ( ) ( ) ( ) ,0,2,0,1,2 43210 ===== fNfNfNfNfN  

( ) ( ) ( ) ( ) ( ) .143210 ===== fNfNfNfNfN ttttt  

Therefore, f is not solvable. 

We claim that the converse to Lemma 11 holds, under the assumption that 

( ) ( )55 dd k =  holds. We have checked, assuming another conjecture (see our paper 

in preparation), that 

( ) ( )pdpd k =  

holds for prime powers kp  up to 20000. We expect this to hold in general. 

Theorem 13. Suppose that ( ) ( )55 dd k =  holds. A configuration f of kT
5

 is 
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solvable if and only if the congruences 

( ) ( ) ( ) ( ) ( ) ( )2mod43210 fNfNfNfNfN ≡≡≡≡  

and 

( ) ( ) ( ) ( ) ( ) ( )2mod43210 fNfNfNfNfN ttttt ≡≡≡≡  

hold. 

Proof. Let ,5kn =  ,
2

2
nW F=  WW →α :  be the linear transformation 

determined by ,AI +  and 8
2: F→β W  be the linear map defined by 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

.2mod

04

03

02

01

04

03

02

01

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

−

−

−

−

−

=β

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

f

tt

tt

tt

tt  

We must show that β=α KerIm  holds. Since we have shown β⊂α KerIm  in 

Lemma 11, we have 

( ) .ImdimKerdimImdim 22 β=β−≥α−= nnnd  

By the assumption and the fact that ( ) ,85 =d  we have ( ) .8=nd  Therefore, what 

we have to show is the surjectivity of β. Let f be as in Example 12. The image of 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

OOO

OOO

OOf

 

(regarded as a column vector in W) under β is ( ).00000001t  Similarly, we see 

( ) β∈ Im00000010t  and so forth. This completes the proof. ~ 
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Remark 14. Lemma 11 is also true for ,nT  ( ).5mod0≡n  But the converse 

does not hold in general, since ( )nd  may exceed 8 (see Table 1). 
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